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Abstract
Background: DGAT2 is a promising candidate gene for obesity because of its function as a key enzyme in fat metabolism and
because of its localization on chromosome 11q13, a linkage region for extreme early onset obesity detected in our sample.

We performed a mutation screen in 93 extremely obese children and adolescents and 94 healthy underweight controls.
Association studies were performed in samples of up to 361 extremely obese children and adolescents and 445 healthy
underweight and normal weight controls. Additionally, we tested for linkage and performed family based association studies at
four common variants in the 165 families of our initial genome scan.

Results: The mutation screen revealed 15 DNA variants, four of which were coding non-synonymous exchanges: p.Val82Ala,
p.Arg297Gln, p.Gly318Ser and p.Leu385Val. Ten variants were synonymous: c.-9447A > G, c.-584C > G, c.-140C > T, c.-30C
> T, IVS2-3C > G, c.812A > G, c.920T > C, IVS7+23C > T, IVS7+73C > T and *22C > T. Additionally, the small biallelic
trinucleotide repeat rs3841596 was identified. None of the case control and family based association studies showed an
association of investigated variants or haplotypes in the genomic region of DGAT2.

Conclusion: In conclusion, our results do not support the hypothesis of an important role of common genetic variation in
DGAT2 for the development of obesity in our sample. Anyhow, if there is an influence of genetic variation in DGAT2 on body
weight regulation, it might either be conferred by the less common variants (MAF < 0.1) or the detected, rare non-synonymous
variants.
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Background
Obesity has become a major public health problem in
industrialized countries and its prevalence is still increas-
ing worldwide [1]. Estimates from twin studies attribute
up to 80% of human body weight variation to genetic fac-
tors [2] and positional candidate gene analyses in linkage
peak regions identified in genome wide scans for obesity
have been suggested as a means to detect obesity associ-
ated genes [i.e. [3-7]]. Examples for positional candidate
gene association findings pertain to (a) SLC6A14 on chro-
mosome (chr.) Xq24 [3] which was confirmed by Durand
et al. [4] and (b) GAD2 on chr. 10p12 [5] which was con-
firmed by the same group [6]. In contrast, Swarbrick et al.
[7] found no evidence for a relationship between the three
GAD2 SNPs and obesity in a sample comprising 2,359
individuals.

A genome wide scan for obesity based on 89 German fam-
ilies, comprising extremely obese children and adoles-
cents and both of their parents and at least one obese sib,
identified nine regions with maximum likelihood bino-
mial logarithm of the odd (MLB LOD) scores > 0.7; in an
independent confirmation sample of 76 obesity families
MLB LOD scores of 0.68 and 0.71 were observed for chro-
mosomes 10p11.23 and 11q13, respectively [8].

The hypothesis of a susceptibility gene for obesity and
related phenotypes on chromosome 11q13 was addition-
ally supported by independent linkage studies for BMI
and obesity related phenotypes [9-12]. Further support
was obtained from chromosomal regions homologous to
human chromosome 11q13 in rodents in which quantita-
tive trait loci (QTL) for obesity related phenotypes such as
leptin level [13] and BMI [14] were identified. Taken
together, there is evidence for a candidate gene for obesity
in this chromosomal region.

In earlier studies, we investigated different promising can-
didate genes on chr.11q, but none of them contributed to
the linkage peak [15-17]. Diacylglycerol-O-acyltransferase
homolog 2 (DGAT2), another potential candidate gene, is
also located on chr. 11q13. DGAT2 is a key enzyme in fat
metabolism [18,19]. It is responsible for the synthesis of
triglycerides and catalyzes the reaction that joins diacylg-
lycerol covalently to long chain fatty acyl-CoAs. It was
hypothesized that leptin regulates adipocyte size by alter-
ing expression patterns of Diacylglycerol O-acyltrans-
ferase 1 (DGAT1) and its functional homolog DGAT2 via
the CNS to determine the levels of triglyceride synthesis
[20]. The deduced 387-amino acid human DGAT2 pro-
tein contains at least one transmembrane domain, three
potential N-linked glycosylation sites, six potential phos-
phorylation sites, and a putative glycerol phospholipid
domain found in acyltransferases [18]. Although func-
tionally related, DGAT2 shares no sequence homology

with the members of the DGAT1 family. The gene was
identified via homology search with fungal DGAT subse-
quent to the finding that Dgat1 knockout mice (Dgat1-/-)
were viable and still able to synthesize triglycerides
[18,19,21].

Dgat2 knockout mice (Dgat2-/-) are lipopenic, their total
carcass triglyceride content was reduced by 93% [22]. In
contrast to Dgat1-/- mice, where Dgat2 is able to compen-
sate the role of Dgat1 in triglyceride synthesis, Dgat1 was
unable to compensate for the absence of Dgat2 in Dgat2-/

- mice. Dgat2-/- mice die in the early postnatal period,
apparently from abnormalities in energy homeostasis and
from impaired permeability barrier function in the skin.
The results indicate that Dgat2 is the major enzyme of trig-
lyceride synthesis in mice [22].

Based on both positional as well as on functional argu-
ments, we hypothesized that genetic variations in DGAT2
might alter triglyceride synthesizing activity of the protein
in humans. Genetic variations leading to a gain of func-
tion of DGAT2 may thus be associated with obesity,
whereas variations entailing a reduced function could be
relevant in underweight.

Results
Gene structure
To include all potentially relevant exons of DGAT2, its
structure was analyzed both in silico and experimentally.
Visual inspection of ESTs assembled to the DGAT2 locus
in the UCSC genome browser identified two ESTs
(BF979495, BF979677) which seemed to harbour alterna-
tive/additional exons. The sequences of both ESTs overlap
by 200 bp and form a transcript of 1,238 bp. Alignment of
this mRNA to genomic DNA revealed the presence of an
alternative first noncoding exon of human DGAT2, while
exons2–8 are as defined by AB048286 (suppl. table 1).
Sequencing of EST BF979677 revealed the presence of an
alternative internal exon which is located between exon1
and exon2 as defined in AB048286. Furthermore, by RT-
PCR in human adipocyte mRNA, a transcript was identi-
fied that comprised 7exons in which exon1 and exons3–8
are as defined by AB048286 while exon 2 is missing. In
sum, three alternatively spliced transcripts of the human
DGAT2 gene were identified. Including the two previously
reported mRNAs (AB048286, ENST00000228027) there
are at least five different mRNAs transcribed from this
locus [see additional file 1].

Mutation screen
Screening was performed in the coding region, the pre-
dicted promoter region and in the identified non-coding
5' exon. The mutation screen in ten fragments comprised
3,079 bps and revealed 15 (14 novel) DNA variants, four
of which are coding non-synonymous exchanges:
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p.Val82Ala, p.Arg297Gln, p.Gly318Ser and p.Leu385Val
whereas ten variants are synonymous c.-9447A > G, c.-
584C > G, c.-140C > T, c.-30C > T, IVS2–3C > G, c.812A >
G, c.920T > C, IVS7+23C > T, IVS7+73C > T and *22C > T
(see also table 1). Additionally, a small known biallelic
trinucleotide repeat (IVS7+164(TAG)2–3 = rs3841596)
located in intron 7 was identified.

Case control association studies
Minor allele frequencies (MAF) of the variants were esti-
mated in sample 1. Most of the variants were rare and it
was thus decided to genotype only the more frequent var-
iations rs3841596, rs1017713 and rs3060 in sample 2.
Variant -140C > T, located 5' to the translation start, was
genotyped in sample 3 which includes sample 2 but is
larger and therefore has an improved power (see table 1).
Given the sample sizes, the study had a statistical power of
more than 80% to detect allelic differences between the
respective case and control groups of e.g. 0.17 and 0.1 in
MAFs. Genotype distribution in all study samples did not
differ from Hardy-Weinberg equilibrium. No significant
differences in genotype or allele distributions were found
in samples 2 and 3, all nominal p-values were >> 0.05 (see
table 1).

Family based association studies
To investigate the contribution of DGAT2 polymorphisms
to the linkage peak on chromosome 11q13 [8] SNPs -
9447A > G and -140C > T, as well as two additional

known variants (rs1017713 (IVS1+212T > C) and rs3060
(*19T > C)) were genotyped in the families contributing
to the genome scan peak (sample 4). Neither single
marker family based association analyses (PDT) in all 165
families nor in the 48 families contributing to the linkage
peak on 11q13, revealed significant evidence for allelic
associations (all p-values > > 0.05). Consistent with this
finding, subsequent haplotype analyses using FAMHAP
did not indicate an associated haplotype (best nominal p-
value 0.5 with the zhaomax allcombi option).

Discussion
The linkage scan in 89 families revealed the highest LOD
at D11S1313. Subsequent fine-mapping in 76 independ-
ent families revealed a combined peak region at position
67.8 – 69.1 Mb (approximately 68.55 - 68.01 cM, UCSC,
hg16) between D11S1337 and D11S4095 [, unpublished
data]. DGAT2 is located at 75 Mb and thus close to this
peak region. In light of the small sample size, which leads
to considerable stochastic variation in the location esti-
mate of linkage peaks [23] and combined with its impor-
tant role in fat metabolism DGAT2 is a very plausible
positional and functional candidate gene for obesity in
our sample.

A mutation screen in the coding region of the gene, the
predicted promoter sequence and a 5' non-coding exon
(altogether 3,079 bp) revealed 15 genetic variants, 14 of
which were novel. Twelve of the variants were rare (MAF

Table 1: Summary of DGAT2 variants detected in the coding region, the predicted promoter region and a 5'non-coding exon: 15 (14 
novel) identified and 2 previously described (rs1017713 and rs3060), minor allele frequency among all successfully genotyped 
individuals and results of the case control association studies with cases (extremely obese children and adolescents) and controls 
(normal- or underweight healthy individuals)

variant region Study group1 minor allele frequency n (%) p-value2

cases controls

g.-9447 A > G exon 01 2 29 (8.06) 33 (8.82) 0.79
c.-584C > G promoter 1 0 (0) 1 (0.53) nd.
c.-140C > T 5'UTR/exon 1 3 2 (0.28) 9 (1.01) 0.13
c.-30C > T 5'UTR/exon 1 1 0 (0) 2 (1.06) nd.
c.475T > C p.Val82Ala exon 2 1 1 (0.54) 0 (0) nd.

g.IVS1+212T > C rs1017713 exon 2 2 25 (7.65) 26 (7.06) 0.77
g.IVS2-3C > G intron 2 1 0 (0) 1 (0.53) nd.

c.812A > G p.Thr194Thr exon 5 1 1 (0.54) 0 (0) nd.
c.920T > C p.Ser230Ser exon 6 1 1 (0.54) 0 (0) nd.

c.1020G > A p.Arg297Gln exon 7 1 0 (0) 2 (1.06) nd.
c.1492G > A p.Gly318Ser exon 7 1 0 (0) 2 (1.06) nd.

g.IVS7+23C > T intron 7 1 1 (0.54) 0 (0) nd.
g.IVS7+73C > T intron 7 1 2 (1.08) 0 (0) nd.

g.IVS7+164(TAG)
2–3

rs3841596 intron 7 2 24 (6.67) 28 (7.61) 0.67

c.1383C > G p.Leu385Val exon 8 1 0 (0) 1 (0.53) nd.
g.*19T > C rs3060 3'UTR/exon 8 2 27 (7.50) 27 (7.76) 1
g.*22C > T 3'UTR/exon 8 1 1 (0.54) 0 (0) nd.

Hardy Weinberg equilibrium was fulfilled (all exact p > > 0.20). 1for descriptions of study groups see Methods; 2Fisher's exact test, two-sided.
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= 1%) and would thus have a too low statistical power to
allow for a comparison in a case control association anal-
ysis. Nonetheless, these rare variants might have an
impact on the phenotype. Four coding non-synonymous
variants were detected: p.Val82Ala occurred once in an
extremely obese male, whereas p.Arg297Gln, p.Gly318Ser
and p.Leu385Val were detected in underweight controls.
[1] The conservative amino acid (aa) exchange p.Val82Ala
is located in a predicted transmembrane domain of the
DGAT2 protein [18]. This position is situated within an
area highly conserved among the selected species with
Val82 being unchanged for more than 1 billion years of
evolution. While this non-synonymous variant seemingly
does not affect the predicted transmembrane domain (aa
73 to aa 95), altered function may be the consequence as
already postulated for other genes [24]. Moreover, for the
very same aa substitution positioned within a transmem-
brane domain (TM) an inactivating variant in TM2 of the
monocarboxylate transporter 8 [25] as well as an activat-
ing variant in TM1 of the lutropin receptor [26] had been
described. Therefore although Val82Ala is a conservative
exchange it has been shown that a Valin to Alanin substi-
tution is able to materially affect membrane protein func-
tions in both an activating as well as in an inactivating
manner. Hence, assuming that a gain of function might
well lead to obesity, it is reasonable to consider the Valin
to Alanin substitution in DGAT2 as a potential cause for
the patient's remarkably increased BMI (see table 2). [2]
Arg297Gln is a non conservative amino acid exchange. In
contrast to arginine, glutamine has an amide-side group
that is able to form hydrogen bonds, which might influ-
ence protein structure. However, positioned in a region of
little evolutionary conservation characterised by a differ-
ence in amino acid sequence length between mammals
and plants and a non-conservative amino acid exchange
between these kingdoms (basic polar arginine in mam-
mals vs. neutral unpolar methionine in plants) an
exchange of the wt arginine vs. also polar but neutral
glutamine does not suggest a functional consequence of
this substitution. [3] The substitution of glycine to serine
at position 318 is also non-conservative. During evolution
persisted at this position a neutral unpolar amino acid;
therefore an exchange by polar serine may be functionally
relevant. However, several amino acids flanking position
318 show little conservation; therefore the patient's
remarkably low BMI as consequence of this amino acid
substitution seems rather speculative. [4] The exchange of
leucine to valine at position 385 is conservative. The non
reactive aliphatic side chains of leucine and valine that are
important for hydrophobic bonds within the protein are
not affected. Functional studies of these variants in
DGAT2 have to be performed to clarify the effect of the
detected variants on body weight regulation.

There is no indication that the rare synonymous variants
might have an effect on body weight regulation. Variant
c.-584C > G in the putative promoter region is located in
a potential binding site for the transcription factor ARP-1
(COUP-TF II), which might participate in regulation of
lipid metabolism and cholesterol synthesis [27] and is
assumed to negatively influence PPARα gene transcrip-
tion [28]. Two variants were detected in untranslated
regions (-30C > T in the 5'UTR and *22C > T in the
3'UTR). These variants may influence mRNA stability, but
as they are rare, we assumed that they have no major effect
on common obesity under a "common disease common
variant"-perspective given that the estimated MAF of each
variant was 1/186 = 0.54% (95% confidence interval
0.014%...2.96%). The intronic variants IVS2–3C > G,
IVS7+23C > T and IVS7+73C > T are also rare and neither
affect any consensus splice site nor do they introduce cryp-
tic splice sites. None of the case control and family based
association studies showed an association of investigated
variants or haplotypes in the genomic region of DGAT2.

Starting off with a mutation screen of the coding sequence
and the 5'flanking region we were investigating both case
control samples and independent samples with families
contributing to a linkage peak. However, due to insuffi-
cient statistical power to explore the less common variants
(MAF < 0.1), our study design only allows evaluation of
common variants.

In conclusion, our results do not support the hypothesis
of an important role of common genetic variation in
DGAT2 for the development of obesity in our sample.
One may thus speculate that if there is an influence of
genetic variation in DGAT2 on body weight regulation, it
might either be the less common synonymous or non-
coding variants that play an important role.

Methods
Study subjects
The ascertainment strategy for the extremely obese and
underweight study groups was previously described in
detail [29]. Briefly, extremely obese German index
patients were ascertained at German hospitals specialized
in inpatient treatment of extreme obesity in children and
adolescents. All index patients had an age- and gender-
specific BMI ≥90th percentile as previously determined in
a representative German population sample [30]. The
BMIs of the underweight students were below the 15th
percentile whereas normal weight controls had BMIs
between the 40th and the 60th age- and gender-specific per-
centile. Mean BMI and age and the respective standard
deviations are provided below. Written informed consent
was given by all participants and, in the case of minors,
their parents. This study was approved by the Ethics Com-
mittee of the University of Marburg.
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The coding exons of DGAT2, the predicted promoter
region and an additionall non-coding 5' exon were
screened in a 'screening sample' (sample 1) comprising 93
extremely obese children and adolescent cases (48.4 %
females, mean BMI 34.4 ± 5.0 kg/m2; mean age 14.1 ± 2.0
yrs) and 94 healthy underweight controls (36.2 %
females, mean BMI 18.5 ± 1.2 kg/m2; mean age 25.5 ± 4.0
yrs). Identified sequence variants were genotyped in sam-
ple 2, comprising both the initial groups (sample 1) and
additional 87 cases (51.7 % females, mean BMI 36.9 ± 7.0
kg/m2; mean age 14.6 ± 2.8 yrs) as well as 93 healthy
underweight controls (52.7 % females, mean BMI 18.3 ±
1.0 kg/m2; mean age 25.7 ± 3.8 yrs). Finally, in order to
increase the power to detect association for one variant (-
140C > T), sample 2 was further extended (sample 3).
Sample 3 comprised a total of 361 extremely obese cases
(53.2 % females, mean BMI 34.7 ± 6.3 kg/m2; mean age
14.4 ± 2.6 yrs) and a total of 445 control subjects compris-
ing 278 underweight students (50.7 % females, mean BMI
18.2 ± 1.1 kg/m2; mean age 25.0 ± 3.7 yrs) and 167 nor-
mal weight controls (60.5 % females, mean BMI 21.8 ±
1.1 kg/m2; mean age 24.6 ± 2.4 yrs).

To investigate the potential genetic effects of variants in
DGAT2 on body weight regulation; SNPs rs1017713,
rs3060, -9447A > G and -140C > T were genotyped in a
family based association analysis, the respective markers
were also genotyped in the 165 genome scan families
(sample 4) described previously [8] to test for linkage.
Sample 4 is independent of samples 1–3. The aim of our
study was the investigation of associations of common
DGAT2 variants with extreme early-onset obesity.

Promoter prediction and evaluation of gene structure
Promoter sequence was predicted by PromoterInspector,
Mammalian Promoter Prediction Software from Genom-
atix, [31]. Analyses were based on human genome assem-
blies hg15 and hg16 [32] and the corresponding
ENSEMBL genome browser [33]. cDNA clone sequences
of Unigene cluster Hs.334305 representative for the
human DGAT2 gene were downloaded from NCBI [34]
and assembled using GAP4 [35]. DGAT2 transcripts were
aligned to human genomic sequence using Sim4 [36].
Two known human mRNAs mapped to the DGAT2 locus
in genome assemblies hg15 and hg16. One of these,
AB048286 (2,439 bp) formed the basis for RefSeq entry
NM_032564, the annotation status of which was provi-
sional. The second mRNA AL834287 (2,347 bp) was 92
bp shorter at its 5'end than AB048286. Nonetheless, both
transcripts harbour 8 exons; and as defined by AB048286,
the human DGAT2 at chr. 11q13.5 covers 32,766 bp with
a coding region (CDS) of 1167 bp extending from exon1
to exon8. In the corresponding Ensembl genome browser
[33] there were also two transcripts assigned to the DGAT2
locus (ENST00000289503, 1,545 bp;
ENST00000228027, 2,238 bp). The former entry har-
boured 8 exons as found in AB048286 while the latter
contained only 7 exons, i.e. exon5 was missing which
indicated the presence of at least one alternatively spliced
DGAT2 transcript.

Sequencing
Human cDNA clone BF979958 was obtained from RZPD
[37] and cultured by standard methods [38]. Sequencing
was performed using vector primers and BigDye Termina-

Table 2: Phenotypic characteristics (gender, age, BMI, BMI-SDS) of heterozygous carriers of infrequent variants detected in the 
genomic region of DGAT2

Mutation Gender Age [years] BMI [kg/m2] BMI-SDS*

p.V82A male 12 29.30 3.6
p.R297Q female 26 16.9 -1.3

female 23 17.0 -1.6
p.G318S male 25 19.6 -1.2

male 20 17.9 -1.9
p.L385V male 23 20.4 -0.9

c.812A > G (T194T) female 12 31.4 4.6
c.920T > C (S230S) male 13 31.5 3.7

-584C > G female 34 18.4 -1.3
-30C > T male 24 19.6 -1.4

IVS2–3C > G male 27 19.5 -1.5
IVS7+23C > T female 14 35.9 5.4

female 16 33.8 5.2
IVS7+73C > T male 12 29.3 3.3

*22C > T male 21 33.8 4.7

All individuals are heterozygous carries of these variants. * Estimates based on Hebebrand et al., 1996 (53)
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tor Cycle Sequencing v2.0 kit (Applied Biosystems, Weit-
erstadt, Germany). Sequencing reactions were
electrophoresed on ABI 3700 automated sequencers. Base
calling was performed using phred [39,40]. Sequence
assembly was done using phrap [41]. Trace files were
inspected visually in GAP4. RT-PCR: Primers located in
exons 1 and 8 of DGAT2 as defined by reference sequence
NM_032564 were used in a nested PCR approach (PCR I:
1F [ACCCTCATAGCCGCCTACTC], 1R [AGGTTAGCT-
GAGCCACCCAG]; PCR II: 2F [CTCAT-
AGCCGCCTACTCC], 2R
[CTAGAACAGGGCAAGCTGGA]) on human multiple tis-
sue cDNA (Clontech, Heidelberg, Germany) or adipocyte
mRNA [42]. Omniscript RT Kit (QIAGEN, Hilden, Ger-
many) was used for reverse transcription. PCR products
were cloned into pCR2.1-TOPO (Invitrogen, Karlsruhe,
Germany). Sequencing of recombinant clones, sequence
assembly, trace file inspection and alignment to genomic
sequence was done as described above.

Mutation screen
A mutation screen was performed in the 8 coding exons of
human DGAT2 and also in the predicted promoter region
and a non-coding 5' exon. For PCR amplification, primers
corresponding to intron sequences were used in order to
detect potential splice site variants [for PCR primers see
additional file 2]. Mutation screens of exon 6 and 8 were
performed using denaturing high performance liquid
chromatography (dHPLC) analysis on a Transgenomic
WAVE® system [Transgenomic, Cheshire, UK; ]. The opti-
mal melting temperatures for separation of homo- and
heteroduplices were deduced from the melting tempera-
ture of the PCR-amplicon using WAVEmaker software,
version 4.0 (Transgenomic, Cheshire, UK). All chromato-
grams were compared with chromatograms of sequenced
wild-type samples. PCR amplicons showing a peak
appearance different to the wild-type pattern were
sequenced (SeqLab, Göttingen, Germany). To detect
mutations in exons 1–5, 7, the promoter region and the
non-coding 5' exon standard nonisotopic single-strand
conformation polymorphism analyses (SSCP) was per-
formed [44]. 15% acrylamide gels (Q-BIOgene, Heidel-
berg, Germany; 37.5:1) were run at 600 V for 16 h at 4°C
and for 5.5 h at ambient temperature; all gels were silver
stained. The sensitivity of dHPLC has been described to be
approximately 95% [45] and that of SSCP about 97%
when using two temperatures [46]. All SSCP patterns were
compared with patterns of sequenced wild-type samples.
Samples that showed a pattern different from that of the
wild-types were re-sequenced (Seq Lab, Göttingen, Ger-
many). The nomenclature of the described variants fol-
lows den Dunnen and Antonarakis [47] and NM_032564.

Genotyping
High-throughput genotyping for two additional intronic
SNPs (rs1017713, rs3060,) as well as for variants -9447A
> G and -140C > T entering the family based association
studies was performed as described earlier [48] using
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS). For case control
association studies, genotyping of SNPs -9447A > G and
c.920T > C was perfomed via tetra-ARMS-PCR [49] [see
additional file 3]. For all other SNPs [see additional file 3],
PCR with subsequent diagnostic restriction fragment
length polymorphism analyses (RFLP) was used. PCR
products were run on ethidium bromide-stained 2.5%
agarose gels. Positive controls for the variant alleles and a
negative control (water) were run on each gel. To validate
the genotypes, allele determinations were rated independ-
ently by at least two experienced individuals. Discrepan-
cies were resolved unambiguously either by reaching
consensus or by retyping. Missings were retyped twice.
Genotyping success rate was above 99%. Genotyping of
rs3841596, a biallelic trinucleotide repeat was carried out
using fluorescence-based semi-automated technique on
an automated DNA sequencing machine (LiCor 4200-2;
MWG-Biotech, Ebersberg, FRG). Analyses and assignment
of the marker alleles were done with ONE-Dscan Version
1.3 software (MWG-Biotech).

In silico evaluation of non-synonymous variants
To gain information about putative functional relevance
of an amino acid substitution, public sequence database
[34] was mined for full length mammalian and more dis-
tant related DGAT2 orthologs where particular attention
was given to species surpassing oil production. These data
were utilized to determine the evolutionary conservation
of the DGAT2 amino acid sequence. Protein sequence
alignment was carried out via Omiga (Oxford Molecular
Ltd.). Transmembrane domains were predicted in silico
[50].

Statistics
Associations in the case control sample were analyzed by
Cochran-Armitage trend test for genotype frequencies and
Fisher's exact test for alleles. Family based association
analyses were performed using the pedigree transmission
disequilibrium test [PDT; ]. Analyses of linkage disequi-
librium (LD) between the investigated polymorphisms as
well as haplotype associations in the families were inves-
tigated by FAMHAP v16 [e.g. ]. All reported p-values are
nominal. Due to lack of p-values < 0.05 (see below),
adjustment for multiple testing was considered unneces-
sary.
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