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Abstract
Association studies of quantitative traits have often relied on methods in which a normal
distribution of the trait is assumed. However, quantitative phenotypes from complex human
diseases are often censored, highly skewed, or contaminated with outlying values. We recently
developed a rank-based association method that takes into account censoring and makes no
distributional assumptions about the trait. In this study, we applied our new method to age-at-onset
data on ALDX1 and ALDX2. Both traits are highly skewed (skewness > 1.9) and often censored.
We performed a whole genome association study of age at onset of the ALDX1 trait using Illumina
single-nucleotide polymorphisms. Only slightly more than 5% of markers were significant.
However, we identified two regions on chromosomes 14 and 15, which each have at least four
significant markers clustering together. These two regions may harbor genes that regulate age at
onset of ALDX1 and ALDX2. Future fine mapping of these two regions with densely spaced
markers is warranted.

Background
Many statistical methods have been developed for linkage
and association studies for both qualitative and quantita-
tive traits [1-6]. Although quantitative traits are now rec-
ognized as important alternative phenotypes for gene
mapping, association methods applications for qualita-
tive traits are generally better developed than those for
quantitative traits. One reason is that not all human com-
plex diseases have appropriate quantitative measurements
(phenotypes) that can be treated as genetic traits. Further-
more, many existing methods for quantitative traits
assume normality of the data, which may not be appropri-
ate when analyzing real data. For example, the distribu-

tion of a quantitative trait may be highly skewed, or right-
or left-censored, making distribution-based methods
inappropriate.

Age at onset is an important quantitative genetic trait for
Alzheimer and Parkinson diseases [7]. Because age-at-
onset data are measured in affecteds only, samples with
phenotypic data are limited, thus reducing the power of
association methods for quantitative traits. It would be
desirable to incorporate information from unaffected sib-
lings, because they may carry the risk genes but may not
have reached disease onset. The age at onset of these unaf-
fected individuals are censored.
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We recently developed a new nonparametric association
method that takes into account the censoring time of
unaffected individuals [8]. We have conducted a series of
simulation studies to evaluate the type I error and power
of this new method. Our new method showed compara-
ble statistical power with the method proposed by Monks
and Kaplan [5] when quantitative traits without censoring
were used. Substantial gains in power were found in our
new method when censored individuals were included.
The goal of this Genetic Analysis Workshop 14 (GAW14)
genetic data analysis is to illustrate our new method on
the age-at-onset data from the Collaborative Study on the
Genetics of Alcoholism (COGA) dataset. We evaluate two
age-at-onset traits: age at onset for ALDX1 and ALDX2.
The age at interview variable was treated as the censoring
time for unaffected individuals. We performed a genome-
wide association analysis for age-at-onset traits using sin-
gle-nucleotide polymorphisms (SNPs) from Illumina.

Methods
Rank-based association test
In order to reduce sensitivity to distributional assump-
tions and to include censored individuals, we developed a
rank-based association test. This test can be applied to
both case-parent (triad) data and sibships with or without
parental genotypic information. Here, we describe the
details of this new method.

We begin with one of the simplest pedigree structures: one
offspring and two parents (triad). Let Ti be the observation
time (age-at-onset, age at exam, or age at death) of off-
spring i. Let δi be a censored data indicator so that δi = 1
when age at onset is observed and δi = 0 when age at onset
is censored (Ti would then be the age at exam or age at
death). Let Xi be a coded vector for the genotype of off-
spring at a locus in the ith family. Marker genotypes for the
biallelic case are coded as described in Schaid [9] under
different genetic models (general, dominant, recessive,
and additive), in which the general model is a two degrees
of freedom test using two indicator variables to express
the marker genotypes. For the ith family, form a vector of
excessive transmission scores (Zi) by taking the coded off-
spring genotype and subtracting an average of possible
coded genotypes given the parental data,

where  denotes the set of all coded offspring geno-

types consistent with the genotypes of the parents. The Zi

variable defined in this paper is analogous to the allelic
transmission scores used by Monks and Kaplan [5] and
Abecasis et al. [6].

Let T(l) represent the lth of k ordered event times, Z(l) the

excess transmission scores associated with T(l), ml the

number of censored events in [T(l), T(l+1)), and nl  the

number of individuals at risk prior to T(l), i.e.,

. The ith triads score contribution takes

into account the number of individuals at risk at each time
point prior to the offspring's event time. Specifically,

For the case of multiple siblings with parental genotypes,
we form a valid test by simply combining individual score
contributions within a family. That is, we compute the
score Uij for the jth offspring in the ith family as Equation 1,
in which the rank of each event time is obtained by order-
ing the event times of all samples in the dataset. For sib-
ship data without parental genotypes, the genotypic score
(Z) is counted as the number of allelic differences among
offspring. That is,

Again, the rank of each time event is based on all samples
in the data set. Computing Uij for the jth offspring in the ith

family is analogous to that described above with Zij replac-
ing Zi in Equation 1. The total score Ui of family i is the
sum of Uij across all j offsprings in family i.

Let n be the total number of families in the data set and

. The variance of U can be estimated by the

empirical variance

A score test for trait (age at onset) and genotype associa-
tion can then be computed by

W = U'V-U, (2)

where V- denotes the generalized inverse of V. Asymptoti-

cally, W, is distributed as , where p is the rank of V.

Analysis of COGA data
Age at onset for ALDX1 and ALDX2 and age at interview
information from the COGA dataset were used as pheno-
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typic data. ALDX1 was defined as an affected by the defi-
nitions of the DSM-III-R alcohol dependence and
Feighner. ALDX2 was defined as an affected with DSM-IV
alcohol dependence. For individuals without age-at-onset
data for the trait, the individual was coded as censored
and age at interview was treated as an event time. We
developed a SAS program that implements the method
described above and accommodates the pedigree struc-
tures of COGA data set.

We applied this method to the SNP dataset from Illumina
linkage panel. We first analyzed whole-genome SNP data
for the ALDX1 trait. Then, the chromosomes showing
interesting results were followed up for the ALDX2 trait.
The current SAS code is only suitable for the COGA pedi-
grees. A user-friendly program is still under development.

Results
Our simulation studies demonstrated that the rank-based
association test described above has correct type I error
and higher statistical power than the Monks-Kaplan
method [5] when censored rates are greater than 0 (man-
uscript in preparation). In this study, the traits of interest
are the age at onset of ALDX1 and ALDX2 from COGA.
The distributions of age at onset for ALDX1 and ALDX2

are similar and do not follow normal distribution. The
skewness (kurtosis) was calculated as 1.96 (4.54) for age
at onset of ALDX1 and 2.05 (5.37) for ALDX2. The aver-
age age at onset was 22.6 ± 8.3 for ALDX1 and 23.5 ± 8.5
for ALDX2. Because our proposed method does not
assume normality for the trait distribution, it is still valid
to apply our method to the raw data without transforma-
tion.

In total, 4,091 Illumina SNPs were analyzed for the age at
onset of ALDX1. SNPs showing significant association
with age at onset were scattered across all chromosomes
(Table 1). On most chromosomes less than 5% of markers
had significant p-values. Considering the significance level
was set at 5%, we should interpret these results carefully.
Seven chromosomes (chromosome 8, 9, 10, 13, 14, 15,
and 21) had more than 5% of markers significant. Two
SNPs, on chromosome 14 and 15, respectively, showed
strong association with age at onset (p = 0.0002 and
0.0003). In addition, we observed a pattern of at least four
significant SNPs clustering together on both chromo-
somes 14 and 15, which is depicted in Figure 1. The inter-
esting chromosomal regions were from 0 cM (rs1972373)
to 0.6 cM (rs1760912) on chromosome 14 and 47.6 cM
(rs1864299) to 61 cM (rs749468) on chromosome 15.
The same significant markers on chromosome 14 and 15
were identified when age-at-onset data of ALDX2 were
analyzed. Overall, these results suggest some potential
areas of interest on these two chromosomes.

Discussion
Our goal for this GAW workshop was to illustrate a new
association method that we recently developed for age-at-
onset traits in a real data set. Through this project, we
developed a SAS program to analyze the COGA data. This
exercise will help us toward developing a user-friendly
program.

In this study, we focused on age at onset of the ALDX1 and
ALDX2 traits. Because our new method can be applied to
any quantitative trait regardless of underlying distribu-
tion, it is applicable to the highly skewed age-at-onset data
observed in the COGA dataset. Our genome-wide associ-
ation tests for age at onset of ALDX1 using Illumina SNPs
showed a very low percentage of significant makers: only
206 of 4,091 markers reached the significance level of
0.05. Due to the large number of markers tested, multiple
corrections should be taken into account. Therefore, the
percentage of significant markers was reduced further.
One possible explanation is that this SNP chip was not
designed for association analysis, because the SNPs are
not densely distributed. Many association studies test
markers spaced between 20 and 50 kilobases apart in
order to detect significant association. Therefore, we did
not expect a high percentage of significant results.

Association results of all markers in chromosome 14 (A) and chromosome 15 (B)Figure 1
Association results of all markers in chromosome 14 
(A) and chromosome 15 (B). The p-values are in the 
form of -log10(p-value). The solid line indicates the cut-off 
for 0.05 significance level.
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Our analysis showed that both chromosomes 14 and 15
have more than 5% of the markers significantly associated
with age at onset of both ALDX1 and ALDX2. In addition,
on both chromosomes the marker with the strongest asso-
ciation signal clusters with other significant markers in a
small region (0.6 cM for chromosome 14 and 13.4 cM for
chromosome 15). These two potential candidate regions
may harbor genes that regulate age at onset of ALDX1 and
ALDX2. It will be worthwhile to follow up these two
regions with dense markers in the future.

In our analysis of chromosomes 14 and 15, we did not
find different association patterns for age at onset between
ALDX1 and ALDX2. This is mainly due to the similar dis-
tribution of age at onset between these two phenotypes.
Many individuals were recorded to have the same or sim-
ilar onset time for ALDX1 and ALDX2. The maximum dif-
ference between these two phenotypes within the same
individual was 8 years. This points out a challenge for
obtaining accurate age-at-onset data in this study. Since
ALDX1 and ALDX2 were defined by the severity of alcohol
dependence, it is possible that the similar onset time for
these two phenotypes reflects the fact that they are modi-
fied by same genetic mechanism. However, it is also pos-
sible that a participant cannot easily separate the onset
time of these similar clinical features.

Abbreviations
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ism

GAW14: Genetic Analysis Workshop 14

SNP: Single-nucleotide polymorphism

Acknowledgements
This work was supported by a 2002 research grant from American Feder-
ation for Aging research (AFAR), a new investigator research grant from 
the Alzheimer's Association (NIRG-02-3603), the National Institute of 
Health (NIH)/NINDS R01 NS311530, and a research career award (K25 
HL077663) to ASA from the NIH/NHLBI.

References
1. Spielman RS, McGinnis RE, Ewens WJ: Transmission test for link-

age disequilibrium: the insulin gene region and insulin-
dependent diabetes mellitus (IDDM).  Am J Hum Genet 1993,
52:506-516.

2. Curtis D: Use of siblings as controls in case-control associa-
tion studies.  Ann Hum Genet 1997, 61:319-333.

3. Martin ER, Monks SA, Warren LL, Kaplan NL: A test for linkage
and association in general pedigrees: the pedigree disequilib-
rium test.  Am J Hum Genet 2000, 67:146-154.

4. Allison DB: Transmission-disequilibrium tests for quantitative
traits.  Am J Hum Genet 1997, 60:676-690.

5. Monks SA, Kaplan NL: Removing the sampling restrictions
from family-based tests of association for a quantitative-trait
locus.  Am J Hum Genet 2000, 66:576-592.

Table 1: Summary of association test for age at onset of ALDX1 using Illumina

SNPs

Chromosome Total No. significanta % significant Minimum p-value

1 250 9 3.6 0.009
2 250 13 5.2 0.009
3 250 10 4.0 0.002
4 250 12 4.8 0.001
5 250 12 4.8 0.003
6 250 8 3.2 0.003
7 250 11 4.4 0.002
8 211 13 6.2b 0.010
9 176 12 6.8 0.008
10 207 14 6.8 0.004
11 186 7 3.8 0.002
12 231 7 3.0 0.020
13 167 12 7.2 0.003
14 172 12 7.0 0.0002
15 166 11 6.6 0.0003
16 162 7 4.3 0.003
17 132 4 3.0 0.001
18 131 6 4.6 0.006
19 110 5 4.5 0.001
20 118 12 1.02 0.002
21 87 6 6.9 0.020
22 85 3 3.5 0.020

ap ≤ 0.05
bBold text indicates chromosomes for which either the percentage of significantly associated SNPs was greater than 6% or the minimum p-value was 
≤ 0.0003.
Page 4 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8447318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8447318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8447318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9365785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9365785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10825280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9042929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9042929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318


BMC Genetics 2005, 6:S53
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

6. Abecasis GR, Cookson WOC, Cardon LR: Pedigree tests of trans-
mission disequilibrium.  Eur J Hum Genet 2000, 8:545-551.

7. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts
RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J,
Allen FA Jr, Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton
LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD,
Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert
JR, Vance JM, Haines JL, Pericak-Vance MA: Age at onset in two
common neurodegenerative diseases is genetically control-
led.  Am J Hum Genet 2002, 70:985-993.

8. Allen AS, Martin ER, Li Y-J: A nonparametric genetic association
test for age-at-onset data.  Am J Hum Genet 2003, 73(Suppl
5):616.

9. Schaid DJ: General score tests for associations of genetic
markers with disease using cases and their parents.  Genet Epi-
demiol 1996, 13:423-449.
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10909856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10909856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905391
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Rank-based association test
	Analysis of COGA data

	Results
	Discussion
	Abbreviations
	Acknowledgements
	References

