
BioMed CentralBMC Genetics

ss
Open AcceProceedings
Whole-genome association studies on alcoholism comparing 
different phenotypes using single-nucleotide polymorphisms and 
microsatellites
Liang Chen1, Nianjun Liu2,3, Shuang Wang4, Cheongeun Oh2, 
Nicholas J Carriero5 and Hongyu Zhao*2,6

Address: 1Department of Epidemiology and Public Health, Yale University, New Haven, CT 06520, USA, 2Division of Biostatistics, Department of 
Preventive Medicine, University of Medicine and Dentisry of New Jersey, Newark, NJ 07101, USA, 3Department of Biostatistics, University of 
Alabama at Birmingham, Birmingham, AL 35294, USA, 4Department of Biostatistics, Mailman School of Public Health, Columbia University, New 
York, NY 10032, USA, 5Department of Computer Science, Yale University, New Haven, CT 06520, USA and 6Department of Genetics, Yale 
University, New Haven, CT 06520, USA

Email: Liang Chen - liang.chen@yale.edu; Nianjun Liu - nliu@uab.edu; Shuang Wang - shuang.wang@columbia.edu; 
Cheongeun Oh - cheongeun.oh@yale.edu; Nicholas J Carriero - carriero-nicholas@yale.edu; Hongyu Zhao* - hongyu.zhao@yale.edu

* Corresponding author    

Abstract
Alcoholism is a complex disease. As with other common diseases, genetic variants underlying
alcoholism have been illusive, possibly due to the small effect from each individual susceptible
variant, gene × environment and gene × gene interactions and complications in phenotype
definition. We conducted association tests, the family-based association tests (FBAT) and the
backward haplotype transmission association (BHTA), on the Collaborative Study of the Genetics
of Alcoholism (COGA) data provided by Genetic Analysis Workshop (GAW) 14. Efron's local false
discovery rate method was applied to control the proportion of false discoveries. For FBAT, we
compared the results based on different types of genetic markers (single-nucleotide polymorphisms
(SNPs) versus microsatellites) and different phenotype definitions (clinical diagnoses versus
electrophysiological phenotypes). Significant association results were found only between SNPs and
clinical diagnoses. In contrast, significant results were found only between microsatellites and
electrophysiological phenotypes. In addition, we obtained the association results for SNPs and
microsatellites using COGA diagnosis as phenotype based on BHTA. In this case, the results for
SNPs and microsatellites are more consistent. Compared to FBAT, more significant markers are
detected with BHTA.

Background
Alcoholism is a serious public health problem. Genetic
variants underlying alcoholism have been difficult to
identify for many reasons, including issues with diag-
noses, disease heterogeneity, gene × gene and gene × envi-
ronment interactions. These reasons present a great
challenge for human geneticists to identify genes associ-
ated with alcoholism susceptibility.

Recently, great efforts have been devoted to conducting
genome-wide analysis on a large number of families to
map genes for alcoholism. For example, the Collaborative
Study of the Genetics of Alcoholism (COGA) collected
1,614 family members, including alcoholic people and
their relatives. For each individual, a total of 15,840 sin-
gle-nucleotide polymorphism (SNP) markers from
Affymetrix and Illumina and 328 microsatellite markers
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have been genotyped. Both COGA diagnosis and DSM-IV
diagnosis are used to define each person's phenotype. In
addition, the electrophysiological phenotypes are tested
by the Visual Oddball experiment with event-related
potential (ERP) records and the Eyes Closed Resting elec-
troencephalogram (EEG) experiment. The associations
between alcoholism and ERP and EEG have been reported
in several published papers [1,2].

In this paper we perform family-based association tests
(FBAT) [3] based on SNPs and microsatellites, using both
clinical diagnosis phenotypes and electrophysiological
phenotypes, to identify genetic variants associated with
alcoholism in the COGA dataset. In order to consider pos-
sible gene × gene interactions, we also perform backward
haplotype transmission association (BHTA) tests [4]
based on SNPs and microsatellites using COGA diagnosis
phenotype.

Methods
FBATs for different phenotypes and different markers
The original transmission disequilibrium test (TDT) was
proposed to test genetic linkage in the presence of associ-
ation between a candidate marker and disease phenotype
by comparing, among heterozygous parents, the total
number of a specific allele transmitted to the affected off-
spring with what would be expected under the null
hypothesis [5]. Laird and colleagues have extended the
original TDT to a comprehensive association analysis
approach called FBAT [3], which is implemented in the
FBAT program [6]. Conditioning on the sufficient statis-
tics for any nuisance parameters, the expected allele distri-
butions are obtained under the null hypothesis of no
association. This method avoids confounding due to
model misspecification and admixture or population
stratification. In this paper, we use FBAT to test association
and linkage between genetic markers and phenotypes in
the COGA dataset. The phenotypes analyzed include
COGA diagnosis, DSM-IV diagnosis, and ERP electro-
physiological phenotypes. The genetic markers analyzed
include SNPs and microsatellites.

FBAT was performed for every SNP marker (15,406) and
microsatellite marker (315) except those on the X chro-
mosome; these markers were tested individually. All of
the family members in COGA were included in the study.
Individuals who never drink alcohol or have some symp-
toms but do not meet the diagnosis criteria were consid-
ered as having unknown disease phenotype. According to
the t-tests between purely unaffected and affected unre-
lated persons, ttdt1 and ttdt4 channels in the ERP dataset
have their p-values less than 0.1. ttdt1 corresponds to elec-
trodes placed on the scalp location FP1, which is the far
frontal left side channel, and ttdt4 corresponds to elec-
trodes placed on the scalp location PZ, which is the pari-

etal midline channel. These two measures are used as
quantitative traits in FBAT. The offset values µ for COGA
diagnosis and DSM-IV diagnosis results are set to be 0,
and the offset values µ for the electrophysiological pheno-
types are set to be the sample means. Here, µ is a nuisance
parameter, and the misspecification of µ will not bias the
test (different values of µ for COGA diagnosis and DSM-
IV diagnosis (0.2 and 0.5) have been tested and similar
results are obtained). The additive models are used for the
genotype coding.

Efron's local false discovery rate method [7] was applied
to the FBAT results to identify significant markers after
multiple comparison adjustments. This method is imple-
mented in the R package "locfdr" [8]. Let z be the test sta-
tistics or the transformed p-values (z = Φ-1(p), where Φ
indicates the standard normal cumulative function). Let
f(z) be the density function of z. We assume f(z) =
p0f0(z)+p1f1(z), where f0(z) is the density function for
non-significant markers and f1(z) is the density function
for significant markers. The natural spline method is
applied to estimate f(z). f0(z) is the theoretical null distri-
bution (the standard normal distribution) or the empiri-
cal null distribution that is a normal distribution with
mean and variance estimated from the central part of the
f(z) fit. The local false discovery rate is defined by f0(z)/
f(z), which is focusing on density. Benjamini and Hoch-
berg's false discovery rate [9] corresponds to the "tail-
area" of the local false discovery rate. The false discovery
rate of z can be written as the weighted average of local
false discovery rate of zi (zi is from z to ∞). Therefore, when
we use a local false discovery rate 0.1 as our criterion, the
corresponding false discovery rate should be less than 0.1.
For SNPs, we used z as the test statistics because the distri-
bution of the test statistic is approximately N(0,1) and
chose f0(z) as the theoretical null. We used a full range of
z to estimate f(z) and 5 degrees of freedom for splines and
60 breaks for the histogram counts. For microsatellites, we
used the transformed p-values as z because the distribu-
tion of the test statistics is not approximately N(0,1) and
choose f0(z) as the estimated empirical null. We used the
full range of z to estimate f(z) and 5 degrees of freedom
for splines and 60 breaks for the histogram counts. Mark-
ers with a local false discovery rate <0.1 were included in
the summary results.

BHTA approach for different markers
Another extension of the original TDT is the BHTA algo-
rithm [4]. In BHTA, the inferred haplotypes are treated as
alleles in TDT. The haplotypes transmitted to the affected
offspring are compared with the expected haplotype dis-
tribution among all the offspring, where haplotype has a
generalized definition in this procedure [4]. For BHTA, a
small number of markers are randomly selected each time
to construct a candidate haplotype. A backward selection
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algorithm is then used to screen out unimportant markers
one by one until only the important markers associated
with the trait remain. The sampling is repeated many
times and the markers returned most often are considered
as the associated markers. BHTA may take the interactions
between markers into account because it considers haplo-
type information, and BHTA is computationally efficient
for a whole-genome scan study. In this paper, we use
BHTA to identify markers associated with disease pheno-
type for the COGA dataset accounting for both joint and
marginal effects.

The imputation of missing genotypes and the inference of
haplotypes given multilocus unphased genotypes were
performed according to the procedure described in Lo and
Zheng [10]. There are 266 trios with an affected child in
the study. The families with more than one affected child
were partitioned into multiple trios, and this extension is
validated by Lo and Zheng [4]. Microsatellites were
dichotomized according to their repeat numbers with the
probability of "allele 0" as close to 0.5 as possible. Based
on COGA diagnosis, for the 15,406 SNPs, we sampled 30
markers each time and repeated the sampling 200,000
times. For the 315 microsatellites, we sampled 30 markers
each time and repeat the sampling 20,000 times. For each
sampling, the haplotype information based on the 30
markers was considered and the unimportant markers
were deleted. The returned frequency for each marker was
recorded.

The local false discovery rate (fdr) method [7] was applied
to the returned frequencies to separate the significant
markers and the non-significant markers. We used the

returned frequencies as z and chose f0(z) as the estimated
empirical null. The full range of z was used to estimate f(z)
and 5 degrees of freedom were used for splines and 60
breaks were used for the histogram counts. Local fdr = 0.1
was chosen as the selection criterion, which corresponds
to a returned frequency of 310 for SNPs and 908 for mic-
rosatellites.

Results
FBAT results
A total of 6 SNPs were found to be associated with COGA
diagnosis at local fdr = 0.1. They are located on chromo-
somes 3, 9, 13, 16, and 20. Four SNPs were associated
with DSM-IV diagnosis at fdr = 0.1. They are located on
chromosomes 1, 6, 9, and 11. SNP tsc0124879 on chro-
mosome 9 is common for these two clinical diagnoses.
For ERP, no significant SNP was detected at fdr = 0.1 for
either the ttdt1 or ttdt4 channel. For microsatellites,
D16S3253 on chromosome 16 was found to be associated
with ttdt1 channel at fdr = 0.1. No significant microsatel-
lites were detected at fdr = 0.1 for either COGA diagnosis
or DSM-IV diagnosis. The above results are summarized in
Table 1.

BHTA results
BHTA is only applied to COGA diagnosis in this study. For
SNPs, using a local fdr = 0.1 as the criterion that corre-
sponds to a returned frequency of 310, 23 SNPs were
found to be significant with respect to the COGA diagno-
sis. Among these 23 SNPs, 3 are on chromosome 9, 3 on
chromosome 13, 2 on chromosomes 1, 5, 6, and 14, and
the other SNPs are on chromosomes 3, 4, 7, 8, 10, 15, 16,
18, and 20. SNP tsc0271621 on chromosome 13 was

Table 1: FBAT results for different genetic markers and different phenotypes at local false discovery rate 0.1

Name Chromosome Local false discovery 
rate

Physical position Genetic position

Significant SNPs for 
COGA diagnosis

tsc0124879 9 0.00192 94365247 103.211

tsc1750530 16 0.00935 40509969 59.8297
tsc0515272 3 0.0270 153432854 164.236
tsc0060446 20 0.0670 12182481 35.4473
tsc0271621 13 0.091 63868120 60.1748
tsc0056748 13 0.095 76951496 73.9934

Significant SNPs for 
DSM-IV diagnosis

tsc0124879 9 0.0184 94365247 103.211

tsc0569292 11 0.0385 5143142 6.78451
tsc1177810 1 0.0542 81549852 105.535
tsc0808295 6 0.0660 23774023 47.1522

Significant 
Microsatellite for 

ttdt1 channel

D16S3253 16 0.0486 82.7
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found to be significant based on both FBAT and BHTA.
These results are summarized in Table 2. For microsatel-
lites, using a local fdr = 0.1 as the criterion that corre-
sponds to a returned frequency of 908, GATA175H06 on
chromosome 9 and D2S2370 on chromosome 2 are sig-
nificant.

Discussion
We have obtained the FBAT results for different pheno-
types for SNPs and microsatellites. The results for COGA
diagnosis and DSM-IV diagnosis are similar because 27
out of the top 50 markers are shared between these two
diagnoses (data not shown). However, the results for clin-
ical diagnoses are different from those for electrophysio-
logical phenotypes. For the two clinical diagnoses, 6 and
4 significant SNPs were found at fdr = 0.1, with no signif-
icant microsatellites. Among the significant SNPs, SNP
tsc0124879 on chromosome 9 is common for the two
clinical diagnoses. For the ERP channel ttdt1, one signifi-
cant microsatellite (D16S3253) was found at fdr = 0.1,
with no significant SNPs. Because the SNP scan has a
higher resolution than the microsatellite scan, it is more

likely that we would identify more significant SNPs in this
study due to the better coverage in terms of linkage dise-
quilibrium. However, the underlying reasons for the dif-
ferent results for the clinical phenotypes and
electrophysiological phenotypes are unclear. One possi-
ble reason may be that the electrophysiological pheno-
types are associated with disturbed cognitive processing,
which involves not only alcoholism but also other psychi-
atric behaviors. There are 23 significant SNPs and 2 signif-
icant microsatellites in the BHTA results. Among the 3
significant SNPs on chromosome 9, tsc0607689 (23.9832
cM) is close to tsc0607688 (23.9834 cM). Among the 3
significant SNPs on chromosome 13, tsc1102168 (11.136
cM) is close to tsc1102169 (11.1366 cM). For microsatel-
lites, GATA175H06 on chromosome 9 (21.5 cM) is signif-
icant. It is close to significant SNPs tsc0607689 (23.9832
cM) and tsc0607688 (23.9834 cM). The number of signif-
icant SNPs (23) in the BHTA study is larger than that in
the FBAT study (6 or 4). In principle, BHTA may be able
to capture gene × gene interactions, including genes that
do not have marginal effects but have significant interac-
tions with other genes. Chromosome 9 is mapped to alco-

Table 2: BHTA results for different markers using COGA diagnosis phenotype at local false discovery rate 0.1

Name Chromosome Returned Frequency Physical position Genetic position

Significant SNPs tsc0051201 5 445 123934709 129.079
tsc0607688 9 423 11181543 23.9834
tsc0047552 7 408 14718190 28.405
tsc0511137 8 400 3989846 7.47656
tsc1056525 18 399 23369689 48.1751
tsc1458383 6 386 63408725 80.7566
tsc0342869 4 381 191320090 204.47
tsc0183603 5 380 2432756 4.28753
tsc1084268 20 370 57200560 98.5039
tsc0694296 1 364 4349628 8.0634
tsc1212413 16 355 46150212 71.101
tsc0271621 13 316 63868120 60.1748
tsc0607689 9 434 11181529 23.9832
tsc0016057 14 410 90209951 94.9861
tsc1102168 13 401 22774216 11.136
tsc1102169 13 399 22774326 11.1366
tsc0050133 6 391 131397208 130.741
tsc1443434 15 384 18511390 3.61027
tsc0502368 9 381 112556523 125.36
tsc1195531 14 374 18383782 5.9575
tsc0954978 1 368 149990102 145.896
tsc0045109 3 360 123785701 134.022
tsc0414849 10 332 93647411 112.752

Significant 
Microsatellites

GATA175H06 9 1856 21.5

D2S2370 2 1085 184.3
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holism for both SNPs and microsatellites. In addition, we
have a significant marker tsc0271621 on chromosome 13
for both FBAT and BHTA.

Conclusion
In this study, we compared the use of different pheno-
types (clinical phenotypes and electrophysiological phe-
notypes) and different types of genetic markers (SNPs and
microsatellites) to identify genetic variants underlying
alcoholism in the framework of family-based association
tests. Significant SNPs were found for clinical phenotypes
and a significant microsatellite was found for ERP pheno-
types. There is little overlap of significant regions identi-
fied based on two different types of markers. Compared to
FBAT, we have detected more significant SNPs using
BHTA. For BHTA, the microsatellite results are consistent
with the SNP results according to their close genetic posi-
tions (within 3 cM). Both FBAT and BHTA reveal that SNP
tsc0271621 is significant.
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