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Abstract
Background: An antisense transcript of histone H2a that has no significant protein-coding region
has been cloned from a mouse full-length cDNA library. In the present study, we evaluated this
transcript by using RT-PCR and compared the expression patterns of the sense and antisense
transcripts by using quantitative RT-PCR (qRT-PCR).

Results: This antisense RNA was expressed in three mouse cell lines. We call it ASH2a. ASH2a
includes not only the complementary sequence of the transcript of Hist2h2aa2 (a replication-
dependent histone H2a gene), but also that of the promoter of Hist2h2aa2. The upstream genomic
sequence of the transcription start site of the ASH2a-coding gene (ASH2a) lacks both CCAAT and
TATA boxes. This absence suggests that the regulation of ASH2a is different from that of the
replication-dependent histone H2a genes. Findings from qRT-PCR indicated that the expression
pattern of ASH2a was different from that of Hist2h2aa2. Expression of Hist2h2aa2 peaked at 2 to
4 h during S-phase, but that of ASH2a peaked at 1 h.

Conclusion: We showed the existence of ASH2a, a histone H2a antisense RNA, in mouse
cultured cells. The expression pattern of ASH2a is different from that of the sense RNA.

Background
A comprehensive search of the Functional Annotation of
Mouse (FANTOM) database revealed about 30000 full-
length cDNA clones without a significant protein-coding
region [1]. Indeed, antisense transcripts seem to be
present in 10% to 20% of genes in human and mouse
genomes [2-6]. These findings suggest that many biologi-
cal reactions related to antisense transcripts and/or pro-
tein-noncoding transcripts are still unrevealed [7]. On the
other hand, the cDNA database sometimes includes
reverse complements of real transcripts. These artifacts are
excluded from the database on the basis of the sequences

of intron-splicing sites. Therefore, transcripts without any
introns need more experimental evaluation than compu-
tational annotation to ascertain their validity.

Histone mRNAs regulated by the cell cycle increase at the
beginning of S-phase and decrease at the end of S-phase
[8]. Among 20 histone H2a-coding genes, 18 are replica-
tion-dependent; the other 2 are replication-independent
[9]. The replication-dependent genes lack introns and a
poly (A) signal and contain a highly conserved stem-loop
structure at the 3' end of the mRNA. This stem-loop struc-
ture plays an important role in mRNA processing and
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stability [10-12]. The promoters of the replication-
dependent histone genes contain CCAAT and TATA boxes
[13].

As far as we know, Drosophila histone H3 antisense [14]
and Leishmania histone H1 antisense [15] transcripts have
been reported, but no histone H2a antisense RNA or
mammalian histone antisense RNA has been reported.
FANTOM 2 [1] contains an antisense transcript (FANTOM
clone ID 2210403F13; accession number AK028129) of
histone H2a. We call this antisense transcript ASH2a.
Comparison of the nucleotide sequence of ASH2a and the
mouse genome sequence showed that the ASH2a-coding
gene (ASH2a) lies on chromosome 6 without introns. The
sequence of ASH2a is exactly complementary to that of
the coding region of Hist2h2aa2 (a replication-dependent
histone H2a gene) and that of the promoter. In the
present study, we evaluated ASH2a transcript by using RT-
PCR and compared the expression patterns of Hist2h2aa2
and ASH2a by using qRT-PCR.

Results
Detection of ASH2a
First, cDNAs were synthesized by using the random hex-
amer oligonucleotide for RNAs from the Hepa 1–6, 3T3,
and LLC cell lines. RT-PCR was performed for two targets,
the sense-antisense overlap region (between F1 and R1 in
Fig. 1) and the overlap region plus the antisense-unique
region (between F1 and R2 in Fig. 1). All PCR products for
both targets had expected sizes (Fig. 2a). To check the PCR
products, we digested them with PstI (Fig. 2b). All digests
of the PCR products for the region had the expected sizes
(251 and 267 bp for the sense-antisense overlap regions;
251 and 858 bp for the overlap region plus the antisense-
unique regions).

Second, to elucidate the expression of ASH2a, we tran-
scribed the first-strand cDNA with primer R3, which
hybridizes specifically to ASH2a. A product of the
expected size (685 bp) was obtained (Fig. 2c). In addition,
EcoRI digested the PCR product to 269- and 416-bp frag-
ments (Fig. 2c). These results are consistent with the
nucleotide sequence of ASH2a.

Quantitative RT-PCR
Because the sequence of the Hist2h2aa2 transcript is not
unique, being completely overlapped by the ASH2a
sequence, the expression level detected by qRT-PCR using
random primers is the sum of the Hist2h2aa2 and ASH2a
levels (Fig. 1). Because ASH2a has a unique sequence, the
expression level of this antisense transcript can be
detected separately. Observation using qRT-PCR indicated
that the sum of the Hist2h2aa2 and ASH2a expression lev-
els was always much higher than the level of ASH2a (Fig.
3). The difference between both CT values is more than 4.

Thus, we estimated the expression of Hist2h2aa2 and
ASH2a as that of Hist2h2aa2 in the following study. Along
with cell cycle progression from S-phase, the expression of
Hist2h2aa2 increased and peaked at 2 to 4 h, and then
decreased (Fig. 4). After that, it increased again, but the
expression level was lower than the S-phase peak. Thus,
the expression is the highest in the middle of S-phase. On
the other hand, that of ASH2a peaked at 1 h, and fell to
basal level thereafter (Fig. 4). The rate of the increase of
ASH2a RNA was lower than that of Hist2h2aa2 RNA.

Discussion
An antisense transcript of histone H2a (ASH2a) was
clearly expressed in three mouse cell lines, Hepa 1–6, 3T3,
and LLC. This result strongly suggests that ASH2a is not
regulated with tissue specificity. We checked the upstream
regions of ASH2a and the promoter regions of mouse his-
tone H2a genes. All promoters of replication-dependent
histone H2a genes include CCAAT and TATA boxes [13].
On the other hand, the upstream region of ASH2a lacks
such a structure (Fig. 1). This region has a G+C-rich
sequence but lacks both CCAAT and TATA boxes (Fig. 1).
Therefore, the regulation of ASH2a is strongly suggested
to be different from those of replication-dependent his-
tone H2a genes.

To check the synchronization of the cells, we compared
the expression patterns of the replication-dependent his-
tone gene Hist2h2aa2 and the replication-independent
histone gene H2afz [16]. Hepa 1–6 cells used in the
present study were well synchronized. In fact, the expres-
sion pattern of ASH2a was different from that of
Hist2h2aa2. The amount of sense RNA was always much
higher than that of ASH2a RNA at each time point. Three
general functions of antisense transcripts have been iden-
tified: transcriptional interference, RNA masking, and
dsRNA-dependent mechanisms, including RNA interfer-
ence [17]. These functions are related to inhibition and/or
degradation of sense RNAs. If ASH2a is related to the deg-
radation of the sense RNA through dsRNA formation,
ASH2a would be expressed when the sense RNA
decreases. However, ASH2a is expressed during the early
increase of the sense RNA.

On the other hand, ASH2a could hybridize not only to the
Hist2h2aa2 transcript, but also to the transcripts of the
other histone H2a-coding genes, because of the high sim-
ilarity of protein coding sequences. A recent article
showed that a small modulatory dsRNA can function as
an activator of related genes [18], and the mechanism of
action appears to be mediated through a dsRNA/protein
interaction, rather than through siRNA or miRNA. Inter-
estingly, ASH2a includes not only a sequence comple-
mentary to that of the Hist2h2aa2 transcript, but also a
sequence complementary to the promoter region of
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(a) Nucleotide sequence of ASH2aFigure 1
(a) Nucleotide sequence of ASH2a. ASH2a is encoded from positions 1 to 2427. Bold characters indicate overlap with the 
Hist2h2aa2 transcript (italic = protein-coding region). Arrows indicate primers used in this study. (b) Relationship between 
Hist2h2aa2 and ASH2a RNAs. Arrows indicate the locations of the primers.

(a)
-900 AAAGAGCCTTTGTGGGGAATGGATGGGAGACAGGGCGCTTAAGCGCGCTCCCCACGGATG 
-840 CGGCGGGCCAACTGGATGTCCTTGGGCATGATGGTGACGCGTTTGGCGTGGATGGCGCAC 
-780 AGGTTGGTGTCCTCGAACAGCCCCACCAGGTAGGCCTCGCTCGCCTCCTGCAGCGCCATG 
-720 ACGGCCGAGCTCTGGAAGCGCAGGTCCGTCTTGAAGTCCTGCGCGATCTCGCGCACCAGG 
-660 CGCTGGAACGGCAGCTTGCGGATCAGCAGCTCGGTCGACTTCTGGTAGCGCCGGATCTCC 
-600 CGCAGCGCCACGGTGCCGGGCCGGTAGCGGTGCGGCTTCTTCACGCCGCCCGTGGCCGGG 
-540 GCGCTCTTGCGGGCGGCCTTGGTGGCCAGCTGCTTGCGCGGGGCCTTGCCGCCGGTGGAC 
-480 TTGCGGGCAGTCTGCTTCGTACGGGCCATGGCGAAGACGGAAGACACCCAAACGAGGAGC 
-420 ACTCGGGGACCTGATACCGGCCCGAGCCGGCCGCCTTTATAGGCGCAGTCTTCCCCGCGG 
-360 CGGGGCGGAGACAGCGACTTGAAACTCCCGCGCTGCCGCGCCATTGGCCGTGGCGTCACC 
-300 GGCCCCGACCTCGCCCATTGGCTCGGGCCCGCCACGCCACCTGACCCGCCCCCACCCGCC 
-240 CCCCACGTCCAGCCCCGCGCCCGGTCCACTTGCCAACGTTCTGCGAGGGTGGAGCCACGT 
-180 CTGGCAGCTGCCCGTAGAGGGCGGGTCCCGGCTCTGCCCAAGAGGAGCTCGCGCGCCCCC 
-120 GCCCGCCGCCCAAAGTCCCAGGGCAGAACTAATCTAGTGTTTGTGCAGCACCGCCCAGCC 
-60 ACAGCCACAGTCCCAGCCCCAGTCCCCCATGATCCCTAGAGCCGGCCGCGTCCAGTCCTC 
1 GCGGGACACCTCCTCCTCCTAGACATTCCCCAAGGACCGGACGAGAGCGCGGCTGACTGC 
      ............................................................ 
241 CAAAGAGCGACAACAGACTAACTACCAGGGGGAACCACGGGCAGGATGGGCAAGGAAGCA 

301 GAGGACACGACACTCTTACTTTTGGGGCAGGGCCAGGAAAGGCCACCAAGACCGGCTACC

361 GTGACACAACTCTTTATCTGATTCAGTGGGTGGCTCTGAAAAGAGCCTTTTTAGGAGCTC
421 GCGGGGGTTATATCACAGAGACGCGGGCCGACGCGAGCAGTGGCCTCACTTGCCCTTCGC
481 CTTATGGTGGCTCTCCGTCTTCTTGGGCAGCAGCACGGCCTGGATGTTGGGCAGGACGCC
541 GCCCTGCGCGATCGTCACTTTGCCCAGCAGCTTGTTGAGCTCCTCGTCGTTGCGGATGGC
601 CAGCTGCAGGTGGCGCGGGATGATGCGCGTCTTCTTGTTGTCGCGGGCCGCGTTGCCCGC
661 CAGCTCCAGGATCTCGGCCGTTAGGTACTCCAGCACCGCCGCCATGTATACCGGCGCGCC
721 GGCACCCACACGCTCCGCGTAGTTGCCCTTGCGCAGCAGCCGGTGCACACGCCCCACCGG

781 GAACTGTAGCCCGGCCCGGGAAGACCGCGACTTGGCCTTGGCGCGGGCCTTGCCTCCTTG

841 CTTGCCACGACCGGACATCACGAAAGCGCAAACAGACGAACGGCCACAACCAGGAAACGG
901 TACTCCGGCGCCGACGCCTCACCCTTTTATAGACGCAGACCCGATTGTCCGCCCGACGCT
      ............................................................ 
1261 AATTTAGTTTTTTATACCTAAGGAGTAGCGGATAATTCTCATAGCCTCTTTATTTTTCTA 

1321 CTTGAAACAGTGTAAAACCTACTTGTTTCATTTTAAGCGTTTATCGCTGGGAGCCTTACT 
1381 TTAAAATCGTTAAATTTAAAGGTTATTTTCTTAATCCATACACATCTGAGAGTGCTTGAA 

1441 AAGACCAAGTACAGTTCGCCTGGGGTTTACTAAAATTATTTTTTTGCCACTCAGATTTGT 
1501 ACATAAGGAATCGAAATAACTTAAAAAGTAAACCTTACGCTGCTGCTTTTGTCTATCATT 

1561 TGTCCTGATGGCTCTCAGAAGCTCCTTTTAGGAGCCTTCCAGGCTGTCTGGGGCTAGAGT 
      ............................................................ 
2161 CATTTTAAGTTGAGAAGTTGAAGGTTTATCAAGGATTCTGATTAAATTTGATATTGATAT 

2221 TTATGTGCATATGTGGACTCACAAATTTGAGAGGTGGATCAAGGGTTCAGCAAAGACTAC 
R3

R2

R1

qF2

qF1

F2

F1

2281 ACAACCCTGCATTTATGGACTGACTGCAGATCACGAGAATGACATCCTATGACCTTAGAA 
2341 TATACTTTTGATCCTTAAGTATTTGTCTTGAAATATAATTTGGTACGTGTTATTCCTGAT 
2401 ATGTGTTATTCCTATAAAGGATGTTAT 

(b)

Hist2h2aa2
R3 F2 R2 qF2 R1 qF1 F1

ASH2a
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(a) RT-PCR products from cDNAs obtained by priming total RNA with random hexamersFigure 2
(a) RT-PCR products from cDNAs obtained by priming total RNA with random hexamers. Lanes: 1, DNA ladder (100-bp lad-
der, TOYOBO); 2–7, RT-PCR products amplified with primers F1 and R1 (upper) and those amplified with primers F1 and R2 
(lower). RNA was extracted from Hepa 1–6 (lanes 2 and 5), 3T3 (lanes 3 and 6), and LLC (lanes 4 and 7) cells. Superscript III 
was not added in the reaction of lanes 2–4. Lane 8, PCR product of genomic DNA amplified with primers F1 and R1 (upper) 
and that amplified with primers F1 and R2 (lower). Arrows indicate the expected products. (b) Patterns of digestion of PCR 
products by PstI. Lanes: 1, DNA ladder; 2–4, digests of PCR products amplified with primers F1 and R1. PCR product was pro-
duced from Hepa 1–6 (lane 2), 3T3 (lane 3), and LLC (lane 4). Lanes 5–7, digests of PCR products amplified with primers F1 
and R2. PCR product was produced from Hepa 1–6 (lane 5), 3T3 (lane 6), and LLC (lane 7). Arrows indicate the expected 
products. (c) RT-PCR products and the EcoRI-digest patterns of cDNAs obtained by priming total RNA with the specific 
primer R3. Lanes: 1 and 8, DNA ladder; 2–7, RT-PCR products amplified with primers F2 and R3. RNA was extracted from 
Hepa 1–6 (lanes 2 and 5), 3T3 (lanes 3 and 6), and LLC (lanes 4 and 7). Superscript III was not added in the reaction of lanes 2–
4. Lanes 9–11, EcoRI-digests of PCR products amplified with primers F2 and R3. PCR product was produced from Hepa 1–6 
(lane 9), 3T3 (lane 10), and LLC (lane 11). Arrows indicate the expected products.

a)
 1    2    3 4    5    6    7    8 

b)
 1    2    3 4    5    6    7

c)
  1     2     3    4     5     6     7     8     9    10   11 

1500 bp 

500 bp 

1500 bp 

500 bp 

1500 bp 

500 bp 
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Hist2h2aa2. Additional work is needed to elucidate the
function of the ASH2a-related dsRNA.

Experiments using the high-density oligonucleotide arrays
show that a large population of noncoding RNAs are
expressed and regulated by similar molecular mecha-
nisms to those involved in the control of protein-coding
RNAs [19] and that many transcripts appear to be at very
low abundance [20]. It is so important for genome
research to elucidate the functions and regulation of non-
coding RNAs and antisense RNAs at very low abundance
such as ASH2a.

Materials and Methods
Cell lines
Murine hepatoma cell line Hepa 1–6, fibroblast cell line
Flp-In-3T3 (Invitrogen), and lung carcinoma cell line LLC
were cultured in DMEM supplemented with 10% fetal calf
serum.

Cell cycle synchronization
Hepa 1–6 cells were synchronized at the end of G1 phase
by the addition of thymidine-hydroxyurea. The cell cycle

arrest was released by washing out the thymidine-hydrox-
yurea, then the cells were harvested at intervals of 1 h from
0 h to 12 h.

RT-PCR
Total RNA fractions extracted from mouse cells were pre-
treated with DNase I and used for RT-PCR. Reaction mix-
ture containing the RNA (approximately 0.5 µg) and the
strand-specific primer (3.3 pmol) or random hexamer
primers was denatured at 70°C, and then reverse-tran-
scription reaction was done with Superscript III (Invitro-
gen) according to the manual. Then the cDNA was
amplified by PCR under the condition of 35 or 40 cycles
of 30 s at 95°C, 30 s at 54°C, and 1 or 2 min at 72°C. The
sequences of primers are shown in Fig. 1. For quantitative
RT-PCR (qRT-PCR), approximately 12.5 ng of total RNA
was used for reverse transcription followed by PCR ampli-
fication with primers qF1 and R1, or qF2 and R2 (Fig. 1)
in reaction mixture containing SYBR premix Ex Taq
(Takara) in an ABI PRISM 7700 sequence detection sys-
tem (Applied Biosystems). The PCR conditions were an
initial step of 30 s at 95°C, followed by 40 cycles of 5 s at
95°C and 30 s at 60°C. Expression was assessed by

Representative amplification plotFigure 3
Representative amplification plot. Curves indicate amplification from transcripts of GAPDH (first group of rising curves), 
Hist2h2aa2 (second), and ASH2a (third). Different colors indicate that each result from 0 h to 12 h (13 points). X-axis, cycle 
numbers; Y-axis, ∆Rn.
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Transcript expression patternsFigure 4
Transcript expression patterns. (a) Transcripts of Hist2h2aa2. (b) Transcripts of ASH2a. X-axis, time (hours); Y-axis, relative 
expression level, adjusted to 1.0 at 0 h. The qRT-PCR analyses were performed 4 times (indicated by different colors).
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evaluating threshold cycle (CT) values. The relative
amount of expressed RNA was calculated using Livak and
Schmittgen's method [21]. Quantification of GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) mRNA
(primers 5'-TGTGTCCGTCGTGGATCTGA-3' and 5'-CCT-
GCTTCACCACCTTCTTGA-3'; product size 76 bp) was
used as a control for data normalization. The qRT-PCR
analyses were performed four times.
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