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Abstract
Background: Genome-wide association studies for complex diseases will produce genotypes on
hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical first approach to
dealing with massive numbers of SNPs is to use some test to screen the SNPs, retaining only those
that meet some criterion for futher study. For example, SNPs can be ranked by p-value, and those
with the lowest p-values retained. When SNPs have large interaction effects but small marginal
effects in a population, they are unlikely to be retained when univariate tests are used for screening.
However, model-based screens that pre-specify interactions are impractical for data sets with
thousands of SNPs. Random forest analysis is an alternative method that produces a single measure
of importance for each predictor variable that takes into account interactions among variables
without requiring model specification. Interactions increase the importance for the individual
interacting variables, making them more likely to be given high importance relative to other
variables. We test the performance of random forests as a screening procedure to identify small
numbers of risk-associated SNPs from among large numbers of unassociated SNPs using complex
disease models with up to 32 loci, incorporating both genetic heterogeneity and multi-locus
interaction.

Results: Keeping other factors constant, if risk SNPs interact, the random forest importance
measure significantly outperforms the Fisher Exact test as a screening tool. As the number of
interacting SNPs increases, the improvement in performance of random forest analysis relative to
Fisher Exact test for screening also increases. Random forests perform similarly to the univariate
Fisher Exact test as a screening tool when SNPs in the analysis do not interact.

Conclusions: In the context of large-scale genetic association studies where unknown
interactions exist among true risk-associated SNPs or SNPs and environmental covariates,
screening SNPs using random forest analyses can significantly reduce the number of SNPs that need
to be retained for further study compared to standard univariate screening methods.
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Background
Genome-wide association studies for complex diseases
such as asthma, schizophrenia, diabetes, and hyperten-
sion will soon produce genotypes on hundreds of thou-
sands of single nucleotide polymorphisms (SNPs). Due to
the large number of SNPs tested and the potential for both
genetic and environmental interactions, determining
which SNPs modify the risk of disease is a methodological
challenge. While the number of genotypes produced by
candidate gene approaches will be somewhat less daunt-
ing, on the order of hundreds to thousands of SNPs, it will
still be a considerable challenge to weed out the noise and
identify the SNPs contributing to complex traits.

A logical first approach to dealing with massive numbers
of SNPs is to first conduct univariate association tests on
each individual SNP, in order to screen-out those with no
evidence for disease association. The primary goal of such
a procedure is not to prove that a particular variant or set
of variants influences disease risk, but to prioritize SNPs
for further study. Using a univariate test at this stage will
result in low power for SNPs with very small marginal
effects in the population, even if the SNPs have large inter-
action effects. Of course, in addition to taking all individ-
ual SNPs, all SNP pairs could also be tested for
association. However, when dealing with multiple thou-
sands of SNPs at the outset, such an approach is cumber-
some, and raises the question of where to stop: why not
all sets of three, four, or even five SNPs as well?

Many model-building methods exist for dealing with
large numbers of predictors. For example, stochastic
search variable selection (SSVS) [1], a form of Bayesian
model selection, has been explored as a tool to discover
joint effects of multiple loci in the context of genetic link-
age studies [2-4]. However, these methods are limited in
the number of predictors that can be included at one time,
causing some researchers to resort to a two-stage
approach, in which only main effects are considered in a
first stage, and interactions between loci with strong main
effects are considered in a second stage. This approach can
lead to the loss of important interactions with only weak
main effects.

Multivariate adaptive regression splines (MARS) models
have also been explored in the context of genetic linkage
and association studies [5,6] with some degree of success.
However, these and other model selection methods
appear to be limited in the number of predictors that can
reasonably be accommodated in one analysis, and the
types of possible interactions that are allowed must be
specified in advance. They are not suited to the initial task
of identifying from a massive set of SNPs a subset for fur-
ther analyses.

Combinatorial partitioning and multifactor dimensional-
ity reduction [7-10] are closely related methods developed
specifically to detect higher-order interactions among pol-
ymorphisms that predict trait variation. However, these
methods are meant to identify interactions among small
sets of SNPs, and have minimal power in the presence of
genetic heterogeneity [10]. They are therefore inappropri-
ate for use as a screening tool for searching through thou-
sands of SNPs to identify those contributing to
phenotypes in the context of whole-genome association
studies. The problem remains: how do we reasonably
weed down from thousands or hundreds of thousands of
SNPs to a number that can be used by available modeling
methods, without losing the interactions that we hope to
model in the first place?

An additional concern to be considered is genetic hetero-
geneity. We define genetic heterogeneity to mean that
there are multiple possible ways to acquire a disease or
trait that can involve different subsets of genes. Tradi-
tional regression models are limited in their ability to deal
with underlying genetic heterogeneity (see, e.g., [11]). If
genetic heterogeneity also leads to phenotypic heteroge-
neity, then methods that classify individuals into pheno-
typic subgroups for further analysis can be successful.
Likewise, if heterogeneity in genetic etiology is primarily
due to ethnic background, sub-dividing samples by self-
reported ethnicity or genetically defined subgroups can be
a powerful antecedent to data analyses for the identifica-
tion of complex disease genes. However, even in the realm
of Mendelian genetic diseases, heterogeneity is rarely so
simple. For example, multiple polymorphisms in each of
two different genes are responsible for familial breast can-
cer in the relatively homogeneous sub-population of
Ashkenazi Jewish women [12]. When the root of the het-
erogeneity is not known a priori, traditional regression
models, which lump all individuals into a single group
and estimate average effects over the entire sample, are
unlikely to successfully identify the genetic causes of
diseases.

Classification trees and random forests
Tree-based methods consist of non-parametric statistical
approaches for conducting regression and classification
analyses by recursive partitioning (see, e.g., Hastie et al.
[13]). These methods can be very efficient at selecting
from large numbers of predictor variables such as genetic
polymorphisms those that best explain a phenotype. Tree
methods are useful when predictors may be associated in
some non-linear fashion, as no implicit assumptions
about the form of underlying relationships between the
predictor variables and the response are made. They are
well-adapted to dealing with some types of genetic heter-
ogeneity, as separate models are automatically fit to sub-
sets of data defined by early splits in the tree.
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The ease of interpretation of classification trees, along
with their flexibility in accommodating large numbers of
predictors and ability to handle heterogeneity, has
resulted in increasing interest in their application to
genetic association and linkage studies. Classification
trees have been adapted for use with sibling pairs to sub-
divide pairs into more homogenous subgroups defined by
non-genetic covariates [14], thus increasing the power to
detect linkage under heterogeneity [15]. They have also
shown promise for the dissection of complex traits for
both linkage and association [16,17], and for exploring
interactions [6]. A related adaptive regression method has
also shown promise in selecting a small number of predic-
tive SNPs from a set of hundreds of potential predictors
[18]. Tree methods have also been used to identify homo-
geneous groups of cases for further analyses [19], and as
an adjunct to more traditional association methods [20].

Classification trees are grown by recursively partitioning
the observations into subgroups with a more homogene-
ous categorical response [21]. At each node, the explana-
tory variable (e.g., SNP) giving the most homogeneous
sub-groups is selected. Choosing alternative predictors
that produce slightly sub-optimal splits can result in very
different trees that have similar prediction accuracy. The
Random Forests methodology [22] builds on several
other methods using multiple trees to increase prediction
accuracy [23-25]. A random forest is a collection of classi-
fication or regression trees with two features that distin-
guish it from trees built in a deterministic manner. First,
the trees are grown on bootstrap samples of the observa-
tions. Second, a random selection of the potential predic-
tors is used to determine the best split at each node. For
each tree, a bootstrap sample is obtained by drawing a
sample with replacement from the original sample of
observations. The bootstrap sample has the same number
of individuals as the original sample, but some individu-
als are represented multiple times, while others are left
out. The left-out individuals, sometimes called "out-of-
bag", are used to estimate prediction error. Because a dif-
ferent bootstrap sample is used to grow each tree, there is
a different set of out-of-bag individuals for each tree. With
a forest of classification trees, each tree predicts the class
of an individual. For each individual, the predictions, or
"votes", are counted across all trees for which the individ-
ual was out-of-bag, and the class with the most votes is the
individual's predicted class. Random forests produce an
importance score for each variable that measures its
importance. This score can be used to prioritize the varia-
bles, much as p-values from test statistics are used.

Using ensembles of trees built in this manner increases
the probability that some trees will capture interactions
among variables with no strong main effect. Unlike varia-
ble selection methods, interactions among predictors do

not need to be explicitly specified in order to be utilized
by a forest of trees. Instead, any interactions between var-
iables serve to increase the importance of the individual
interacting variables, making them more likely to be given
high importance relative to other variables. Thus, random
forests appear to be particularly well-suited to address a
primary problem posed by large scale association studies.
In preliminary studies, we have shown the potential of
random forests in the context of linkage analysis [26].
Other investigators are beginning to recognize the poten-
tial of the Random Forest methodology for studying SNP
association [27] and classification [28].

To fully understand the basis of complex disease, it is
important to identify the critical genetic factors involved,
and to understand the complex relationships between
genotypes, environment, and phenotypes. The few suc-
cesses to date in identifying genes for complex disease sug-
gest that despite carefully collected large samples, novel
approaches are needed in the pursuit to dissect the multi-
ple and varying factors that lead to complex human traits.
Ultimately, the challenge in identifying polymorphisms
that modulate the risk of complex disease is to find meth-
ods that can seamlessly handle large numbers of predic-
tors, capitalize on and identify interactions, and tease
apart the multiple heterogeneous etiologies. Here, we
explore the use of the Random Forest methodology
[22,29] as a screening tool for identifying SNPs associated
with disease in the presence of interaction, heterogeneity,
and large amounts of noise due to unassociated
polymorphisms.

Results
Genetic models
We simulated complex diseases with sibling recurrence
risk ratio for the disease (λs) fixed at 2.0 and population
disease prevalence Kp equal to 0.10. These values are con-
sistent with or lower than estimates from known complex
genetic traits, such as Alzheimer disease, where estimates
of cumulative prevalence in siblings of affected range
from 30–40%, compared to a population prevalence of
10% at age 80 [30]. Such traits are understood to be
caused by multiple interacting genetic and environmental
factors. Our genetic models incorporate both genetic het-
erogeneity and multiplicative interaction as defined by
Risch [31]: we simulate sets of 4, 8, 16, and 32 risk SNPs
("rSNPs") in linkage equilibrium, interacting in inde-
pendent pairs or quartets to increase disease risk, and con-
tributing equally to the overall sibling recurrence risk ratio
of 2 and population disease prevalence of 0.10. For sim-
plicity, we simulated the models such that each rSNP pair
or quartet accounts for the same proportion of the genetic
risk, and each SNP within a pair/quartet is responsible for
an equal proportion of the genetic risk. Thus, all of the
rSNPs simulated for a model have the same allele
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frequency and the same observed marginal effect in the
population. We denote the models using the shorthand
HhMm, where H = h (=2, 4, 8, 16) is the number of het-
erogeneous systems, and M = m (=2 or 4) is the number
of multiplicatively interacting SNPs within each system.
For example, 16 loci are responsible for the total λs = 2 and
Kp = .10 for models H4M4 and H8M2, and 32 loci are
responsible for models H8M4 and H16M2. Table 1
presents relevant features of our models. The Methods sec-
tion describes the genetic models in more detail.

Simulation and analysis
All analyses were performed on 100 replicate data sets of
500 cases and 500 controls. In addition to the rSNPs con-
tributing to the trait, we simulated noise SNPs ("nSNPs"),
independent of disease status, with allele frequencies dis-
tributed equally across the range .01–.99. To simulate the
results of an association study, in which we do not expect
to be lucky enough to genotype all polymorphisms
related to a trait, we included only a subset of the total
number of rSNPs in each analysis. We denote the analysis
design using the shorthand KkSsNn, where K = k is the
total number of rSNPs genotyped in the analysis, S = s is
the number of SNPs within each interaction system geno-
typed, and N = n is the total number of SNPs genotyped
in the design. Thus, N-K is the total number of nSNPs in
the analysis. For example, suppose the genetic model is
H8M4, and the design is K4S2N100. Then out of the total
of 8 × 4 = 32 rSNPs that contribute to the trait, four are
genotyped: two interacting SNPs from within each of two
heterogeneity systems. Six heterogeneity systems are not
represented at all in the analysis. In addition to the four
genotyped rSNPs, 100-4 = 96 total nSNPs are also geno-
typed in the design.

Comparison of raw and standardized importance scores
Random forests version 5 software [29] produces both
raw (IT) and standardized (ZT) variable importance scores
(see Methods section for definitions of the scores). Little

is known about the properties of importance indices
under different distributions of the predictor variables.
We use simulation to investigate their properties in the
context of discrete predictors such as genetic polymor-
phisms conferring susceptibility to a complex trait.

We first compared the raw and standardized scores, in
order to determine whether one might outperform the
other in screening. We considered a K4S2N100 analysis
design for each genetic model described in Table 1. IT and
ZT are highly correlated; the average correlation coefficient
over 100 replicate data sets ranged from .93 (H8M4) to
>.99 (H2M2 and H4M2) (Table 2). The average correla-
tion between the ranks based on IT and ZT for the 100
SNPs over the 100 replicate data sets was 0.98 for each of
the six models (Table 2). Comparing the ranks of the four
rSNPs among all SNPs, neither importance measure out-
performs the other for all models (Table 3). The mean
ranks of the rSNPs for the two measures are significantly
different only for the H16M2 and H8M4 models. For
H16M2, the average rank of the rSNPs is higher for ZT
than for IT. The opposite is true for H8M4 (see Table 3).

Ranking SNPs based on ZT and Fisher p-value
We next compared the ranking of rSNPs by importance
score (ZT) to ranking by Fisher Exact test p-value using
K4S2N100 and K4S2N1000 analysis designs, where two
SNPs from each of the first two interaction systems are in
the analysis. Figure 1 shows the proportion of replicates
for which the top ranked 1, top 2, top 3, and top 4 SNPs
are the four genotyped rSNPs in the data set for each of the
four most complex genetic models. For N100, the random
forest ZT criterion ranks the four rSNPs as the most signif-
icant SNPs more often than the univariate Fisher Exact test
association p-value under all genetic models. The differ-
ence between the random forest and association p-value
ranking is less extreme for N1000. For the H8M4 genetic
model, the results do not suggest that one ranking system
is better than the other overall. Figure 2 shows the

Table 1: Genetic models used for simulating case-control data.

Risk SNPs Case Genotype 
Correlation

Allele Marginal GRR Penetrance Factors Within 
System

Between 
System

Model Number Frequency Het Hom 0 1 2

H2M2 4 0.207 2.85 4.71 2.4E-02 0.51 1 0.30 -0.32
H4M2 8 0.160 1.99 2.96 3.9E-04 0.50 1 0.35 -0.12
H8M2 16 0.104 1.66 2.18 8.0E-06 0.56 1 0.32 -0.05
H16M2 32 0.069 1.46 1.78 1.4E-05 0.59 1 0.28 -0.02
H4M4 16 0.282 1.63 1.79 1.2E-08 0.79 1 0.17 -0.06
H8M4 32 0.214 1.34 1.40 2.8E-03 0.86 1 0.14 -0.02
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proportion of replicates for which all rSNPs are among the
top N SNPs. In other words, it is the proportion of data
sets for which none of the genotyped rSNPs are screened
out, if the top ranking N SNPs are chosen for further
study. For N100, a consistently higher proportion of rep-
licates ranked using ZT contain all of the rSNPs. Thus, for

a given probability of retaining all of the rSNPs, more
SNPs can be eliminated using the ZT criterion than the
Fisher exact test p-value. For example, for model H16M2,
only 15 SNPs must be retained to have 80% probability
that the 4 rSNPs are in the retained set, while 44 SNPs
must be retained if the p-value criterion is used. The dif-

Table 2: Summary of the correlation between IT and ZT ("raw") and rank(IT) and rank(ZT) ("rank") for four rSNPs and 96 nSNPs over 
100 replicate data sets: K4S2N100 analysis design.

H2M2 H4M2 H8M2 H4M4 H16M2 H8M4
r2 raw rank raw rank raw rank raw rank raw rank raw rank

Mean 0.996 0.983 0.990 0.982 0.975 0.982 0.957 0.982 0.964 0.982 0.933 0.982
SD 0.001 0.006 0.003 0.006 0.009 0.006 0.013 0.007 0.013 0.006 0.018 0.007
Min 0.990 0.963 0.980 0.957 0.941 0.960 0.921 0.955 0.926 0.962 0.891 0.953
Max 0.998 0.993 0.996 0.992 0.989 0.993 0.984 0.992 0.983 0.994 0.970 0.992

Table 3: Comparison of ranks based on ZT and IT for the four rSNPs over 100 replicate data sets: K4S2N100 analysis design.

H2M2 H4M2 H8M2 H4M4 H16M2 H8M4
Rank: ZT IT ZT IT ZT IT ZT IT ZT IT ZT IT

Mean 2.5 2.5 2.5 2.5 2.51 2.52 2.64 2.61 5.16 5.94 9.35 8.69
SD 1.12 1.12 1.12 1.12 1.13 1.16 1.74 1.62 8.06 8.33 13.67 13.9
Max 4 4 4 4 6 8 23 21.5 77 62.5 83 88.5
p-value* 0.94 1.00 0.77 0.12 1.32E-20 2.91E-12

*p-value for the Wilcoxon signed-rank test comparing the rSNP ranks based on IT and ZT

Proportion of replicates for which the most significant 1, 2, 3, and 4 SNPs are all rSNPs for K4S2N100 and K4S2N1000 analysis designsFigure 1
Proportion of replicates for which the most significant 1, 2, 3, and 4 SNPs are all rSNPs for K4S2N100 and K4S2N1000 analysis 
designs. Genetic models are listed on the plots. "RF" and "Fisher" refer to the random forest importance index ZT and the 
Fisher Exact test p-value. See text for notation description.
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ference is less dramatic for H8M4: 37 SNPs give 80%
probability that the four genotyped rSNPs are in the
retained set for the ZT criterion, compared to 43 for the p-
value criterion. For N1000, the advantage of the ZT crite-
rion is clear for the H8M2 and H16M2 models. For

H4M4, the advantage of ZT is minor, while for H8M4,
ranking by ZT appears to give poorer results than the p-
value criterion for the higher cutoff values of N. A second
interpretation of Figure 2 is that, for any number of
retained (not screened-out) SNPs, the probability that all

Proportion of replicates for which all rSNPs are among the top-ranking N SNPs for K4S2N100 and K4S2N1000 analysis designsFigure 2
Proportion of replicates for which all rSNPs are among the top-ranking N SNPs for K4S2N100 and K4S2N1000 analysis 
designs. Other notation as in Figure 1.
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of the genotyped rSNPs are retained is higher for the ZT cri-
terion than for the univariate p-value criterion for all but
the H8M4 model with 1000 total SNPs.

Noticing that the analyses with all SNPs from an interact-
ing system (e.g., the H16M2K4S2 simulations) had a
more substantial improvement in ranking using ZT over p-
value than the analyses with subsets of SNPs from an
interacting system, we hypothesized that the interactions
among the pairs of analyzed rSNPs influenced the
improved ranking performance of the random forests over
the univariate tests. To confirm this, we used the H8M4
genetic model and analyzed the data in the following
manner. For a constant number of analyzed rSNPs
included in the model (K = 4, 8, or 16) and a constant 96
nSNPs, we looked at the effect of increasing S, the number
of rSNPs from each interaction system that were geno-
typed. Thus, for K8S1, along with 96 nSNPs, one SNP
from each of the first 8 systems was included in the anal-
ysis, while for K8S4, all four SNPs in the first two systems
were included in the analysis. For K8S3, three SNPs from
the first two systems, and one from the third were
included. Assuming that the random forest analysis was
taking advantage of the interactions among the rSNPs,
and that this was responsible for the improved perform-
ance of the random forests over the univariate tests, we
expected the Fisher p-values and random forest impor-
tance ZT to perform similarly when only a single rSNP was
genotyped from each system, and the random forests to
perform increasingly better than the univariate Fisher tests
as S increased from 1 to 4. Figures 3 and 4 show the
results, which are consistent with this hypothesis. For the
Fisher p-values, the proportion of replicates for which the
N most significant SNPs were rSNPs is similar for each S.
For the random forest importance ZT, the S = 1 analyses
for each K were similar to the Fisher results, while for each
increase in S, the proportion of replicates for which the N
most significant SNPs were rSNPs increases (Figure 3) and
the proportion of replicates for which all rSNPs are
present at any cutoff point increases (Figure 4). The differ-
ences can be substantial: for the H8M4 model, with K = 4
rSNPs in the analysis, the number of most significant
SNPs required to have 80% probability that all four rSNPs
are included is 50, 34, 22, and 5, respectively for S1, S2,
S2, and S4. We conclude that for a given number of rSNPs
within a set of potential predictors, the more interacting
SNPs there are, and the larger the groups of SNPs that
interact, the greater the performance increase of the ran-
dom forest analysis as compared to a univariate analysis.

Magnitude of difference
Beyond simply ranking SNPs, we may wish to use the
magnitude of the difference in importance or p-value to
determine which subset of top-ranked SNPs should be
prioritized for further study. Thus, particularly for the

cases where the rSNPs are among the top-ranked SNPs, we
want to determine not just that ZT ranks interacting rSNPs
higher than the univariate test, but also that the differ-
ences in rank correspond to differences in magnitude of ZT
that are meaningful. In other words, we want to know
how much "better" in terms of ZT (or p-value) the rSNPs
are than the nSNPs. Toward this goal, we computed the
difference between the importance ZT of the top ranked
rSNP and the top ranked nSNP:

Dmax(ZT) = maxrSNP(ZT) - maxnSNP(ZT),

as well as the lowest ranked rSNP and the top ranked
nSNP:

Dmin(ZT) = minrSNP(ZT) - maxnSNP(ZT).

Thus, Dmin(ZT) is positive when the lowest ranked rSNP is
larger than the highest ranked nSNP, and negative when
the lowest ranked rSNP is smaller than the highest ranked
nSNP.

We computed the analogous quantities, Dmax(-log p) and
Dmin(-log p), for the -log10 transformed Fisher Exact test p-
values. In Figure 5, we have plotted box plots of these dif-
ferences for several models using analysis designs
K4S2N100 and K4S2N1000. P-values for a paired T-test of
whether the mean difference is equal to 0 are also placed
on the plot. For H8M2, the lowest ranking rSNP has ZT
that is significantly higher than the highest ranking nSNP
for both N100 and N1000, while the difference in -
log10(p) is not significantly different from 0 for N100,
and is significantly less than 0 for N1000. These plots
illustrate that the positive differences are typically more
extreme for ZT than for -log p, and that the negative differ-
ences are less extreme.

Discussion
A key advantage of the random forest approach is that the
investigator does not have to propose a model of any
kind. This is important in an initial genome-wide or can-
didate region association study, where little is known
about the genetic architecture of the trait. If interactions
among SNPs exist, they will be exploited within the trees,
and the variable importance scores will reflect the interac-
tions. Therefore, we expect that when unknown interac-
tions between true risk SNPs exist, the random forest
approach to screening large numbers of SNPs will outper-
form a univariate ranking method in finding the risk SNPs
among a large number of irrelevant SNPs. Our genetic
models for simulation feature both multiplicative
interaction and genetic heterogeneity. The multiplicative
interaction results in a marginal effect in the population,
the size of which is dependent on many factors, including
the amount of heterogeneity. Thus, we have highlighted
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models in which univariate tests still have power, and
shown that the random forest analysis can outperform
these tests for selecting subsets of SNPs for further study.
For models with genetic heterogeneity and interactions
resulting in no main effect, similar to the models
described by Ritchie et al. [10], the performance of ran-
dom forests compares considerably more favorably to
univariate tests (data not shown), since the univariate
tests have no power when main effects are absent. Further
investigation of how to determine a cutoff for SNPs to
keep for further analysis is needed. Unfortunately, this
task is likely to be strongly dependent on information that
is impossible for an investigator to know a priori, such as
the underlying genetic model and the ratio of associated
risk SNPs to noise SNPs in an analysis.

Our results from analyses with four risk SNPs among
1000 SNPs suggest that even when a high proportion of
the analyzed SNPs are unassociated, a random forest can
rank interacting SNPs considerably higher than a univari-
ate test, and that the proportional difference in impor-
tance between the risk SNPs and the best of the noise
SNPs can be larger on average for a random forest. In our
scale-up from 100 to 1000 total SNPs, we kept the number
of risk SNPs constant. In practice, as we increase the
number of SNPs genotyped, we expect that we will also
increase the number of risk SNPs (or SNPs in linkage dis-
equilibrium with risk SNPs) that are captured in an anal-
ysis. Thus, as a larger and large proportion of the genome
or candidate region is captured by a scan, the more likely
we will be to have all or most of sets of SNPs that interact,

Proportion of replicates for which the most significant N SNPs are all rSNPsFigure 3
Proportion of replicates for which the most significant N SNPs are all rSNPs. H8M4 genetic model. Analysis designs include 96 
noise SNPs; K and S are listed on the plots. Other notation as in Figure 1.
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and thus the more likely we are to be in situations where
random forest screening will outperform univariate
screening of SNP data.

It is important to consider the tuning parameters for such
analyses. Consistent with the recommendations made by
Breiman and Cutler [22,29], the number of variables
randomly selected at each split seems to have minimal
effect over a wide range of values surrounding the square
root of the number of covariates (SNPs). Breiman and
Cutler do not recommend a method to determine the
number of trees necessary for an analysis. The documen-
tation examples typically use on the order of 100–1000
trees, but these examples are primarily in the context of
prediction, without computing estimates of variable
importance. In our experience with the simulated data
sets presented here, in which the truly associated covari-
ates are outnumbered considerably by those that are
noise, multiple thousands of trees must be used in order
to get stable estimates of the variable importance. In prac-
tice, we recommend building several forests for a data set
with a given number of trees. If the ranking of variables by
importance does not change significantly from forest to
forest, then the number of trees is adequate.

We have examined the use of random forests in the con-
text of association studies for complex disease with uncor-
related SNP predictors. Random forests can also be used
when predictors are correlated, as is the case with multiple
SNPs in linkage disequilibrium within a small genetic
region. For any analysis procedure, the more highly corre-
lated variables are, the more they can serve as surrogates
for each other, weakening the evidence for association for
any one of the correlated variables to the outcome. In a
random forest analysis, limited simulations suggest that
correlated variables lead to diminished variable impor-
tance for each correlated risk SNP (data not shown). One
way to limit the problems presented by SNPs in linkage
disequilibrium is to use haplotypes instead of SNPs as pre-
dictor variables in a random forest. Future challenges
include quantifying more completely the effect of linkage
disequilibrium among SNPs submitted to a random forest
analysis, and developing random forests in the context of
haplotypes.

Conclusions
With the increasing size of association studies, two-stage
analyses, in which in the first stage a subset of the loci are
retained for further analyses, are becoming more com-
mon. The most frequently voiced concern for these analy-
ses is that variables that interact to increase disease risk
but have minimal main effects in the population will be
missed. Random forest analyses address this concern by
presenting a summary importance of each SNP that takes
into account its interactions with other SNPs. Current
implementations of random forests can accommodate up
to one thousand of SNPs in one analysis with the compu-
tation of importance. Further, there is no reason to restrict
the input variables to SNPs. Potential environmental

Proportion of replicates for which all rSNPs are among the top-ranking N SNPs for H8M4 genetic modelFigure 4
Proportion of replicates for which all rSNPs are among the 
top-ranking N SNPs for H8M4 genetic model. Analysis 
designs include 96 noise SNPs; K and S are listed on the 
plots.
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Distribution of difference in importance ZT between the top ranked rSNP and the top ranked nSNP (Dmax(ZT), and lowest ranked rSNP (Dmin(ZT)) and top ranked nSNPFigure 5
Distribution of difference in importance ZT between the top ranked rSNP and the top ranked nSNP (Dmax(ZT), and lowest 
ranked rSNP (Dmin(ZT)) and top ranked nSNP. Dmax(-log p) and Dmin(-log p): differences using -log10 p-value from the 
Fisher exact test. Beside each boxplot is the p-value for the test of whether the mean difference over the 100 replicates is sig-
nificantly different from 0. Genetic models listed in plot. Analysis design: K4S2, with N100 and N1000 shown on plot.
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covariates can also be easily accommodated, allowing for
SNPs with no strong main effect, but environmental inter-
actions, to be distinguished from unassociated SNPs. We
have shown that when unknown interactions among
SNPs exist in a data set consisting of hundreds to thou-
sands of SNPs, random forest analysis can be significantly
more efficient than standard univariate screening meth-
ods in ranking the true disease-associated SNPs highly.
After identifying the top-ranked SNPs and other variables,
and weeding out those unlikely to be associated with the
phenotype, more thorough statistical analyses, including
model building procedures, can be performed.

Methods
Variable importance
Rather than selecting variables for modeling, a random
forest uses all available covariates to predict response.
Here, we use measures of variable importance to deter-
mine which covariates (SNPs, in our case) or sets of cov-
ariates are important in the prediction. Breiman [22]
proposed to quantify the importance of a predictor varia-
ble by disrupting the dependence between the variable
and the response and measuring the change in the tree
votes compared to the original observations. In practice,
this is achieved by permuting the variable values among
all observations in the out-of-bag sample of each tree. If
the variable is predictive of the response, it will be present
in a large proportion of trees and be near the root of those
trees. Observations with a changed variable value may be
directed to the wrong side of the tree, leading to vote
changes from the right to the wrong class. Conversely, if
the variable is not related to the response, it will be
present in few trees and, when present, it will be near a ter-
minal node, so that few tree votes will be changed. In Ran-
dom Forests (version 5) Breiman and Cutler [29] define
the importance index as follows. For individual i, let Xi
represent the vector of predictor variable values, yi its true
class, Vj(Xi) the vote of tree j and tij an indicator taking
value 1 when individual i is out-of-bag for tree j and 0 oth-
erwise. Let X(A,j) = (X1

(A,j),..., XN
(A,j)) represent the vector of

predictor variables with the value of variable A randomly
permuted among the out-of-bag observations for tree j,
and X(A) the collection of X(A,j) for all trees where N is the
total number of individuals in the sample. Letting 1(C)
denote the indicator function taking value 1 when the
condition C is true and 0 otherwise, the importance index
averages over the trees of the forest, and is defined as:

where Nj represents the number of out-of-bag individuals
for tree j and T is the total number of trees.

The importance index can be standardized by dividing by
a standard error derived from the between-tree variance of

the raw index IT, . The standardized index is defined as:

The variance  represents the tree to tree variance of IT,
rather than the variance of IT due to the sampling of the
individuals from a population: the magnitude of ZT

increases with the number of trees in the forest, and the
number of trees is limited only by computing time. Thus,
this standardized index cannot be treated as a Z-score in
the traditional sense.

Simulation models and methods
For simplicity, assume each locus has the same effect, and
let (q0, q1, q2) represent the penetrance factors for 0, 1, or
2 risk alleles for an individual locus in a given model. Let
G = {g11, g12, . ., gHM} be the multilocus genotype for an
individual, where ghm(=0, 1, 2 risk alleles) indicates the
individual's genotype at locus m (=1, . ., M) of
heterogeneity system h (=1, . ., H). Then the penetrance
for genotype G is defined as:

For example, for model H2M2, an individual with geno-
type G = {0101} would have penetrance PG = 1 - (1 - q0q1)2

= 2q0q1 - (q0q1)2.

The penetrance factors (q0, q1, q2) and risk allele frequen-
cies, as well as other features of our genetic models, are
listed in Table 1. For a given model type, such as H4M4,
and a given λs and Kp, there is a unique allele frequency
when we make the assumption that each SNP subunit has
equal effect (the given penetrance factor vector) in the
population. We chose penetrance factors such that the risk
alleles at each locus for the H2M2, H4M2, H8M2, and
H16M2 models are approximately additive in effect on
the penetrance factor scale. For H4M4 and H8M4, we
chose penetrance factor vectors such that the risk alleles
show a moderate degree of dominance.

The marginal genotype relative risks (GRRs) listed in
Table 1 are the relative penetrances for heterozygote and
homozygote carriers of each risk allele, as compared to
non-carriers in the population, which would be observed
if only a single rSNP were considered at a time. Thus, this
is a measure of the observed effect size of each of the
rSNPs in the population. The marginal GRRs are modest,
in line with what might be expected when there are a large
number of small effects contributing to a complex
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phenotype. For cases, the genotypes for pairs/quartets of
SNPs within an interacting system are positively corre-
lated, while SNPs from distinct systems are negatively
correlated. The magnitude of the correlations decreases
with increasing number of heterogeneity systems and
increasing number of equal-effect SNPs interacting within
each system.

Analysis
All analyses were performed on 100 replicate data sets of
500 cases and 500 controls. We treated the SNPs as ordi-
nal predictors. Random forests have one primary tuning
parameter: "mtry" the number of randomly picked covari-
ates to choose among for each split. The Random Forest
v5 manual [29] recommends trying the square root of the
number of predictors, along with values smaller and
larger than the square root, and choosing the value that
minimizes the out of bag prediction error rate. We consid-
ered both the prediction error and the stability of the var-
iable importance estimates when determining the values
of mtry to use and the number of trees to grow. We found
that the prediction error rate was very stable over a wide
range of mtry for the number of trees we required for con-
sistent measures of importance. We analyzed each repli-
cate data set with 4–16 rSNPs and 96 nSNPs using a
random forest of 5000 trees, choosing the best split from
among a different randomly-selected set of 35 SNPs at
each node (mtry = 35). On average, each replicate data set
with 100 total SNPs took 40 minutes to complete on a 2.6
Ghz Intel Xeon processor. For data sets with 4 rSNPs and
996 nSNPs (1000 SNPs total), we used 15000 trees, and
chose from among 125 SNPs at each node (mtry = 125).
Analysis of each replicate of these data sets took 123 min-
utes on average. User time could potentially be substan-
tially decreased by parallel-processing: trees could be
grown on separate nodes, and combined for analysis of
importance. However, parallel tree-building is not yet
available in the Random Forest progream. To compare the
performance of random forests with that of a univariate,
one-SNP-at-a-time approach, we tested for association
between genotypes for each individual SNP and disease
status using a Fisher Exact test [32].

Ranking of rSNPs
The random forest analysis produces the raw and stand-
ardized importance indices (IT, ZT,), which can be used to
rank order the importance of SNPs much as p-values from
association tests are used. Using either method, the rank-
ing of the SNPs in an analysis can be used to prioritize
which sets of SNPs (or genome regions) should be fol-
lowed up with further genotyping and/or additional
analyses. We use the convention that a rank of 1 is the
highest ranking SNP.

We compare the ranking of the raw and standardized
importance measures, and further compare these with the
rank based on p-values from a test of association, the
Fisher Exact test, to determine whether the random forest
can better discriminate susceptibility SNPs from SNPs
unrelated to disease status when there is interaction and
heterogeneity among and between SNPs.
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