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Abstract
Background: Insulin resistance, obesity, dyslipidemia, and high blood pressure characterize the
metabolic syndrome. In an effort to explore the utility of different multivariate methods of data
reduction to better understand the genetic influences on the aggregation of metabolic syndrome
phenotypes, we calculated phenotypic, genetic, and genome-wide LOD score correlation matrices
using five traits (total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic blood
pressure, and body mass index) from the Framingham Heart Study data set prepared for the
Genetic Analysis Workshop 13, clinic visits 10 and 1 for the original and offspring cohorts,
respectively. We next applied factor analysis to summarize the relationship between these
phenotypes.

Results: Factors generated from the genetic correlation matrix explained the most variation.
Factors extracted using the other matrices followed a different pattern and suggest distinct effects.

Conclusions: Given these results, different methods of multivariate data reduction may provide
unique clues on the clustering of this complex syndrome.

Background
The metabolic syndrome (MS) is a cluster of abnormali-
ties including central obesity, abnormal glucose tolerance,
elevated insulin and triglycerides, and depressed HDL-C
[1-3]. Previous epidemiological studies have implicated
common underlying factors influencing the clustering of
this syndrome [4]. Yet, the metabolic, physiological, and
genetic mechanisms responsible for this clustering have
not been elucidated.

Because major genes involved in the etiology of common
complex diseases are likely to exert an effect on multiple
quantitative traits, statistical techniques that permit the
joint analysis of correlated traits, such as factor analysis,
may aid in analysis [5]. Using factor analysis, heritable
clusters of MS traits have been identified based on pheno-
typic relationships [6,7]. To our knowledge, no studies
have used the genetic correlation matrix to construct fac-
tors for MS traits. Related to this, no studies have explored
the use of a 'genome-wide' correlation matrix as an alter-
native to the phenotypic and genetic correlation matrices.
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Direct manipulation of the genetic and genomic correla-
tion matrices could represent a powerful method for elu-
cidating the genetic architecture of multiple complex
traits. In this study, therefore, we investigated genetic
influences on the aggregation of MS phenotypes by apply-
ing a uniform factor analytical method to phenotypic,
genetic, and genome-wide ('genomic') LOD score correla-
tion matrices using five phenotypic traits (total choles-
terol (CHOL), high density lipoprotein cholesterol (HDL-
C), triglycerides (TG), systolic blood pressure (SBP), and
body mass index (BMI)) from the Framingham data set
prepared for the Genetic Analysis Workshop 13
(GAW13).

Methods
Data
The Framingham Heart Study was initiated in 1948 and
consisted of 5209 men and women between the ages of 30
and 62 recruited from Framingham, Massachusetts. The
subjects returned every 2 years for a detailed medical his-
tory, physical examination, and laboratory tests. In 1971,
a second-generation group consisting of 5124 of the orig-
inal participants' adult children and their spouses was
enrolled. Longitudinal data were available on SBP, height,
weight, CHOL, HDL-C, TG, glucose, hypertensive treat-
ment, hypertensive status, number of cigarettes smoked
per day, and grams of alcohol per day. Although glucose
was available, we were unable to control for diabetes sta-
tus, and in the absence of this information the trait was
not heritable (data not shown).

The following five phenotypes from the Framingham
Heart Study were used to define MS: CHOL, HDL-C, TG,
SBP, and BMI. We chose to focus on a single time point for
all phenotypic variables. In the original cohort, we used
clinic visit 10 because this is the first visit for which data
on CHOL and HDL-C were collected. In the offspring
cohort, we used clinic visit 1, at which all of the pheno-
typic data were available and had been collected during a
similar timeframe. We also reasoned that by selecting
these visits (as early as possible with the data of interest),
we could maximize the number of participants included
in our analyses. Outliers more than four standard devia-
tions from the mean were dropped; only individuals hav-
ing complete covariate data (age, sex, cohort, hypertensive
treatment, hypertensive status, and smoking) were kept (n
= 1648).

Genome-wide LOD correlations
Using the 330 extended families, heritabilities were esti-
mated after adjustment for the above covariates. A vari-
ance component model implemented in the program
package SOLAR [8], was used to generate multipoint iden-
tity-by-descent (IBD) matrices and genome-wide LOD
scores. A LOD-score evaluation was performed every 10

centimorgans. Using SAS [9], we calculated a correlation
matrix from the genome wide LOD scores.

Phenotypic and genetic correlation matrices
We used bivariate variance-component analysis to esti-
mate the phenotypic, genetic, and environmental correla-
tions between all pair-wise combinations of traits. This
method has been described in detail elsewhere [10,11];
but briefly, the phenotypic covariance is modeled so that
the covariation between two individuals for two traits is
given by a 2 × 2 covariance matrix with the elements
defined by:

Ωab = 2ΦρGσgaσgb + IρEσeaσeb, (1)

where a and b take the values of 1 or 2 and ρG and ρE are
the additive genetic and environmental correlations
between the traits. The genetic correlation estimates the
proportion of genes shared in common between the traits.
This approach has been implemented in SOLAR version
2.0. The phenotypic correlation (ρP) is given by:

where  and  are the heritabilities of the traits. These
correlations were assembled into phenotypic and geno-
typic matrices for factor analysis.

Factor analysis
The genetic, phenotypic, and genomic correlation matri-
ces were factor analyzed to summarize the relationships
between the five phenotypes in the MS using SAS [10].
Orthogonal factors that are linear combinations of the
original phenotypes are constructed that explain as much
of the total variance in the original variables as possible.
Factors were varimax rotated, and factor loadings of 0.40
or greater were used to interpret the factor structures
[12,13].

Results
Heritabilities were determined to be significant for BMI
(38.7 ± 3.9), CHOL (41.5 ± 5.6), HDL-C (41.5 ± 5.6), TG
(45.6 ± 5.7), and SBP (16.4 ± 3.5). The LOD scores for the
genome scans of the traits are shown in Figure 1. Although
there are several suggestive linkages, no LOD scores reach
significance [14].

Tables 1 and 2 report the genetic, environmental,
genomic, and phenotypic correlation matrices. The
rotated factor loadings generated from the genetic, pheno-
typic, and genome-wide LOD score correlation matrices
are summarized in Table 3. Factor loadings greater that or
equal to 0.40 are indicated in bold type. The genetic cor-
relation factors explained the most variation with factors
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Genome-wide LOD scores for CHOL (red), HDL-C (green), SBP (blue), TG (orange), and BMI (pink)Figure 1
Genome-wide LOD scores for CHOL (red), HDL-C (green), SBP (blue), TG (orange), and BMI (pink).

Table 1: Genetic (above diagonal) and environmental (below diagonal) correlation matrices ± standard error.

CHOL HDL-C SBP TB BMI

CHOL -0.06 ± 0.09 0.04 ± 0.11 0.32 ± 0.08 0.11 ± 0.08
HDL-C 0.27 ± 0.06 -0.22 ± 0.12 -0.46 ± 0.09 -0.13 ± 0.09
SBP 0.02 ± 0.05 0.13 ± 0.05 0.29 ± 0.11 0.01 ± 0.11
TG 0.38 ± 0.05 -0.24 ± 0.06 0.02 ± 0.05 0.03 ± 0.09
BMI 0.06 ± 0.05 -0.24 ± 0.05 0.22 ± 0.04 0.29 ± 0.05

Table 2: Genomic (above diagonal) and phenotypic (below diagonal) correlation matrices.

CHOL HDL-C SBP TB BMI

CHOL 0.01 ± 0.05 0.06 ± 0.05 0.25 ± 0.05 0.14 ± 0.05
HDL-C 0.12 0.08 ± 0.05 0.19 ± 0.05 0.01 ± 0.05
SBP 0.03 0.03 0.07 ± 0.05 -0.03 ± 0.05
TG 0.35 -0.34 0.10 0.23 ± 0.05
BMI 0.08 -0.20 0.16 0.18
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G1 and G2 explaining, respectively, 31.3% and 24.7% of
the total genetic variance. The pattern of loadings differs
across the matrices examined, but in general the first fac-
tor in each group appears to be a magnitude axis (all load-
ing in the same direction) with high loadings in each of
the categories (lipids, fatness, and SBP). For the genetic
and phenotypic factors, HDL-C loads in the opposite
direction from the other variables, but given that
decreased levels are a risk factor, this is to be expected. For
the genomic factor, HDL-C loads in the same direction as
the other variables because the genomic correlation is
concerned only with whether genomic regions account for
variability but not with direction of change.

Discussion
Previously, factor analysis has been used to identify com-
ponents underlying the MS through the construction of
factors from phenotypic values. Because factor loadings
from the genetic and phenotypic correlation matrices are
distinct, however, reliance on phenotypic correlation
alone may fail to disclose underlying genetic
relationships.

In this study we constructed factors not only from pheno-
typic correlations, but also from the genetic and genome-
wide LOD score correlations. Factors extracted from these
correlations exhibited variable structure and suggest dis-
tinctive effects. With the exception of the second factor
from the genome-wide LOD score correlation matrix, SBP
loaded strongly on every factor. In other studies, however,
SBP has not loaded strongly with other components of MS
[6,7]. Because we were unable to consider glucose or insu-
lin, and because the properties of the variables chosen for
analysis can unduly influence the results [15], it is not
known whether SBP would remain as pivotal when con-
sidered in combination with glucose or insulin.

However, as the genetic correlations are estimated from a
polygenic model with no major gene effects estimated, it
is possible that the first factor from the genetic correlation
matrix is simply summarizing the polygenic effects

between the traits. Similarly, the second factor may sum-
marize the QTL effects; indeed, the second factor of the
genetic correlation matrix loads similarly to the genome-
wide LOD score correlation matrix that summarizes the
correlation of QTLs across the genome.

Conclusions
In summary, factors extracted using the phenotypic,
genetic, and genome wide LOD score correlation matrices
followed different patterns and may suggest distinct
effects. Thus, these results imply that different methods of
multivariate data reduction provide unique clues on the
clustering of this complex syndrome.
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