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Abstract
Background: Compared to model-based approaches, nonparametric methods for quantitative
trait loci mapping are more robust to deviations in distributional assumptions. In this study, we
modify a nonparametric regression method and the "contrast function"- based regression method
to analyze total cholesterol level in the younger cohort (the offspring generation) of the Genetic
Analysis Workshop 13 simulated data set.

Results: We obtained significant evidence of linkage near four of the six non-sex-specific genes in
at least 30% of the replicates.

Conclusions: The proposed nonparametric method seems to be a powerful robust alternative to
distribution-based methods.

Background
Unlike qualitative or binary traits, which can be character-
ized completely by allele frequencies and genotypic pene-
trances, quantitative traits require an additional level of
modeling: the probability distribution of the underlying
trait. Thus, compared with model-based approaches like
variance components, nonparametric methods for quan-
titative trait loci (QTL) mapping are more robust to devi-
ations in distributional assumptions. Ghosh and
Majumder [1] developed a nonparametric regression
method based on kernel-smoothing for linkage mapping
of QTLs using independent sib pairs. To analyze larger sib-
ships, Ghosh and Reich [2] proposed a so-called "contrast
function" that integrates trait values within a sibship into
a linear combination whose coefficients sum to zero.
Their test for linkage is based on a linear regression of the
squared contrast function on a quadratic function of the
estimated identity-by-descent (IBD) scores of all possible

sib pairs within a sibship. As in the classical Haseman-
Elston regression procedure and its extensions, the linear
regression score decreases with increasing dominance at
the trait locus. In this study, we propose a nonparametric
regression method on the lines of Ghosh and Majumder
[1] using the contrast function to perform a genome-wide
scan of total cholesterol levels in the offspring cohort of
the Genetic Analysis Workshop 13 (GAW13) simulated
data set.

Data description
For our analysis, we used longitudinal data (over five time
points) on total cholesterol level and genome-wide infor-
mation on 400 marker loci distributed over the 22 auto-
somal chromosomes for the offspring cohort. Our
method utilizes cholesterol and marker data on 324 inde-
pendent sibships (i.e., no two sibships considered are first
degree relatives) of sizes varying from two to nine and
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their parental genotypes for IBD computations. We ana-
lyzed data on all 100 available replicates.

Statistical methodology
Suppose yijt denotes the total cholesterol level of the jth sib
in the ith sibship at time point t, i = 1,2,...,324; j = 1,2,...,ni;

t = 1,2,...,5; and  denotes the estimated IBD score for

sibs j and k in sibship i at an arbitrary point p on the
genome. Let Yi = ((yijt)) be a ni × 5 matrix. Following
Ghosh and Reich [2], we define, for the ith sibship, a so-
called contrast vector ci such that c'i 1 = 0 and a square

matrix  of order ni with the diagonal ele-

ments fixed at 0. For a fixed time point t (i.e., when Yi is a
vector), Ghosh and Reich [2] developed a linear regres-

sion of the squared contrast function  on

 to test for linkage at point p on the genome. For

sibships of varying sizes, one needs to standardize both of

these variables by a factor . In our longitudinal set-up,
we also need to standardize the total cholesterol values
over the five time points. Suppose the dispersion matrix of
total cholesterol values over the five time points is esti-

mated by , the 5 × 5 sample dispersion matrix com-
puted using one sibling per sibship. Then, we define a

modified contrast function as  and a

corresponding quadratic function of the matrix of IBD

scores . Based on statistical considera-
tions [2], we propose the choice of

, where the coefficient 1 is

assigned at random to one of the sibs in the ith sibship.

As pointed out in the Background, a linear regression of Ui
values on Wi values deteriorates (i.e., the squared multiple
correlation coefficient R2 decreases) with increase in dom-
inance at the QTL [2]. Thus, a more robust strategy is to
estimate empirically the nature of the functional relation-
ship between the two variables.

Following Ghosh and Majumder [1], we assume a non-
parametric regression model:

Ui = P(Wip) + ei; i=1,2,...,324,

where P is a real valued function and ei values are random
errors. The functional form of P is estimated using a kernel
smoothing technique [3] with kernel function:

The predictor of Ui is given by:

where h is the "optimal" window length in the kernel
smoothing procedure.

To assess the significance of our regression, we use a diag-

nostic measure [4] . One

has to use resampling techniques such as bootstrap to
obtain empirical thresholds under the null hypothesis of
no linkage.

Results
All of our analyses were performed prior to GAW13. The
total cholesterol levels were corrected for age and sex
using weighted least-squares linear regression. The IBD
computations were performed using the statistical soft-
ware MERLIN [5]. Since the number of alleles (38) at
marker GATA21A06 on chromosome 9 exceeded the max-
imum allele capability of MERLIN, we discarded data on
that marker from our analysis. We then performed the
nonparametric regression of the contrast function on the
quadratic function of the IBD matrix discussed above at
every centimorgan on all 22 autosomal chromosomes. We
set a p-value threshold of < 0.0001 (based on 10,000 boot-
strap replications) to consider a linkage finding to be sta-
tistically significant. Since the "answers" were available to
us, we considered a linkage peak to be true positive if it is
within a 20-cM window (10 cM on either side) of the true
position of a QTL. Hence, we have assessed the empirical
power of detecting a QTL and the false-positive error rate
of our nonparametric regression method based on the
proportion of replicates yielding significant linkage peaks.
The true positive linkage findings with empirical power >
0.3 and the false-positive peaks with error rate > 0.1 are
presented below in Table 1.

We note that the non-sex-specific genes for total choles-
terol level: b31, s7, b30, and b32 are located within the
intervals of chromosomes 1, 7, 11, and 15, respectively,
where we obtained significant evidence of linkage to an
unobserved QTL in more than 30% of the replicates. We
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also found significant linkage near two other non sex-spe-
cific genes: b33 and s8 on chromosomes 3 and 15, respec-
tively, but in less than 10% of the replications. Linkage
near the sex-specific gene s9 on chromosome 21 was not
significant in any of our replications. The false positive
peak on chromosome 9 is within the interval containing
b12, the major gene for HDL. It is possible that since total
cholesterol level is highly correlated with HDL, the major
gene for HDL showed significant linkage with total cho-
lesterol level. There was no other region that yielded a
false-positive rate greater than 0.05.

Conclusions
Our proposed nonparametric method was able to detect
linkage near four of the six non-sex-specific genes for total
cholesterol level in multiple replicates. As expected, the
rate of detection of the baseline genes increased with
larger effects of the gene. We note that Martin et al. [6],
analyzing total cholesterol level in the Framingham data
set, also obtained evidence of linkage on chromosome 7
using the variance-components approach implemented in
SOLAR. We also found that there was only one false-pos-
itive peak, which replicated in more than 5% of the
replicates.

Since the proposed ∆ statistic does not consider the direc-
tion of the relationship between the modified contrast
function and the quadratic function of the matrix of IBD
scores, there may be concern of an inflated false-positive
error rate due to a random negative relationship between
the variables under the null hypothesis of no linkage. To
circumvent this problem, we ensured that the rank corre-
lation between the variables was positive for each region
showing significant evidence of linkage.

Currently used methods use LOD scores as a diagnostic to
evaluate the significance of linkage peaks. Since our pro-
posed rank correlation and kernel smoothing methods are
nonparametric, a direct comparison with likelihood-
based LOD scores is not possible. However, if we consider
the p-values of our linkage peaks, we can theoretically
obtain the LOD scores that would yield these p-values. For

example, a p-value < 0.0001 can be attained for a LOD
score greater than 3.29, while a p-value < 0.001 can be
attained for a LOD score greater than 2.35. We are cur-
rently carrying out extensive simulations to compare the
performance of the proposed procedure with existing
model-based methods. Our preliminary comparisons
with the regression procedure of Elston et al. [7] show that
while their method has slightly higher power in the
absence of dominance at the trait locus (in which case the
linear regression is theoretically valid), the nonparametric
regression procedure outperforms the linear regression
procedure as dominance increases (Ghosh S, Majumder
PP, Reich T, unpublished observations).

We finally emphasize that a major advantage of our
method is that it does not assume any probability distri-
bution for total cholesterol level or any specific functional
form of dependence between the regression variables and
is thus robust to violations in underlying model
assumptions.
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Table 1: Linkage findings, genes, power, and false-positive rates.

Chromosome Interval Gene VEA RB Empirical 
Power

False-Positive 
Rate

1 165–180 cM b31 0.15 62 0.62 -
7 140–152 cM s7 0.36 48 0.48 -
11 57–75 cM b30 0.2 72 0.72 -
15 115–133 cM b32 0.1 34 0.34 -
9 7–18 cM - - 12 - 0.12

AVE, variance explained by gene. BR, replicates giving positive findings.
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