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Abstract
Systolic blood pressure (SBP) is an age-dependent complex trait for which both environmental and
genetic factors may play a role in explaining variability among individuals. We performed a genome-
wide scan of the rate of change in SBP over time on the Framingham Heart Study data and one
randomly selected replicate of the simulated data from the Genetic Analysis Workshop 13. We
used a variance-component model to carry out linkage analysis and a Markov chain Monte Carlo-
based multiple imputation approach to recover missing information. Furthermore, we adopted two
selection strategies along with the multiple imputation to deal with subjects taking antihypertensive
treatment. The simulated data were used to compare these two strategies, to explore the
effectiveness of the multiple imputation in recovering varying degrees of missing information, and
its impact on linkage analysis results. For the Framingham data, the marker with the highest LOD
score for SBP slope was found on chromosome 7. Interestingly, we found that SBP slopes were not
heritable in males but were for females; the marker with the highest LOD score was found on
chromosome 18. Using the simulated data, we found that handling treated subjects using the
multiple imputation improved the linkage results. We conclude that multiple imputation is a
promising approach in recovering missing information in longitudinal genetic studies and hence in
improving subsequent linkage analyses.

Background
The Framingham Heart Study (FHS), with its extensive
longitudinal data structure, has been a key source of infor-
mation over the last several decades, allowing researchers
to understand and elucidate associations between risk fac-
tors and cardiovascular diseases [1]. One of the physiolog-
ical measurements recorded over the course of the study is

systolic blood pressure (SBP), a complex phenotype that
may be influenced by both environmental and genetic
factors. A number of studies have found multiple regions
on the genome that may contain candidate genes respon-
sible for variability in SBP. A genome-wide scan of SBP in
the Quebec Family Study [2] found evidence for linkage to
regions on chromosomes 1, 2, 5, 7, 8, and 19. Using
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highly discordant full sibling design, Krushkal and col-
leagues [3] reported significant linkage to regions on chro-
mosomes 2, 5, 6, and 15. A recent genome-wide scan of
blood pressure in the Mexican Americans found sugges-
tive linkage for SBP to regions on chromosomes 18 and 21
[4]. Levy et al. [5] reported linkage to the ACE region on
chromosome 17 using the Framingham Heart Study data.
They performed a genome-wide linkage analysis for SBP
using 332 large families from this study. The longitudinal
phenotype used in their analysis was the residual from a
model that regressed within-subject mean SBP on the sub-
ject's mean age and mean body mass index. In this paper,
we consider an alternative approach in which we use the
rate of change in systolic blood pressure over time (SBP
slope) as the phenotype of interest in a genome-wide link-
age analysis using a variance-component model and a
multiple imputation (MI) approach as the preferred
method of replacing missing longitudinal measurements.
MI was further used to deal with subjects taking antihyper-
tensive treatment.

Methods
Cohort 2 of the FHS data and one randomly selected rep-
licate (Replicate 19) of the Genetic Analysis Workshop 13
simulated data were used. We used both complete and
missing data of Replicate 19. All data sets contain up to
five repeated measurements per individual except for the
complete data of Replicate 19, which contain all
measurements.

One of the challenges in calculating the slope phenotype
was the presence of missing age and SBP measurements.
Conventional methods for dealing with missing data
include complete-case analysis and single imputation. In
complete-case analysis, any variable with at least one
missing value will lead to exclusion of a subject from the
analysis no matter how complete other variables might
be. This approach may result in considerable bias and loss
of statistical efficiency. The single imputation methods are
also problematic. By replacing a missing data point with a
single imputed value, such as the average, one ignores the
uncertainty inherent in the predictions of missing values.
MI [6] remedies the problems associated with the conven-
tional approaches. This is a computer-intensive method in
which missing data are replaced with a set of plausible val-
ues where random variation is deliberately introduced in
the imputation process. This random imputation process
is repeated a number of times producing multiple "com-
pleted" data sets.

A Markov chain Monte-Carlo based MI [7], which
assumes multivariate normality of the data, was used to
impute missing values in SBP and age. Following recom-
mendations in the missing data literature, we imputed
five sets of data. For each "completed" data set, we

obtained slopes from simple linear regression of SBP on
age for each individual and these slopes were then aver-
aged across the five imputations, and used for linkage
analysis.

Apart from handling missing values in general, we used
MI to handle subjects treated for hypertension. We
adopted two strategies: 1) Method 1: imputing missing
values, after excluding subjects who died and those who
received antihypertensive treatment at any of the visits,
and 2) Method 2: imputing, after excluding subjects who
died but including those who were treated. In Method 2,
imputation was done by censoring SBP measurements
after the first antihypertensive medication and then
imputing subsequent values based upon pre-treatment
rate of change.

Although we do not have information on specific cause of
death, we suspected that the likelihood of having extreme
SBP values might be higher among the deceased. Since the
MI method we adopted in this paper relies on the assump-
tion of multivariate normality, which is a non-robust dis-
tribution to extreme cases, we decided to exclude deceased
subjects from both methods. We outline a possible alter-
native approach to deal with these subjects in the discus-
sion section.

The FHS data was used in an attempt to identify genes that
contribute to the variation of the longitudinal SBP as
measured by the slope. We took advantage of the simu-
lated data, using both complete and missing data of Repli-
cate 19, in order to assess the effectiveness of MI on
linkage analyses results. Furthermore, we compared the
performances of Method 1 and Method 2.

The SBP slopes obtained from Method 1 and Method 2
were used as the phenotype for genome-wide linkage
analyses. Both two-point and multipoint variance-com-
ponent linkage analyses were performed including gen-
der, body mass index, grams of alcohol per day, and
number of cigarettes smoked per day as covariates. Since
each of these covariates was measured over time, the aver-
age measurements were used at the individual level. Her-
itability estimates for the slopes were also obtained.

After removing treated and dead individuals, we deliber-
ately introduced missingness to the complete data from
Replicate 19 to investigate the effectiveness of MI in recov-
ering missing data for longitudinal linkage studies. We
investigated four scenarios: 1) 10% of subjects missing
only one measurement, 2) 10% of subjects missing two or
more measurements, 3) 25% of subjects missing only one
measurement, and 4) 25% of subjects missing two or
more measurements. The linkage results obtained from
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the complete data of Replicate 19 were used as the
reference values to compare with results obtained from
the above four scenarios.

MI was performed using the SAS statistical software, ver-
sion 8.02 (SAS Institute Inc., Cary, North Carolina).
SOLAR (Southwest Foundation for Biomedical Research,
San Antonio, Texas) was used for calculating heritability
estimates and for the genome-wide linkage analysis using
a variance-component method [8]. All analyses of the
simulated data were conducted without knowledge of the
generating model.

Results
Inspection of individual profile plots relating SBP with
age suggests that summarizing the longitudinal data using
a linear slope would be reasonable. Thus, all results
reported here pertain to analyses of slopes from simple
linear regression models of SBP on age, calculated for
every individual separately. The distribution of the calcu-
lated slopes appears symmetric for both the Framingham
and Replicate 19 of the simulated data sets.

There were 1672 subjects in Cohort 2 of Framingham
data. For Cohort 2 of Replicate 19 there were 1632 sub-
jects for both complete and missing data. For the two-

Table 1: Distribution and heritability of SBP slope for Framingham data

Overall Sex-Specific (Method 2)

Method 1 Method 2 Male Female

N 1276 1579 770 809
Range (-2.35, 4.12) (-2.35, 4.12) (-2.35, 4.12) (-2.15, 3.15)
Std. Dev. 0.76 0.77 0.77 0.77
Mean (Median) 0.22 (0.22) 0.27 (0.26) 0.19 (0.16) 0.33 (0.30)
Heritability (S.E.) 0.25 (0.07) 0.23 (0.05) 0.09 (0.10) 0.37 (0.10)
p-value 0.00004 < 0.000002 0.17 0.0001

Table 2: Distribution and heritability of SBP slope for Replicate 19 of the simulated data

Complete Data Missing Data

Method 1 Method 2 Method 1 Method 2

N 1205 1516 1254 1548
Range (-0.55, 1.60) (-0.55, 2.23) (-0.55, 1.60) (-0.55, 2.31)
Std. Dev. 0.40 0.44 0.39 0.43
Mean (Median) 0.42 (0.40) 0.53 (0.53) 0.43 (0.42) 0.53 (0.53)
Heritability (S.E.) 0.60 (0.07) 0.74 (0.06) 0.57 (0.07) 0.70 (0.06)
p-value < 0.0000001 < 0.0000001 < 0.0000001 < 0.0000001

Table 3: LOD scores from two-point linkage analysis for Framingham data (Method 2)

ChromosomeA Marker All Data (n = 1579) Sex-Specific Data

Female (n = 809) Male (n = 770)

7 (70 cM) GATA24D12 2.24 0.81 0.36
18 (107 cM) ATA82B02 0.52 2.25 0.00

AOnly chromosomes with LOD score > 2.0 are shown.
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point IBD calculations, we used 330 pedigrees with 4692
subjects (i.e., including Cohort 1, the original cohort) for
both data sets. The final number of subjects remained for
the analyses from Method 1 (removing treated and
deceased) and Method 2 (including treated but excluding
deceased) for Framingham and simulated data are given
in Table 1 and Table 2, respectively.

The distributional summary statistics for SBP slopes and
heritability values are shown in Table 1 and Table 2. The
mean slopes for males and females were significantly dif-
ferent for the Framingham data (p-value = 0.0003) but not
for the simulated data. Furthermore, heritability increased
from 0.23 (males and females combined data) to 0.37 for
females. As a result, we performed sex-specific linkage
analyses in addition to the overall linkage for the Fram-
ingham data. For the sex-specific analysis we used slopes
generated from Method 2.

Results of two-point genome scan analyses for overall and
sex-specific Framingham data are summarized in Table 3.
In the overall analysis, we obtained a maximum LOD
score of 2.24 at marker GATA24D12 on chromosome 7.
In the sex-specific analysis, no LOD score > 1.0 was
detected for males. In contrast, a maximum LOD score of
2.25 was found on chromosome 18 at marker ATA82B02
for females.

For Replicate 19 of the simulated data (complete and
missing), we found very high two-point maximum LOD
scores on chromosome 21 by both Method 1 and Method
2. The LOD scores on all of the other chromosomes were
< 2.0. The two-point LOD scores are not shown in this
paper but Figure 1 shows multipoint LOD score profiles
for both complete and missing data by both methods. As
can be seen from this figure, the complete data with
Method 2 resulted in the highest maximum LOD score
(20.8), whereas the lowest maximum LOD score (7.8)
was obtained from the missing data with Method 1. These
two scenarios illustrate the best-case (complete data,
Method 2) and worst-case (missing data, Method 1) sce-
narios, respectively. A quantitative trait loci (QTL) was
detected at position 52 cM with complete data and at 54
cM for missing data. In fact, the position of one of the
major slope genes (s10) in the simulated data is at posi-
tion 53.6 cM according to the generating model. It
appears that MI combined with Method 2 provides
increased power to detect linkage compared with Method
1.

Linkage results with and without MI in the presence of
varying degree of missing information are summarized in
Table 4. The results show that the linkage estimates
yielded using MI were close to those obtained from the
complete data (reference values). When the percentage of

missing data is low, the results of complete-case analysis
(without MI) yielded estimates similar to the reference
values but as the amount of missing information
increased, the maximum LOD score changed and its loca-
tion deviated from the reference values. Further, the effi-
ciency of MI also decreased as the amount of missing
information increased, but not to the extent of the case
without MI.

Discussion
We conducted this study to detect QTLs affecting variabil-
ity of SBP slopes. Suggestive evidence for linkage was
found on chromosome 7 at marker GATA24D12 for the
Framingham data when we used the combined sample of
males and females. In the sex-specific analyses, a different
QTL was detected on chromosome 18 at marker
ATA82B02 in females but not in males. This could be due
to several reasons such as sex differences in the slopes, dif-
ferent sex-specific penetrances at loci, or epistatic interac-
tion between loci on autosomes and sex chromosomes. It
is also possible that the male SBP slopes are determined
environmentally not genetically since their slopes are not
heritable (p-value = 0.17).

For the simulated data, we found one of the slope genes
on chromosome 21 but failed to detect any other slope
genes. Both Method 1 and Method 2 were able to find
linkage within 2 cM of the correct location of the true
slope gene with the largest effect. The multipoint LOD
scores obtained by Method 1 were considerably lower
than those obtained from Method 2 for both complete
and missing data. Our Method 2 approach was able to
improve on linkage results from Method 1 because it was
able to incorporate clinically and genetically important
information into subsequent linkage analyses by includ-
ing treated people. With Method 1, sample size was
reduced because of the exclusion of treated subjects, and
hence power to detect linkage was decreased. Although we
were able to find the gene with the largest effect size in the
simulated data using Method 1, we may fail to detect a
gene with moderate effect size.

Both Method 1 and Method 2 have the disadvantage of
losing information from deceased individuals. These peo-
ple may be the most informative for genetic analysis since
they could have died from diseases for which SBP is a risk
factor. With the limited number of observations in Cohort
2, and the reliance on multivariate normality assumption
by the multiple imputation method, we concluded that
including these possibly extreme cases might invalidate
our approach and therefore decided to exclude them from
analysis. However, it would be interesting to consider
robust alternatives such as the heavy-tailed multivariate t
distribution that may be more appropriate to incorporate
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Multipoint LOD score profiles for chromosome 21 in the complete and missing simulated data sets, using Method 1 and Method 2Figure 1
Multipoint LOD score profiles for chromosome 21 in the complete and missing simulated data sets, using Method 1 and 
Method 2

Table 4: Effect of MI on linkage results on chromosome 21 with different amounts of missing data

Max LOD Score

%A # of Missing Values 
per Subject

Two-PointB Multipoint

Without MI With MI Without MI With MI

0 0 9.66C 13.45 (52 cM)C

10 1 9.39 9.82 13.30 (52 cM) 13.32 (52 cM)
2 or more 11.08 10.20 14.69 (51 cM) 13.51 (51 cM)

25 1 9.38 9.66 13.11 (52 cM) 13.30 (51 cM)
2 or more 7.41 8.63 9.16 (49 cM) 11.67 (50 cM)

APercentage of subjects with missing data. BTwo-point LOD scores were found at the same location. CReference values.
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outlying cases. As far as we know, such methods are not
yet available in the MI literature.

In the examination of the effect of the number of missing
values on MI, and hence on the linkage results, we noticed
that MI recovered a reasonable amount of information
from missing data. Missing observations are prevalent in
large longitudinal genetic studies such as the Framingham
Heart Study. We believe that MI (multiple imputation) is
a promising approach in recovering missing information
in a large data set with a moderate amount of missing
information.
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