
BioMed CentralBMC Genetics

ss
Open AcceProceedings
Similarity by state/descent and genetic vector spaces: analysis of a 
longitudinal family study
Hans H Stassen*1, Katrin Hoffman2 and Christian Scharfetter1

Address: 1Psychiatric University Hospital, Zurich, Switzerland and 2Max Delbruck Center for Molecular Medicine, R.-Roessle-Str. 10, Berlin, 
Germany

Email: Hans H Stassen* - k454910@bli.unizh.ch; Katrin Hoffman - khoffma@gmx.net; Christian Scharfetter - chschask@bli.unizh.ch

* Corresponding author    

Abstract
Using the genome-wide screening data of the Framingham Heart Study (394 nuclear families, 1328
genotyped subjects, 397 marker loci) we have quantified the underlying genetic diversity through
high-dimensional genetic feature vectors and constructed a genetic vector space for the analysis of
population substructure. Adaptive clustering procedures led to three major subgroups that were
regarded as being related to "biological" ethnicity and that included more than 70% of the subjects.
Based on these subgroups we addressed the question of ethnicity-related and ethnicity-
independent risk factors for coronary heart disease (CHD). To this end, we relied upon
hypertension as an endophenotype of CHD and applied a multivariate sib-pair method in order to
search for oligogenic marker configurations for which the sib-sib similarities deviated from the
parent-offspring similarities. Indeed, the latter similarities are always "0.5" irrespective of the
affection status of parents and offspring. Loci with significant contributions to the oligogenic marker
configuration constituted a CHD-specific genetic vector space. We found several ethnicity-
independent signals. One signal on chromosome 8 may relate to the CYP11B1/CYP11B2 genes.

Background
Coronary heart disease (CHD) is one of the most com-
mon illnesses in the Western world. As with most late-
onset diseases, empirical evidence from numerous studies
suggests that CHD is caused by an interplay between an
unspecific genetic vulnerability and environmental fac-
tors. So far, attempts to identify specific genes have not yet
been successful while a series of environmental risk fac-
tors – such as overweight, cholesterol, smoking, and alco-
hol consumption – have been found to be associated with
hypertension and cardiovascular sequelae [1,2]. Marked
regional differences in the incidence of CHD may indicate
a significant contribution of ethnicity-related factors to
the pathogenesis of the disease [3]. All this underlines the
etiologic heterogeneity and the complexity of CHD.

Standard phenotype-to-genotype research strategies do
not readily elucidate the genetic background of complex
diseases, if 1) the contributions of single loci are small, 2)
the single loci are, by themselves, neither necessary nor
sufficient for developing the phenotype, 3) significant
interactions between the loci are involved, and 4) there
exist genetically different pathways to the phenotype in
ethnically diverse populations. In contrast, the genotype-
to-phenotype strategy has its main focus on oligogenic,
interacting models that evaluate high-dimensional
genetic feature vectors with respect to within-population
and within-family similarities. This has the advantage that
a population's ethnic substructure (in terms of "biologi-
cal" ethnicity) can be taken into account and that multilo-
cus variations in the genome sequence (this variation
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provides information on potential functional differences)
can be correlated with specific quantitative conditions on
the phenotype level. Consequently, the genotype-to-phe-
notype research strategy not only evaluates the presence or
absence of the disease – as is the case with standard link-
age and association methods – but also allows one to cor-
relate the multilocus deviations in the genome sequence
with quantitative scores on the phenotype level. Using the
genome-wide screening data of the Framingham Heart
Study [1] we have 1) quantified the underlying genetic
diversity through 20-dimensional feature vectors in order
to construct a genetic vector space and to analyze popula-
tion substructure, 2) looked for oligogenic marker config-
urations for which the between-sib genetic similarity in
affected and unaffected sib pairs deviated from the genetic
similarity between parents and offspring, and 3) quanti-
fied the longitudinal phenotype patterns through high-
dimensional feature vectors for correlations with the
observed genotype structure. Our goal was to identify oli-
gogenic configurations of risk factors that were equally
valid across subpopulations and that did not depend on
population substructure in terms of "biological" ethnicity.

Methods
Genetic vector spaces
A vector space is a well-established, universal concept for
the analysis of multivariate data. Genetic vector spaces are
spanned implicitly by a set of genetic feature vectors,
where a genetic feature vector comprises a set of scalar var-
iables. The scalar variables can include genotype meas-
ures, quantitative scores on the phenotype level, and
environmental details. The intrinsic regularities inherent
in a set of genetic feature vectors is revealed by systemati-
cally evaluating the distances d(xi,xj) between any pair of
vectors xi,xj (0 ≤ d < ∞) or the respective similarities (simi-
larity is inversely related to distance s(xi,xj) = 1/ [d(xi,xj) +
1] for i, j = 1,2,..., n). Similarity measures are better suited
for structural analyses of empirically derived vector spaces
because the similarity coefficients s are "normalized" such
that 0 ≤ s ≤ 1. There exists a variety of different distance
and similarity measures. One distinguishes between met-
ric and nonmetric measures depending on whether or not
the "triangular" criteria

d(xi,xk) ≤ d(xi,xj) + d(xj,xk) and s(xi,xj) × s(xj,xk) ≤ [s(xi,xj) +
s(xj,xk)] × s(xi,xk)

are met. In the case of metric distances the underlying vec-
tor space can be constructed from a set of vectors ("meas-
urements") by means of a principal component analysis
(PCA). The PCA axes are aligned in the direction of the
vectors' largest variations identified through the largest
eigenvalues of the covariance matrix. Specifically, the PCA
yields a rank order of eigenvalues e1 ≥ e2 ≥ e3 ≥ ... ≥ en  ≥1
>en+1 ≥ ... associated with the "eigenvectors" v1, v2, v3,...,

where n denotes the number of significant eigenvalues
that have been extracted. The significant eigenvectors con-
stitute the dimensionality of the vector space, whereas the
vector space's orthogonal complement, associated with
the insignificant eigenvalues, is eliminated. Convention-
ally, eigenvalues e ≥ 1 are regarded as "significant". The
amount of variance explained by the vector space can
serve as a goodness-of-fit estimate.

In the case of nonmetric similarities the vector space is
constructed by means of a nonmetric multidimensional
scaling (NMDS) procedure [4]. This procedure relies upon
the fact that under almost all circumstances a metric vector
space can be constructed from the rank order of nonmetric
similarities in such a way that the rank order of the result-
ing metric distances is identical with the rank order of the
original nonmetric similarities. Of particular interest are
oligogenic vector spaces spanned by n ≥ 8 uncorrelated,
highly polymorphic microsatellites because such vector
spaces provide a powerful means for the analysis of pop-
ulation admixture, thus clearing the way for a solution of
the problem of genomic control [5,6].

Genetic similarity
Central to our oligogenic approach to quantifying genetic
diversity is the similarity function that enables one to
quantify the genetic distances d(xi,xj) between feature vec-
tors xi,xj made up by the allelic patterns of any two subjects
i,j at loci l1,l2,...,ln. We use a nonmetric set-theoretical sim-
ilarity measure that has been designed primarily to assess
similarity by state (SBS) [7-10] but also it allows one to
model similarity by descent (SBD) in a cross-sectional
way. It is based on a step-wise mutation model of the evo-
lution of microsatellites [11] and evaluates the fragment
sizes (bp) of microsatellite alleles. Subtracting the individ-
ual offset o of a microsatellite from the subject's alleles ai

= aj at locus, k the respective genotype aiaj is modeled as
the rectangular area spanned by the two transformed alle-

les , so that the subject's feature vector at

n loci can be regarded as an area assembled from n
"patches". Hence, the overall similarity between the fea-
ture vectors xi, xj of two subjects i,j can be quantified
through the set-theoretical intersection (∩: area shared by
the two patterns) and the set-theoretical union (∪: total
area involved)

with wk designating the weight of the feature vector's kth

component (proportional to its information content),
and X.k the area spanned by the two alleles Ak1, Ak2 of the
kth component. The specific properties of this similarity
measure, regarding vector length and calibration, have
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been described in detail elsewhere [12]. Performance and
suitability of the similarity measure have been verified
through a computerized-recognition-of-person test
applied to a large and representative sample of unrelated
individuals. This test yielded rates of false-positive and
false-negative classification errors of typically <<5% each,
while the parent-offspring similarity and the within-pair
similarity of sibs were 0.5.

There exist two principally different approaches to evalu-
ating genetic similarity: 1) a set of unrelated subjects is
screened for intrinsic groupings by means of genetic vec-
tor spaces and cluster analyses. This allows one to detect
population stratification and to establish a concept of
"biological" ethnicity when addressing the problem of
genomic control. This type of analysis relates to SBS and
requires a larger number of polymorphic microsatellites
to recognize first-degree relatives ex nihilo. 2) The genetic
similarity of a set of families is evaluated in a family-wise
way (e.g., parent-offspring versus sib-sib). Several genera-
tions may be analyzed as an entity in order to optimize
the performance of similarity measures or to adjust the
measures in the case of population isolates. This type of
analysis enables signal detection through the linkage par-
adigm and relates to SBD.

We have conducted computer simulations on the basis of
60 families with two affected and two unaffected off-
spring. The number of loci varied from 20 to 30 with an
average number of 4 to 10 alleles, whereby five randomly
selected loci were chosen as "affected" in terms of a 10%
increase in concordance. The respective results suggested a
statistical power >90% (p = 0.01) to detect deviations
from the genetic similarity of 0.5 in affected sib pairs. The
power to detect subgroups in a population was found to
be of the same order of magnitude (five randomly selected
loci chosen as group-specific in terms of a 10% increase of
within-group concordance). Incomplete or distorted fea-
ture vectors due, for example, to small errors in allele sizes
or missing alleles, have little effect on the similarity coef-
ficients as long as the overall signal-to-noise ratio remains
acceptable: e.g., if a 10% deviation in genetic similarity is
to be resolved, the level of white noise caused by ran-
domly distributed missing data must not exceed 10%.

Adaptive clustering procedures
Using similarities s(xi,xj) that may depend on a specific
cluster, the algorithms of adaptive clustering procedures
are based on three decision regions for elements x and
clusters Xj

where θ ≤ 1 and mj denotes the center of cluster Xj
(j=1,2,...). Both constants θ and τ may be given either by
a priori knowledge or must be estimated from a calibra-
tion sample. The similarity to cluster centers mj is often
replaced by the averaged similarity

in order to derive clusters directly from similarity matri-
ces. During cluster creation new elements are used to
modify the description of established clusters, or to form
centers of new clusters with prespecified initial variances,
or are set aside if they fall in guard zones. The adaptive
clustering procedure starts with τ chosen in such a way
that each single element forms a cluster. Then τ is made
successively smaller, thus allowing clusters to merge. The
algorithm looks for stable solutions, i.e., for configura-
tions of clusters where small changes of τ do not change
clusters. The parameter θ defines a cluster's guard-zone,
i.e., its immediate neighborhood that cannot harbor the
center of another cluster. We used a 10% guard-zone (θ =
0.9) with respect to the cluster's radius.     

Genetic diversity: univariate approach
In empirical studies the question arises as to how to con-
struct genotypic feature vectors that constitute a problem-
specific vector space. One possible approach is the use of
uncorrelated, sufficiently heterogeneous microsatellites.
The heterogeneity of a microsatellite (i.e., its information
content and its potential contribution to oligogenic mod-
els) can be quantified through the microsatellite's multi-
tude of different allele combinations observed in a given
population. For a polymorphism with n alleles ai (i =
1,2,...,n) there exist n(n + 1)/2 possible allele combina-
tions aiaj (i, j = 1,2,...,n), the so-called genotypes. Defining
F(ij) as the relative frequency [%] of the genotypes aiaj and
arranging the F(ij)

(κ) (k = 1,2,...,n(n + 1)/2) in descending
order, such that

F(ij)
(1) ≥ F(ij)

(2) ≥ F(ij)
(3) ≥ ... ≥ F(ij)

n(n+1)/2,

we can define a heterogeneity coefficient h = h(m,s) as the
number m for which the sum of the F(ij)

(k) (k = 1,2,...,m)
in descending order becomes greater or equal to a prespec-
ified percentage s, where s is typically in the range of 95–
99%:

An exponential/logarithmic transformation may be used
to compensate for the non-normal distribution of the het-
erogeneity coefficients in standard marker sets if compat-
ible ethnicity markers have to be selected for cross-
comparisons between studies.
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Data material
Our study comprised 394 nuclear families with 1328 sub-
jects from the community-based Framingham sample.
Participants aged 29 to 62 years were followed up to 52
years with up to 21 repeated assessments. Of the nuclear
families, 48 included sibships with both parents, 142 with
one parent, and 204 sibships without parents. On the
phenotype level, blood pressure, hypertensive treatment,
tobacco and alcohol consumption, total cholesterol, fast-
ing HDL cholesterol, fasting triglycerides, and fasting glu-
cose were examined. With respect to blood pressure, 136
sib pairs (34.5%) were concordant for normal values, 183
sib pairs (46.4%) discordant, and 75 sib pairs (19.0%)
concordant for hypertension. The subjects contributed a
20-ml blood sample from which DNA was extracted and
genotyped for 397 microsatellite markers (modified
Weber9 marker set).

Results
Genetic diversity
Selecting those 20 uncorrelated markers (Table 1) that dis-
played the highest allelic variability h(m,s), we assembled
20-dimensional feature vectors in order to derive a genetic
vector space for the representation of the subjects as mul-
tidimensional points. Adaptive cluster analysis led to
three major subgroups that were regarded as being related
to biological ethnicity and included more than 70% of the
subjects (Figure 1). Based on these subgroups we

addressed the question of ethnicity-related and ethnicity-
independent risk factors for CHD.

Systematic search for oligogenic susceptibility 
configurations
Using hypertension as endophenotype of CHD and treat-
ing the genome as a single entity, we subdivided the
genetic regions, implicitly defined by the 397 marker loci,
into n = 40 segments si each including 10 markers (i =
1,2,...,n). Each segment si was systematically combined
with each segment sj, thus yielding n(n - 1)/2 feature vec-
tors of length 20 that allowed us to detect interactions
between any two marker loci (i, j = 1,2,...,n; j >i). Interac-
tions were deemed to be present if the joint effect of two
markers deviated from the sum of their single effects. We
then determined the distribution of parent-offspring sim-
ilarities together with the distribution of the between-sib
similarities of affected, unaffected, and discordant sib
pairs. Subsequently, our signal detection algorithm
looked for significant differences between the parent-off-
spring similarities and the sib-sib similarities whose mean
value was expected to deviate in affected sib pairs from the
parent-offspring value if the feature vector included mark-
ers close to vulnerability or protection genes. Those loci
that contributed significantly to deviations in the expected
values were included in the oligogenic configuration that
constituted our CHD-specific genetic vector space. We
found several ethnicity-independent signals. One signal

Table 1: Structural decomposition of genetic diversity. Those 20 markers that displayed the highest allelic variability in the sample and 
had acceptable missing data rates were selected for the construction of genetic feature vectors.

Polymorphic markers used to quantify biological ethnicity

Marker Missing Location cM Nucleotide Heterogeneity

D1S1612 4% 13.8 4 17.6
D2S2976 7% 3.0 4 27.0
D2S1360 5% 40.0 4 20.2
D2S1788 1% 61.5 4 36.0
D3S1259 5% 28.2 2 17.6
D3S2427 4% 165.7 4 27.0
D4S2632 2% 54.2 4 21.2
D6S305 4% 161.5 2 19.4
D7S513 4% 22.6 2 43.6
D7S2204 3% 87.1 4 22.1
D7S1804 5% 126.0 4 26.0
D7S2195 4% 139.0 4 19.4
D8S277 3% 15.2 2 22.1
D11S1986 3% 98.8 4 50.4
D12S391 5% 27.9 4 21.2
D13S788 6% 54.8 4 18.5
D15S822 7% 16.9 4 36.0
D17S928 8% 135.7 2 21.2
D20S470 2% 44.6 4 16.8
D21S2055 6% 50.7 4 64.0
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Framingham study of hypertension: orthogonal projection onto cluster centers 1/2/3Figure 1
Framingham study of hypertension: orthogonal projection onto cluster centers 1/2/3 Structural decomposition of 
genetic diversity: projection of the feature vectors of 1328 subjects onto the plane defined by the three largest cluster centers.

Vulnerability-related (negative signs) and protective loci (positive signs) on chromosomes 1 and 8 as derived by the multivariate sib-pair methodFigure 2
Vulnerability-related (negative signs) and protective loci (positive signs) on chromosomes 1 and 8 as derived 
by the multivariate sib-pair method The contribution of each locus to the oligogenic model of ethnicity-independent vul-
nerability is plotted along the y-axis (%), while the genomic regions are plotted along the x-axis (cM).
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on chromosome 8 (Figure2) may relate to the CYP11B1/
CYP11B2 genes at 142.3 cM (11β-hydroxylase,
aldosterone-synthase).

Discussion
Our quantitative concept of vulnerability and protection
factors assumes etiologic and phenotypic heterogeneity in
such a way that only a certain proportion of the affected
sib pairs exhibit an elevated SBD/SBS score at a certain
locus within an oligogenic configuration. Thus, each locus
of the configuration is regarded as being, by itself, neither
necessary nor sufficient for developing the phenotype.
There also exist subsets of affected sib pairs with a signifi-
cant genetic dissimilarity at a locus of the configuration as
well. Since a "dissimilarity locus" interacts with at least
one of the vulnerability loci, it is likely that it modifies the
genetic risk of the phenotype. We therefore conjecture that
affected siblings who are dissimilar on the genotype level
also exhibit differences on the phenotype level, perhaps,
in terms of onset and severity of illness.

As to the genetic analysis of complex traits, oligogenic
approaches to quantifying genetic diversity complement
standard linkage and association methods by following a
genotype-to-phenotype research strategy. This has the
advantage that multilocus variations in the genome
sequence can be correlated with specific quantitative con-
ditions on the phenotype level, that is, not only with the
presence or absence of the disease but also with lifestyle
and environmental details. Such a viewpoint appears to
be of particular importance in the case of CHD, where
environmental factors such as smoking, alcohol con-
sumption, obesity, and comorbid personality traits mod-
ify both the risk of and the prognosis for the disease.
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