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Abstract

The Framingham Heart Study is a very successful longitudinal research for cardiovascular diseases.
The completion of a 10-cM genome scan in Framingham families provided an opportunity to
evaluate linkage using longitudinal data. Several descriptive traits based on simulated longitudinal
data from the Genetic Analysis Workshop |3 (GAW 13) were generated, and linkage analyses were
performed for these traits. VWe compared the power of detecting linkage for baseline and slope
genes in the simulated data of GAWI3 using these traits. We found that using longitudinal traits
based on multiple follow-ups may not be more powerful than using cross-sectional traits for genetic

linkage analysis.

Background

In the past 50 years, the Framingham Heart Study has
been a very successful longitudinal research study of car-
diovascular diseases. Over the years, many of the major
cardiovascular disease risk factors, i.e., high blood pres-
sure, high blood cholesterol, smoking, obesity, diabetes,
and physical inactivity, have been identified through care-
ful monitoring of the Framingham Heart Study popula-
tion. A large amount of valuable information on the
effects of related factors, such as blood triglyceride and
HDL cholesterol levels, age, gender, and psychosocial
issues, has been collected. In the mid-1990s, a genome
scan was conducted for 330 pedigrees selected from the
Framingham Heart Study. This raised a series of interest-
ing questions such as: how to use the longitudinal pheno-
typic data in linkage analysis? Would longitudinal data
provide more power for demonstrating linkage?

Longitudinal phenotypic data contain information not
only on trait values at a specific time point, but also on the
progression of a trait over time. In addition to identifying
genes responsible for cross-sectional trait values, longitu-
dinal data also provide the possibility of identifying genes
related to the progression of a trait across time. The pro-
gression of a complex trait may depend on many environ-
mental factors and gene x environment interactions.
Therefore, identifying genes related to the progression of
a complex trait may help us study the environmental fac-
tors and the gene x environment interactions involved. So
far, three types of descriptive traits have been used for
linkage analysis of longitudinal data: single visit value [1],
within-subject mean across the visits [2-4], and the
changes between two visits [5]. The simulated data of the
Genetic Analysis Workshop 13 (GAW13) (100 replicates)
provided us with an opportunity to evaluate the power of
linkage analysis for identifying loci responsible for
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baseline or slope variations using these descriptive traits.
In addition to the above three types of traits, we intro-
duced a new descriptive trait for linkage analysis: within-
subject slope of the trait. We compared the power of link-
age analysis using these descriptive traits for identifying
baseline and slope genes in the simulated data of GAW13.

Methods

Data Structure

The simulated data of GAW13 were generated based on
the real data scenario of the Framingham Heart Study. The
family structure was composed of 330 pedigrees selected
for the genome scan of the Framingham Heart Study. The
pedigrees consisted of 4692 subjects, of whom 2885 had
participated in the Framingham Heart Study. Among the
2885 participants, there were 3041 parent-offspring pairs,
2796 sib-pairs, 2107 avuncular pairs, 183 grandparent-
grandchild pairs, and 1595 first cousin pairs. The same
family structure was used for simulating all 100 replicates.
For each of the 100 replicates, a total of 399 microsatellite
markers on the 22 autosomal chromosomes were simu-
lated using the allele frequencies of the markers from the
Framingham Heart Study data. Each replicate contained
longitudinal data for two cohorts, with data collection on
each cohort starting about 30 years apart. The first cohort
was examined 21 times at 2-year intervals, while the sec-
ond cohort was examined 5 times with an 8-year interval
between the first two exams and 4-year intervals between
subsequent exams. Both completed data and data with
missing values were provided for analysis. For simplicity,
we used complete genotype and phenotype data for our
analysis.

Phenotypes

GAW13 simulated data provided phenotypic data on age,
sex, height, weight, cholesterol, blood pressure, glucose,
and various other traits. We focused our analysis on cho-
lesterol and its related covariates, such as sex, age, body
mass index (BMI), and triglycerides (TG). There were 21
visits for the first cohort, and only five visits for the second
cohort. In order to take advantage of the longitudinal
nature of the phenotypic data, we constructed several
descriptive traits for linkage analysis. To make the vari-
ance of these descriptive traits as comparable as possible
for both cohorts, visit 1, 5, 7, 9, and 11 were selected from
the first cohort, corresponding to the time intervals of the
visits in the second cohort, to generate the descriptive
traits. Furthermore, only subjects with cholesterol data at
all five visits were used in the analysis for both cohorts.
The following traits were generated for linkage analysis.

1) CHOLT1: the total cholesterol level at the first visit. It
contains genetics effects mainly from the baseline genes.

http://www.biomedcentral.com/1471-2156/4/s1/S28

2) CHANGE: the change of the total cholesterol level over
20 years. For Cohort 1, it was the change of the cholesterol
level from visit 1 to visit 11; for Cohort 2, it was the
change of the cholesterol level from visit 1 to visit 5. It
contains the genetic effects mainly from the slope genes.

3) MEAN: the within-subject mean of the total cholesterol
level across the five visits. It contains the genetic effects
from both the baseline and the slope genes.

4) SLOPE: the within-subject slope of the total cholesterol
level of each individual for the five visits regressed on age.
It contains the genetic effects mainly from the slope genes.

Among the four descriptive traits we considered here,
CHOL1 was based on the data at the first visit only,
CHANGE was generated based on the data from two out
of five visits, and MEAN and SLOPE were generated based
on data from all five visits.

Statistical analysis

Two-point sib-pair linkage analysis was conducted using
SIBPAL in S.A.G.E. 3.1 [6]. Sex, age, BMI, and log(TG)
were included in the analysis as covariates for CHOL1,
CHANGE, and MEAN. Sex, BMI, and log(TG) were
included in the analysis as covariates for SLOPE.

Multipoint sib-pair linkage analysis was conducted with
MAPMAKER/SIBS in GENEHUNTER2.1_r3 Beta program
package [7,8]. The residuals after the adjustment for sex,
age, BMI, and log(TG) were used in the analysis for
CHOL1, CHANGE, and MEAN. The residuals after the
adjustment for sex, BMI, and log(TG) were used in the
analysis for SLOPE. Families too large for GENEHUNTER
to analyze were divided into smaller families.

Results and Discussion

According to the answer key distributed by GAW13,
Gb30-Gb33 and Gs7-Gs9 were the seven genes influenc-
ing cholesterol levels directly. Among the seven genes,
Gb30-Gb33 were baseline genes and Gs7-Gs9 were slope
genes. Both two-point and multipoint sib-pair linkage
analyses were carried out for the four descriptive traits on
the chromosomes containing the baseline and the slope
genes for total cholesterol level, that is, chromosomes 1,
3,7,11,13, 15, and 21. In order to evaluate the false-pos-
itive rate, we also analyzed chromosome 2, which does
not have any trait locus.

Two-point linkage analysis using SIBPAL produced a p-
value for each marker locus. For each trait locus, we took
the smallest p-value out of the four markers around the
trait locus, which was equivalent to a 30-cM range, as the
significance level for that trait locus. We counted the
number of times the smallest p-value among the four

Page 2 of 4

(page number not for citation purposes)



BMC Genetics 2003, 4

http://www.biomedcentral.com/1471-2156/4/s1/S28

Table I: Power for detecting linkage (%) with four descriptive traits using SIBPAL

Baseline Genes

Slope Genes

Gb30 Gb3l1 Gb32 Gb33 Gs7 Gs8 Gs9 False Positive
CHOLI 63 52 29 14 21 10 4 37
CHANGE 3 5 7 4 79 13 6 6.0
MEAN 49 41 26 12 62 12 4 3.6
SLOPE 3 4 9 6 80 16 6 5.9

Table 2: Power for detecting linkage (%) with four descriptive traits using MAPMAKER/SIBS
Baseline Genes Slope Genes

Gb30 Gb3l1 Gb32 Gb33 Gs7 Gs8 Gs9 False Positive
CHOLI 64 32 8 4 I 6 0 1.0
CHANGE 2 5 2 5 83 I5 6 4.9
MEAN 63 40 23 10 80 20 4 5.0
SLOPE 6 6 4 7 87 14 7 7.1

markers was less than 0.0125 (0.05/4, Bonferroni correc-
tion) out of the 100 replicates as the power of detecting
linkage. Table 1 shows the power of detecting linkage with
the four descriptive traits generated from the longitudinal
data using SIBPAL. For chromosome 2, we counted the
number for every four adjacent markers. The average
number across chromosome 2 was then taken as the false-
positive rate.

A multipoint LOD score was calculated for each locus by
using MAPMAKER/SIBS. For each trait locus, again, we
considered four markers around it. We counted the
number of times that the largest LOD score among the
four markers was greater than 1.67 (corresponding
asymptotically to a 0.05 significance level) as evidence for
suggestive linkage. Table 2 shows the power of detecting
linkage with the four descriptive traits using MAPMAKER/
SIBS. The false-positive rate in Table 2 was calculated in a
similar way as in Table 1.

From Table 1 and Table 2, we observed that the false pos-
itive rates for both two-point and multipoint linkage anal-
yses were within a reasonable range (1.0~7.1%). As
expected, different descriptive traits had different power
for detecting linkage of different genes. CHOL1 had a
moderate power to detect linkage for the baseline genes
(~60% for Gb30), but not for the slope genes (power
<21% for Gs7). CHANGE and SLOPE had approximately
80% power for detecting linkage for the slope gene Gs7,

but no power for detecting the baseline genes (<10% for
Gb30-G33). MEAN had moderate power to detect linkage
for both baseline (49% to 63% for Gb30) and slope genes
(62% to 80% for Gs7).

According to data description of the simulated data of
GAW13, the contributions of the four baseline genes
(Gb30-Gb33) to the baseline variance of total cholesterol
level were 0.20, 0.15, 0.1, and 0.05, respectively. In our
linkage analysis results, Gb30 was detected with the high-
est power while Gb33 was detected with the lowest power.
This demonstrated that genes with higher contribution to
the trait variance could be detected with higher power.
Among the three slope genes, Gs9 contributed to the slope
of females only and its contribution to the variance of the
slope is very low (~0.03). Here, we actually did not have
any power to detect this gene using either two-point or
multipoint linkage analyses. For the other two slope
genes, the power for detecting Gs7 was higher than that
for Gs8, which was also consistent with their contribu-
tions to the variance of the slope (0.36 for Gs7 and 0.08
for Gs8).

For the two traits containing the genetic effects from base-
line genes, CHOL1 and MEAN, the total cholesterol level
at the first visit (CHOL1) had a similar or sometimes even
higher power to identify baseline genes compared to
MEAN. Thus CHOLL1 is an acceptable trait for detecting
linkage for baseline genes, especially when genetic effects
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are relatively large. Two longitudinal genetic studies
[9,10] also showed that heritability estimates were high at
time point 1 and remained stable across time.

CHANGE, MEAN, and SLOPE were the three traits con-
taining genetic effects from slope genes. For a slope gene
with large effect, e.g., Gs7, SLOPE is the most powerful
trait and MEAN is the least powerful trait from both two-
point and multipoint analyses. However, improvement in
power from using SLOPE to using CHANGE was limited
(from 0.79 to 0.80 in two-point analysis and from 0.83 to
0.87 in multipoint analysis) while SLOPE used much
more data than CHANGE (five visits vs. two visits). For a
slope gene with relatively small effect, e.g., Gs8, power
was low for both analytic methods.

In summary, in comparison with descriptive traits gener-
ated from multiple longitudinal data points (such as
MEAN and SLOPE), CHOL1 had a similar or even higher
power for detecting baseline genes as MEAN, and
CHANGE had a similar power for detecting slope genes as
SLOPE. The possible explanation for this is that genetic
effects are relatively stable in an individual's lifetime, at
least in this simulated situation. However, MEAN and
SLOPE used the data of all five visits while CHOL1 and
CHANGE required data of one or two visits only. There-
fore, conducting a longitudinal analysis with multiple fol-
low-ups may not be an effective way to identify
susceptibility genes responsible for either baseline or
change over time.

In the simulated data of GAW13, environmental factors
did not play an important role in total cholesterol levels.
However, in reality, environmental exposures, medica-
tions, and gene x environment interactions may play an
important role in determining an individual's cholesterol
levels, as well as many other complex traits such as DBP
and SBP. Under such circumstances, the usefulness of a
longitudinal study design with multiple visits should be
further explored.
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