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Abstract
Background: Family studies are often conducted in a cross-sectional manner without long-term
follow-up data. The relative contribution of a gene to a specific trait could change over the lifetime.
The Framingham Heart Study offers a unique opportunity to investigate potential gene × time
interaction. We performed linkage analysis on the body mass index (BMI) measured in 1970, 1978,
and 1986 for this project.

Results: We analyzed the data in two different ways: three genome-wide linkage analyses on each
exam, and one genome-wide linkage analysis on the mean of the three measurements. Variance-
component linkage analyses were performed by the SOLAR program. Genome-wide scans show
consistent evidence of linkage of quantitative trait loci (QTLs) on chromosomes 3, 6, 9, and 16 in
three measurements with a maximum multipoint LOD score > 2.2. However, only chromosome 9
has a LOD score = 2.14 when the mean values were analyzed. More interestingly, we found
potential gene × environment interactions: increasing LOD scores with age on chromosomes 3, 9,
and 16 and decreasing LOD scores on chromosome 6 in the three exams.

Conclusion: The results indicate two points: 1) it is possible that a gene (or genes) influencing BMI
is (are) up- or down-regulated as people aged due to aging process or changes in lifestyle,
environments, or genetic epistasis; 2) using mean values from longitudinal data may reduce the
power to detect linkage and may have no power to detect gene × time, and/or gene × gene
interactions.

Background
An advantage of the Framingham Heart Study is its
repeated measurement of several cardiovascular risk fac-
tors over a long period of time. The Framingham Heart

Study offers a unique opportunity to investigate the value
of follow-up family studies. Quantitative trait data from
repeated measurements in follow-up studies often fluctu-
ate due to changes in lifestyle, age-related covariates, gene
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× gene interaction, and measurement errors. Although
there are statistical tests, such as the generalized estimat-
ing equations (GEE) model [1] to analyze longitudinal
data, there are no similar methods to analyze longitudinal
family data. Thus, several linkage studies using the Fram-
ingham Heart Study performed analyses on the mean val-
ues [2]. We wondered whether it would be advantageous
to perform separate linkage analysis for each measure-
ment at different time points, rather than just use the
mean values. Body mass index (BMI) is a good example of
a quantitative trait that has high heritability, fluctuates
due to biological reasons, but has minimal measurement
errors. In this study, we compared the results from two
analyses. In the first method we performed linkage analy-
ses on the mean BMI from three measurements (in 1970,
1978, and 1986); then we conducted separate linkage
analyses on each measurement. Advantages and disadvan-
tages will be discussed by comparing these two
approaches.

Methods
In this study 330 pedigrees from the Framingham Heart
Study from Genetic Analysis Workshop 13 data were used.
While most pedigrees consist of 4 to 10 subjects in two
generations, there are also several large pedigrees (up to
29 participants) and a few pedigrees that include three
generations. The pedigrees consist of 4692 subjects, of
whom 2885 have phenotype data. Cleaned genotyping
data with 401 molecular markers are provided for chro-
mosomes 1 through 22 for 1702 of the 4692 subjects.

We restricted our focus to BMI (kg/m2). All data including
BMI, high-density lipoprotein-cholesterol (HDL-C, mg/
dl), age, sex, cigarette smoking, and alcohol consumption
were first explored to see their distributions and outliers.
The BMI data were available from years 1970, 1978,
(1976 for the Framingham Heart Study Cohort 1 and
1978 for Cohort 2), and 1986. If the data were missing in

year 1970, the information was supplied from the data in
1968. The mean BMI was calculated from three time
points (years 1970, 1978, and 1986). We took the mean
of three exams for each individual (if a person had only
two exams, we took the average of those two). Covariates,
age, sex, smoking, alcohol, HDL-C, and interactions
between HDL-C and age, smoking, and sex were included
in the linkage analyses. Mean HDL-C and mean age were
calculated in same way. Due to many nonsmokers and
non-alcohol drinkers, the smoking and alcohol data were
highly skewed. Therefore, these two variables were
recoded as categorical variables. Smoking information
was equally divided into four categories, and alcohol con-
sumption into five categories. Four different genome-wide
linkage analyses were performed for the three individual
measurement and the mean values. The program SOLAR
version 1.7.4 [3] was used for heritability estimation. In
the SOLAR program, heritability is estimated by the mul-
tiple regression method. This program uses the general
pedigree variance-component (VC) analysis [4] and
extended multipoint identity-by-descent (IBD) estima-
tion methods for quantitative trait locus (QTL) mapping.

Results
There were a few outliers (> 3 SD: 24, 25, 24, and 27 out-
liers for 1970, 1978, 1986 and the mean, respectively, and
most of them were between 3 SD and 4 SD) in BMI. First
we performed the genome scan with outliers, and then
analyses without outliers were carried out for four candi-
date chromosomal regions. Table 1 shows the mean ± SD,
minimum, maximum, sample size, and estimated herita-
bility ± standard error (SE) in the three time points and
mean values of the three exams. When the analyses were
performed with outliers, the estimated heritabilities of
BMI ranged from 40.55 to 44.80. Heritability estimate
with outliers from mean values of BMI was higher and
had smaller SE than any three heritabilities estimated
from each measurement.

Table 1: Mean, minimum, maximum, sample size and estimated heritability for BMI

Year Min Max Mean ± SD Heritability (%) ± 
SE

Sample size

1970 13.41 52.11 25.32 ± 4.34 41.19 ± 4.07 2542A

13.41 38.24 25.24 ± 4.00 43.55 ± 4.23 2527
1978 15.31 50.49 25.77 ± 4.38 40.55 ± 4.37 2120A

15.31 38.75 25.57 ± 4.05 38.93 ± 4.49 2096
1986 16.87 55.68 26.55 ± 4.71 44.80 ± 4.80 1923A

16.87 41.18 26.35 ± 4.30 45.74 ± 4.87 1896
Mean 15.84 49.63 25.92 ± 4.30 46.77 ± 3.84 2569A

15.84 37.88 25.74 ± 3.96 41.38 ± 3.72 2545

AIn each measurement, values were obtained with outliers in the first line and without outliers in the second line.
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Multipoint variance-component linkage analysis results with outliers for time points 1970, 1978, 1986, and mean BMI of the three examsFigure 1
Multipoint variance-component linkage analysis results with outliers for time points 1970, 1978, 1986, and mean BMI of the 
three exams. LOD scores on chromosomes 3, 6, 9, and 16 were calculated by the SOLAR version 1.7.4 software package.

Table 2: Estimated location (cM)/LOD score at the highest peaks in the four chromosomal regions

Chromosome

Year 3 6 9 16

1970 161/0.21 146/3.53 98/0.75 65/0.93A

161/0.00 146/0.43 98/0.52 44/0.79
1978 179/1.97 138/1.48 95/2.13 58/2.38A

179/0.19 138/0.92 97/4.32 58/2.22
1986 181/2.88 137/1.37 88/2.24 75/2.43A

181/0.93 137/0.23 89/2.35 44/1.18
Mean 166/1.45 138/1.61 94/2.14 67/1.17A

166/0.79 140/0.60 96/2.57 44/1.83

AIn each measurement, values were obtained with outliers in the first line and without outliers in the second line.
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We considered "evidence" of linkage if a LOD score was ≥
2.2 in one or more of the four analyses (three individual
measurements plus mean values). The results of the
genome scan with outliers showed that chromosomes 3,
6, 9, and 16 have evidence of quantitative trait loci (QTLs)
affecting BMI (Fig. 1). The peaks with the highest LOD
scores when outliers were included in these four regions
were located at 181 cM of chromosome 3 (LOD 2.88 in
1986), 146 cM of chromosome 6 (LOD 3.53 in 1970), 88
cM of chromosome 9 (LOD 2.24 in 1986), and 75 cM of
chromosome 16 (LOD 2.43 in 1986), respectively. When
outliers were excluded, peaks with the highest LOD scores
were located at 181 cM chromosome 3 (LOD 0.93 in
1986), 138 cM of chromosome 6 (LOD 0.92 in 1978), 97
cM of chromosome 9 (LOD 4.32 in 1978), and 58 cM of
chromosome 16 (LOD 2.22 in 1978), respectively. In
Table 2, the chromosomal locations and LOD scores at
the highest peaks are summarized. Wu et al. [5] recently
performed a combined analysis of genome scans and
meta-analysis on 6849 individuals from four ethnic
groups (White, Black, Mexican-American, and Asian), and
this was the largest combined data set examined thus far.
Our findings on chromosomes 3 (~180 cM) and 16 (~75
cM) replicate two of their findings. In addition, Duggirala
et al. [6] reported that obesity is linked to chromosome 6
(~150 cM) in Mexican-Americans. Atwood et al. [7] more
recently analyzed BMI data of six time points from the
Framingham Heart Study, and found linkage evidence in
same chromosomal regions. Lindgren et al. [8] reported
linkage of type 2 diabetes on chromosome 9 (between
56–76 cM) in Finnish families. However, only chromo-
some 9 yielded a LOD score = 2.14 when mean values of
BMI with outliers were used for analysis. This indicates
potential type II errors when only mean values are
analyzed.

The most interesting finding is an apparent pattern of
either increasing or decreasing LOD scores when outliers
were included, in the three exams on these four chromo-
somes 3, 6, 9, and 16 (Fig. 1). In the region of 155~190
cM on chromosome 3, the LOD scores obviously
increased with age. A similar trend occurred in the regions
of 80~110 cM on chromosome 9, and 50~80 cM on chro-
mosome 16, but the increasing scale between 1978 and
1986 was smaller than that on chromosome 3. In con-
trast, in the region of 130~160 cM on chromosome 6, the
LOD scores obviously decreased from 1970 to 1978, and
lowered a little bit from 1978 to 1986. However, the
results without outliers do not show the same pattern.
There were no LOD scores from chromosomes 3 and 6
higher than 1.0, but the highest LOD scores for chromo-
somes 9 and 16 were from the analysis of 1978. A com-
mon characteristic was that in each one of the four regions
the highest LOD score from mean BMI of the three exams
was not larger than the maximum highest LOD score

obtained from single time point analysis. This implied
that using mean BMI of multiple time points might reduce
the statistical power.

Discussion
For complex traits, the conventional LOD threshold for
significant linkage may be viewed as too stringent. Sugges-
tive linkage (LOD ≥ 2.2) has been invoked to signify
potential linkages, though at a reduced genome-wide sig-
nificance (statistical evidence that would occur by chance
once per genome scan) [9]. In this study LOD ≥ 2.2 was
used as a threshold to find QTL candidate regions. Our
BMI linkage analysis results confirmed four QTL candi-
date regions recently reported in literature [5-8]. Further-
more, our studies indicate potential gene × environment
(time) and/or gene × gene interactions detected from
analyses on longitudinal data.

Although analyzing the mean values of quantitative traits
from longitudinal data offers the advantages of simplicity
of analytic procedure and overall genetic effect over sev-
eral years, it may lose power and lose the chance to detect
interactions as we show in this study. However, summa-
rizing the overall genetic effect from longitudinal family
data is not easy. Several studies [5] have used different
methods to perform meta-analyses on various data
sources, but these methods are invalid for our study
because each measurement is not independent, which
violates the assumptions of meta-analysis. Since longitu-
dinal data are very difficult to collect, we suggest reporting
results from both mean values and from each measure-
ment until new methods are designed to analyze such
data sets.

Detected genetic effects on obesity-related traits are likely
to be modified by several factors including 1) actual
genetic changes over time (e.g., gene expression can be
turned up or down as people age); 2) secular changes over
time that are not genetic; and 3) random variation (e.g.,
measurement error). Our linkage analysis results from
BMI in the four chromosomal regions is an example of a
mix of the three situations. The consistent suggestion of
linkage in three measurements from the Framingham
Heart Study and replicated findings from other independ-
ent data [5,6,8] and six measurements from the Framing-
ham Heart Study [7] indicate potentially interesting genes
on these four chromosomes. The recent BMI linkage anal-
ysis of the more complete data in the Framingham Heart
Study [7] showed that the peaks of highest LOD scores
decreased with age at same location of chromosome 6
(~140 cM) in the first five time points, but in the sixth
time point, the location of the highest LOD score was 20
cM away (~166 cM) from previous peaks. Since the data
were in the same cohort, the peak at 166 cM may reflect
random variation or a type I error rather than a second
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peak. If so, there is evidence of gene × environment (time)
interactions in these more complete data. After removing
outliers, there are big influences on chromosomes 3 and
6, and some changes on chromosomes 9 and 16. Allison
et al. [10] showed that outliers tend to be very influential
in variance component analysis and bias the results. Oth-
erwise, excluding the nonextreme outliers will lose power.
For example, after removing the outliers on chromosomes
3 and 6, the peak locations did not change, but the LOD
scores dramatically reduced. We need to further consider
how to select an appropriate cut-off point for removing
extreme outliers.

Conclusions
In summary, our studies suggest that elaborate analyses of
longitudinal data may provide more insight and improve
statistical power. The evidence of QTLs on chromosomes
3, 6, 9, and 16 are potentially interesting and the trend of
LOD scores on these chromosomes are likely to be due to
gene × environment (time) and/or gene × gene
interaction.
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