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Abstract

of genetic drift in small populations on the long run.

Background: Population extinction risk in a fragmented landscape is related to the differential ability of the
species to spread its genes across the landscape. The impact of landscape fragmentation on plant population
dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the
dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified
fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on
two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether
seed viability and populations size were correlated with genetic diversity.

Results: Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and
14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale.

A significant low to moderate genetic differentiation between populations was detected at the regional, northwest
European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High
levels of within-population genetic diversity were detected but no correlation was found between any genetic
diversity parameter and population size or seed viability.

Conclusions: In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern
but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated
gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable
habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects

Background

Habitat fragmentation and destruction eventually lead to
a reduction in the genetic diversity of plant populations.
The consequences of habitat fragmentation are related to
the differential ability of plant species to spread their
genes across the landscape [1]. Dioecious plant species,
with separate male and female plants, appear to have a
higher extinction probability compared to cosexual (her-
maphroditic and monoecious) plant species (e.g. [2-4]).
Separation of the sexes halves the densities of both
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potential mates and offspring-producing individuals.
Furthermore, a dioecious species contributes propagules
to fewer sites than a hermaphroditic species with equiva-
lent adult density because the separation of the sexes
reduces the density of offspring-producing individuals
(i.e. the seed-shadow handicap, reviewed by [3]). This ele-
vated density increases local resource competition
thereby reducing each seed’s chance of establishing a
new plant [3,4]. To overcome these disadvantages, dioe-
cious species require a larger dispersal ability of seeds
compared to cosexual species in order to increase their
success on the long-term [3].

One example of a locally endangered dioecious species
in a fragmented habitat is common juniper (Juniperus
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communis L.). Common juniper is a wind-pollinated,
coniferous shrub producing seeds that are primarily
dispersed by birds. In northwestern Europe, common
juniper occurs on heathlands and calcareous grasslands,
which are among the most highly fragmented semi-
natural ecosystems in western Europe [5-8]. One of the
main threats to common juniper populations is the lack
of recruitment from seeds linked to low seed viability.
Considerable variation in seed viability was found across
European populations [9], which was partly explained by
temperature and nitrogen deposition. This in turn could
be partly linked to the occurrence of seed predators
(insects, mites and/or fungi) and mycorrhizae, respec-
tively. However, the exact processes behind the observed
low seed viabilities are not clear yet. One possible expla-
nation for the decline in viable seed production is
inbreeding depression caused by increased inbreeding in
small and fragmented populations (e.g. [10,11]).
Common juniper has been the subject of a few previous
genetic studies (e.g. [5,12-14]). Oostermeijer et al. [13]
found low population differentiation and high levels of
genetic variation in 12 Dutch common juniper populations
by studying allozymes. High levels of genetic diversity were
also found in 23 common juniper populations from
Central-Europe [12]. However, in a study of 19 common
juniper populations from Ireland based on nuclear micro-
satellite data and on chloroplast single nucleotide poly-
morphisms, Provan et al. [14] suggested that, despite
dioecism and wind pollination, gene flow is restricted in
fragmented landscapes, particularly over larger geographic
distances. Also Van Der Merwe et al. [5] found that there
is little effective gene flow in common juniper based on a
study using AFLPs on eight populations from England and
Weales. The former studies discussed gene flow based on
variants of Wright’s Fsr (such as ®py /D1, Gst), a
standardized measure of the genetic variance among
populations extrapolated from genetic frequency data [15].
This indirect measure of gene flow gives an estimate of
historical gene flow (e.g. gene flow that occurred several
generations ago predating human-mediated habitat frag-
mentation), rather than contemporary gene flow (e.g. gene
flow that has occurred say, during the last 50 years which
can be considered recent for long-lived species) [16].
There is often limited quantitative information to be
gained about on-going dispersal from this approach [16].
An alternative for detecting effective gene flow is a
population assignment test for individuals based on a
large number of polymorphic markers, such as amplified
fragment length polymorphisms (AFLPs) (e.g. [17-19]).
The idea behind assignment tests is to use individual
genotypes to assign individuals to populations or clusters.
Given a set of populations, and the allele frequencies of
those populations, the likelihood of a given individual’s
genotype in the population in which it was sampled is
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calculated and compared with its likelihood in the other
populations in the set. An individual is assigned to the
population for which it has the highest likelihood. A
major advantage of assignment methods is that popula-
tions do not have to be sampled exhaustively [20].

In this study, we used assignment tests to investigate
seed-mediated dispersal of common juniper in a frag-
mented landscape across northwestern Europe. If seed-
mediated gene flow is restricted, we expect practically all
the sampled individuals to be assigned to the population
in which they were sampled. Furthermore, we deter-
mined the genetic structure and the genetic diversity of
common juniper at two spatial scales: at the regional
scale across northwestern Europe and at the local scale
across Flanders (northern Belgium) (Figure 1, Table 1).
Identifying the spatial scale at which genetic differentia-
tion can be detected will help to determine the factors
that cause genetic structure. At the local scale, limited
pollen and seed dispersal have been identified as the
main forces causing genetic structure [21]. At the larger
scales, genetic structure has been attributed to historical
factors and isolation-by-distance [22]. We also investi-
gated the correlation between genetic diversity and levels
of inbreeding with population size, seed viability and age
structure. Finally, we propose conservation strategies for
common juniper in northwestern Europe.

Results

AFLP error rate and reproducibility

After scoring 101 AFLP markers for the total dataset of
the Flemish samples, 7 markers were discarded which
resulted in a final dataset of 94 polymorphic markers.
Based on the replicates, 274 differences were observed of
2162 phenotypic comparisons (i.e. 23 samples with dupli-
cates typed for 94 alleles), giving an error rate of 12.6%
(i.e. an average intra-individual band difference of 11.8
bands). The error rate at the allele level within a gel run
was 3.2%, the other 9.4% of the error rate was due to varia-
bility between gels. For the assignment of replicates in the
cluster analysis, 44 out of 46 fingerprints from the 23
replicated samples were correctly assigned as ‘sisters’. Two
fingerprints belonging to the same replicate pair were not
positioned adjacent to each other but showed a higher
genetic similarity to an other sample (collected in an other
population) compared to the genetic similarity with its ‘sis-
ter’-individual. The number of band difference between
these two, not correctly assigned fingerprints was 15 and
both replicate pairs were grouped in the same cluster
(results not shown). The mean pairwise inter-individual
genetic distance was considerably higher than the error
rate; 35.1% (standard deviation S.D.: 0.05%) and 35.6%
(S.D.: 0.02%) for the samples collected on the Flemish
scale and on the northwestern European scale, respec-
tively. The simulation and re-assignment procedures
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Figure 1 Locations of the common juniper populations sampled.

implemented in AFLPOP, resulted in an assignment suc-
cess of the simulated genotypes above 91% (mean 95%) in
all the 11 analysed populations, indicating that the prob-
ability of misassignments was low (< 9%).

Habitat fragmentation and seed-mediated dispersal

In northwestern Europe, considering a land cover area of
1.4E + 7 ha, the estimated proportion of suitable habitat
for Juniperus communis is 1%. Within a 30 km radius buf-
fer zone surrounding each sampled population, the esti-
mated proportion of suitable habitat for Jumiperus
communis ranged from 0.27% (population Hithnermoor)
to 6.75% (population Kootwijkerzand) with a mean of
2.18% (Figure 2).

The analysis of the assignment tests indicate that forty-
two individuals (14%) were at least 10 times more likely to
originate from a population different from the sampling
site. Whereas 11 shrubs (3%) seemed at least 100 times
more likely to originate from a population different from
the sampling population, indicating the presence of
migrant genotypes in the set of analysed populations. From
the latter 11 plants defined as outlier genotypes (minimum
log-likelihood difference (MLD) = 2), six, two and three
assumed immigrant genotypes belong to height classes 1 -
2 m, 2 - 3 m and > 3 m, respectively. Assignment tests

conducted on the AFLP genotypes of the sampled 292
individuals confidently allocated each of 191 (65%) and 106
(36%) individuals to a population when MLD was set to 1
and 2, respectively (Figure 3). Most individuals that could
be confidently allocated were assigned to the spatial popu-
lation from which they were sampled: 149 (78%) and
95 (89%) for MLD set to 1 and 2, respectively. A high pro-
portion of individuals (45% and 64% for MLD set to 1 and
2, respectively) remained unassigned because there was no
single likelihood that met the criteria of the assignment
test. However, for half of the unassigned individuals (52
individuals), the population from which they were sampled
had the highest log-likelihood of allocation, suggesting that
this was the source population.

Genetic structure

Genetic structure on the northwestern European scale
was inferred from 104 polymorphic AFLP markers and
292 shrubs representing 286 unique genotypes (Table 1).
There was a moderate but statistically significant genetic
differentiation between the 13 populations on the north-
western European scale (@pr = 0.100, p = 0.001), with a
large amount of genetic variation found within popula-
tions. Pairwise values for population differentiation (®pr-
values) were also significant (p-values < 0.05) except for
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Table 1 Characteristics of the sampled populations and sample sizes

Northwestern European J. communis populations

Country Population Code N, Area Density  No. of shrubs sampled for No. of individuals No. of unique
(ha) (N /ha) seed cones sampled for AFLP genotypes
Belgium Cour Cou 55 1 55 6 9 9
Belgium Heiderbos* Hei 6874 10 687 27 31 30
Belgium Resteigne Res 386 8 48 17 24 24
France Cocquerel Coc 1823 4 456 1 19 18
France Grattepanche Gra 1108 5 222 18 32 32
Germany Huhnermoor Hue 425 6.6 64 22 34 33
Germany Ecksberg Eck 50 0.5 100 9 12 12
Germany Meenser Heide Mee 60 1.5 40 7 14 14
Germany Weinberg Wei 47 1 47 10 13 12
The Boshuizerbergen ~ Bos 4500 10 450 21 35 35
Netherlands
The Kootwijkerzand Koo 250 6 42 10 14 12
Netherlands
The Loenen Loe 200 338 6 10 21 21
Netherlands
The Mantingerzand Man 5000 77 65 18 34 34
Netherlands
Total 186 292 286
Flemish J. communis locations
Country Population Code N  Area Density No. of individuals sampled No. of unique
/Location (ha) (N /ha) for AFLP genotypes
Belgium Heiderbos* Hei 6874 10 687 57 57
Belgium Kattevennen Kat 820 129 68 26 26
Belgium Hesselberg Hes 129 48 269 27 26
Belgium Spiekelspade Sp 38 4 4
Belgium Het Laer La 26 10 10
Belgium Melberg Mel 26 8 8
Belgium Turfven Tu 24 1 1
Belgium Kamert Ka 21 6 6
Belgium Olenderheibos Ol 13 6 6
Belgium Zillebos Zi 9 5 5
Belgium Heesakkerheide He 8 2 2
Belgium Kruisheirenklooster Kr 8 2 2
Belgium Zutendaal Zu 6 2 2
Belgium Sintmartensberg  Si 5 2 2
Belgium Bergbos Be 4 1 1
Belgium Brand Br 4 2 2
Belgium De Maten Ma 4 2 2
Belgium Gebrande heide  Ge 4 1 1
Belgium Ganzeven Ga 3 1 1
Belgium Pijnven Lommel Lo 3 2 2
Belgium Kelchterhoeve Ke 2 2 2
Belgium Meibos Mei 2 2 2
Belgium Pijnven Hechtel Hec 2 1 1
Belgium De Teut Te 1 1 1
Belgium Grote Heide Gr 1 1 1
Belgium Hoogzij Ho 1 1 1
Belgium Laambeekvallei La 1 1 1
Belgium Lietenberg Li 1 1 1

Belgium Sonnis So 1 1 1
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Table 1 Characteristics of the sampled populations and sample sizes (Continued)
Belgium Stalkerheide Sta 1 1 1
Belgium Steleven Ste 1 1 1
Belgium Turnhout Tur 1 1 1
Total 181 180

N.: estimated census population size, Area (ha): area covered by the population, Density: estimated population density. * The Flemish population Heiderbos was
analysed twice (in 2005 for the sampling on the northwestern European scale and in 2008 for the sampling on the Flemish scale).

the German populations Meenser Heide and Weinberg
(@p = 0.006, p = 0.3) (Table 2).

Clustering on the population level based on a Princi-
pal Co-ordinate Analysis (PCoA) and on a Bayesian
modelling approach is presented in Figure 4. The Baye-
sian clustering approach revealed highest posterior prob-
abilities when the number of clusters was equal to four.
In general, both the Bayesian approach and the PCoA
grouped geographically nearby populations within the
same genetic cluster. This is confirmed by a weak but
significant isolation-by-distance effect (r ., = 0.123, p =
0.01). Although, for some populations, the genetic data
did not cluster consistently according to their geogra-
phical locations. This was the case for the French popu-
lations Grattepanche and Cocquerel and the German
population Hithnermoor.

Genetic structure on the local, Flemish scale was
inferred from 94 polymorphic AFLP markers and 181
shrubs representing 180 unique genotypes (Table 1). On

the local scale, we observed no genetic differentiation
between the three populations containing more than
100 individuals; Heiderbos, Kattevennen and Hesselberg
(®pr = 0.00, p > 0.5). Pairwise values for population dif-
ferentiation were not significant (all ®py -values p >
0.2). Also, when considering all 180 Flemish genotypes
analysed (i.e. including also locations with less than 100
shrubs), no structure according to the population of ori-
gin or geographic location was apparent on a PCoA
(results not shown). With the Bayesian approach, high-
est posterior probabilities were obtained with all 180
genotypes located in the same cluster. On the local,
Flemish scale, we found no evidence for the isolation-
by-distance hypothesis with the Mantel test (r ., =
0.052, p = 0.076). Consistently, no spatial genetic struc-
ture was found with SPAGeDi 1.3 by regressing pairwise
kinship coefficients against pairwise geographical dis-
tances (slope of the regression with In (distance) b =
0.0012, p = 0.61).

Figure 2 Distribution of land cover area suitable as habitat for Juniperus communis. A 30 km buffer zone is indicated surrounding the
sampled populations. (Source: CORINE LAND COVER 2006, version 13 (02/2010), European Environment Agency, http://www.eea.europa.eu/).
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Figure 3 Individual assignment conducted in northwestern European populations of common juniper. Results under minimal log-
likelihood difference (MLD) set to 1 and 2, respectively. Analysis include individuals from 13 northwestern European common juniper
populations and is based on 104 polymorphic AFLP markers. Blue bars represent individuals assigned to their putative population, red bars
represent individuals assigned to a population different from the putative population (i.e. migrants); white bars represent individuals not
confidently assigned to any of the given populations.

Genetic diversity

High variation was recorded at AFLP loci with a mean
gene diversity (Hj) of 0.391 and 0.368 for the European
and the Flemish populations, respectively. Genetic diver-
sity statistics based on the AFLP markers for the north-
western European as well as for the three Flemish
populations are given in Table 3. The same statistics are
grouped per height class in Table 4. Individuals with a

height less than 1 m showed a lower percentage of
AFLP band polymorphism compared to higher shrubs
(Table 4). However, there was no evidence for a
decrease in genetic diversity in terms of band richness
(Br) or gene diversity (Hj) in these younger individuals
compared to the older ones within each population
(results not shown), nor for the AFLP data pooled over
all populations (Table 4). For the northwestern
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Table 2 Pairwise population differentiation estimates

Bos Coc Cou Eck Gra Hei Huh Koo Loe Man Mee Res Wei
Bos - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.017 0.001 0.001 0.001 0.001
Coc 0.129 - 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004
Cou 0.106 0.189 - 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
Eck 0111 0.040 0.124 - 0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.001 0.001
Gra 0.078 0.091 0.086 0.076 - 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002
Hei 0.042 0.127 0.110 0.107 0.072 - 0.001 0.001 0.002 0.001 0.001 0.001 0.001
Huh 0.048 0.155 0.120 0.128 0114 0.057 - 0.001 0.001 0.001 0.001 0.001 0.001
Koo 0.105 0.177 0.131 0.150 0.085 0.114 0.143 - 0.005 0.001 0.001 0.001 0.001
Loe 0.024 0.103 0.074 0.075 0.049 0.036 0.066 0.050 - 0.005 0.001 0.001 0.001
Man 0.069 0.144 0.125 0.130 0.075 0.070 0.097 0.065 0.022 - 0.001 0.001 0.001
Mee 0.090 0.049 0.141 0.038 0.075 0.107 0.129 0.138 0.073 0.121 - 0.001 0.294
Res 0.127 0.203 0.068 0.153 0.132 0.129 0.156 0.176 0.105 0174 0.166 - 0.001
Wei 0.120 0.059 0.182 0.067 0.080 0.132 0.165 0.173 0.087 0.123 0.006 0.181 -

Below diagonal: population pairwise estimates of ®pr- values of 13 common juniper populations sampled in northwestern Europe. Above diagonal: probability
values based on 999 permutations. Negative pairwise ®pr - values are converted to zero. Population codes: Bos: Boshuizerbergen, Coc: Cocquerel, Cou: Cour, Eck:
Ecksberg, Gra: Grattepanche, Hei: Heiderbos, Huh: Hilhnermoor, Koo: Kootwijkerzand, Loe: Loenen, Man: Mantingerzand, Mee: Meenser Heide, Res: Resteigne, Wei:

Weinberg.

European populations, the average inbreeding coefficient
was higher for the younger individuals than for the
older ones (Table 4), although the difference was not
significant (p = 0.106). We found no significant effects
of population size on genetic diversity measures (all p-
values > 0.05). Average percentages of filled seeds and

of seed viability per shrub for the populations sampled
on the northwestern European scale were low and ran-
ged from 1.73 to 18.98 and from 0.10 to 5.49, respec-
tively (Table 3). We found no significant correlation
between seed viability, filled seeds and any genetic diver-
sity measures (all p-values > 0.1). Also no correlation

Hihnermoor

4

<
Cour
N @ < .
<
8 o Weinberg ¢ Meenser Heide
. ¢ N Resteigne
Cocquerel ® Ecksberg o

Boshuizerbergen ¢ @ Heiderbos

PCoA 1

Figure 4 Plot of the two first axes of the Principal Co-ordinate Analysis (PCoA) colored by Bayesian cluster allocation. Analysis include
13 northwestern European common juniper populations and is based on 104 polymorphic AFLP markers (PCoA1 = 35.71%, PCoA2 = 22.10%).
Each population is assigned by one of the four clusters found by a Bayesian mixture clustering approach.
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Table 3 Seed characteristics and genetic diversity statistics calculated from AFLP data for 13 northwestern European

and three Flemish common juniper populations

Page 8 of 16

#G # loc PPL Br Hj (S.E.) Fis Filled seeds (%) Seed viability (%)

Northwestern European J. communis populations

Cour 9 104 73 1.73 0409 (0.012) 0.27 441 0.10
Heiderbos* 30 104 100 1.85 0.337 (0.014) 042 15.28 549
Resteigne 24 104 90 1.65 0.343 (0.013) 046 947 549
Cocquerel 18 104 98 193 0.364 (0.012) -0.06 2.70 044
Grattepanche 32 104 100 1.94 0.386 (0.011) 0.04 1.73 0.58
Huhnermoor 33 104 94 1.75 0.331 (0.014) 047 11.95 4.58
Ecksberg 12 104 96 1.94 0.389 (0.012) 0.00 1145 3.89
Meenser Heide 14 104 87 1.82 0.363 (0.013) -0.02 18.98 2.76
Weinberg 12 104 90 1.86 0.371 (0.013) 0.10 10.02 492
Boshuizerbergen 35 104 99 1.75 0.344 (0.012) 046 3.80 150
Kootwijkerzand 12 104 98 1.93 0.347 (0.013) -0.14 5.21 048
Loenen 21 104 98 1.90 0.363 (0.011) 022 6.69 232
Mantingerzand 34 104 87 191 0.346 (0.013) 0.02 2.70 0.14
Flemish J. communis populations

Heiderbos* 57 94 100 1.86 0.359 (0.012) 037 NA NA
Kattevennen 26 94 98 1.86 0.382 (0.011) 041 NA NA
Hesselberg 26 94 96 1.83 0.364 (0.013) 033 NA NA

# G: number of genets typed with AFLP markers. # loc: number of AFLP loci. PPL: percentage polymorphic loci at the 5% level corrected for sample size. Br: band
richness corrected for sample size. Hj (S.E.): expected heterozygosity or Nei's gene diversity and its standard error. Fis: average inbreeding coefficient. Filled seeds
(%): the average percentage of filled seeds per shrub. Seed viability (%): the average percentage of viable seeds per shrub. *The Flemish population Heiderbos
was analysed twice (in 2005 for the sampling on the northwestern European scale and in 2008 for the sampling on the Flemish scale).

NA: not assessed.

was found between seed viability and population size
(p = 0.104).

Discussion

AFLP error rates and reproducibility

The observed error rates are higher than those generally
reported for AFLP data sets (2% to 5%; e.g. see [23]) but
lower than the one reported by Mende et al. [24] (19%)
and within the range of the ones reported by Holland
et al. [25] (between 6% and 18%) and Storme et al. [26]
(8%). However, care must be taken when comparing the

error rate between different AFLP studies. Error rates are
affected by the way they are calculated, the level of diver-
gence among the studied individuals, the number of indi-
viduals in the dataset, the technical aspects of generating
the profiles (e.g. PCR errors, slab gel versus capillary elec-
trophoresis) and the scoring process (i.e. manual scoring,
semi-automated or automated scoring procedures)
([25,27]). Furthermore, there is a trade-off between the
number of loci used to record the AFLP information and
the accuracy of the dataset (i.e. the error rate) ([25,28,29]).
Tolerance of a higher error rate result in the retention of

Table 4 Genetic diversity statistics per height class calculated from AFLP data for 13 northwestern European and

three Flemish common juniper populations

Height classes #G # loc PPL Br Hj (S.E.) Fis
Northwestern European J. communis

<1m 48 104 98 1.98 0.376 (0.011) 032
Tm-2m 73 104 99 1.98 0.368 (0.011) 0.14
2m-3m 72 104 99 1.99 0.360 (0.011) 0.19
>3m 90 104 99 1.97 0.364 (0.011) 0.24
Flemish J. communis (populations Heiderbos, Kattevennen, Hesselberg)

<1m 8 94 84 1.84 0.391 (0.012) 034
Tm-2m 32 94 97 1.84 0.381 (0.011) 0.22
2m-3m 31 94 97 1.81 0.334 (0.014) 0.55
>3m 38 94 100 1.81 0.377 (0.011) 0.08

# G: number of genets analysed with AFLP markers. # loc: number of AFLP loci. PPL: percentage polymorphic loci at the 5% level corrected for sample size. Br:
band richness corrected for sample size. Hj (SE): expected heterozygosity or Nei's gene diversity and its standard error. Fis: average inbreeding coefficient.
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more loci which generally leads to higher resolution of the
dataset ([28,29]). Bonin et al. [30] concluded that the max-
imum tolerable error rate depends on the specific aim and
circumstances of the study. Based on the relative high
level of divergence between the individuals in the total
dataset (mean 35%), the assignment accuracy of the repli-
cate pairs in the cluster-analysis (95%) and the relative low
probability of misassignments in the simulated re-assig-
ment procedure (< 9%), we conclude that our dataset con-
tains a significant genetic signal in excess of the error rate
for the study of the genetic diversity, population genetic
structure and seed-mediated dispersal rates.

Habitat fragmentation and seed-mediated dispersal

The analysis of the CORINE 2006 land cover data indicate
a highly fragmented habitat for /. communis in northwes-
tern Europe. Habitat fragmentation and habitat loss
usually decrease the probability that migrant seeds will
find suitable sites for establishment. By providing insight
into seed-mediated dispersal rates as a direct estimate of
patterns of gene flow, our results expand on previous
work (e.g. [5,12-14]). We are aware that we did not sample
all the potential source populations. Our aim was not to
allocate individuals to the sampled populations, but to
estimate migration rates by identifying immigrants; indivi-
duals that originate from somewhere else than where they
were sampled (e.g. see [17]). The results of this study indi-
cate that gene flow might not be so restricted as previously
thought (e.g. [5,14]). The assignment test, based on the
AFLP-genotypes of individuals revealed that 42 individuals
(14%) of all 292 individuals sampled in the northwestern
European populations showed a genetic resemblance of 10
times higher to another population than the one from
which it was sampled. Furthermore, 11 individuals (3%) of
all individuals sampled displayed a resemblance to other
populations that was at least 100 times higher. Conse-
quently, we conclude that at least between 3 and 14% of
all individuals from the sampled northwestern European
populations, originated from seeds from outside the popu-
lation from which they were sampled. We interpret these
confident allocations of individuals to other source popu-
lations as a consequence of seed dispersal events, as it is
unlikely that effective pollen flow could generate such a
high genetic resemblance with another population (cf.
[17,19]). It has to be mentioned that we can not exactly
determine the year of the assumed seed-mediated disper-
sal events as we did not define the exact age of each indivi-
dual shrub. However, given that the maximum shrub life-
span is estimated to about 100 years and that the majority
of the genetic outliers has a shrub height smaller than 2
meter, it is unlikely that the recruitment of all these
genetic outliers predate the fragmentation process which
started about 100 years ago. It should also be noted that
we could not quantify the exact distance of the seed
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dispersal events. Although information can be found for
each northwest European country on the distribution of
common juniper, data about the estimated census popula-
tion size, density or fragment size of the populations is
generally lacking. Therefore we were not able to quantify
the degree of isolation of the studied populations and the
distances covered by the seed-migration events. The seed-
mediated dispersal rates reported in this study are in the
range of the long-distance seed-dispersal events reported
from assignment tests in fragmented populations of Bank-
sia hookeriana (6.8%) [19], of which the seeds are primar-
ily dispersed by gravity, but much lower than that
reported for the frugivore-dispersed trees Myrtus commu-
nis (20% - 22%) [17] and Fagus sylvatica (27%) [31]. In a
study of common juniper populations on a Mediterranean
mountain in southeast Spain, Garcia [32] found that
thrushes spent a substantial proportion of their time in
junipers feeding on cones. This results in large accumula-
tions of seeds below mother plants after disperser activity
[32]. It is speculated before that dioecious species experi-
ence reduced extinction rates when associated with woody
growth form and biotic dispersal via fleshy fruits [2,3].
Although the majority of the seeds may be dispersed
within the population, it is plausible that a significant pro-
portion of dispersal events between populations of com-
mon juniper is caused by birds tracking fruit resources
across the landscape. Although we are not able to assess
the distance covered by the seed dispersal events with the
available data, our findings provide evidence of seed-
mediated among-populations gene flow in common juni-
per within the study area. However, moderate levels of
gene flow by seed dispersal may not be sufficiently high to
counterbalance the effects of genetic drift and inbreeding
in remnant common juniper populations located in a frag-
mented landscape. Further research should explore effec-
tive mating patterns and the precise spatial scale and rates
at which gene flow occurs.

Population genetic diversity and structure

Population genetics theory predicts that habitat fragmen-
tation increases genetic differentiation among populations
because of increasing spatial isolation between patches
and individuals (e.g. [1]). At the local, Flemish scale, the
three populations studied showed no genetic differentia-
tion and no spatial genetic structure. This may be attribu-
ted to the fact that at this local scale, seed and pollen
dispersal may have homogenized allele frequencies. At the
larger geographical scale across northwestern Europe we
found a significant low to moderate degree of population
differentiation (@p7 = 0.103). Our results are in agreement
with those reported for outcrossing, wind-pollinated gym-
nosperm species [33,34], usually characterized by high
genetic diversity within populations and low to moderate
population differentiation. Based on allozyme loci and on
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a more local scale, Oostermeijer and Knegt [13] found a
much lower level of population differentiation among 12
common juniper populations in the Netherlands (Fst =
0.026). This is probably linked to the fact that allozymes
show lower levels of polymorphism compared to AFLP
markers and may, in contrast to neutral AFLP markers,
experience the selective force of the environment. Similar
to this study, Provan et al. [14] also found a low to moder-
ate degree of population differentiation between 19 popu-
lations of common juniper in Ireland based on nuclear
microsatellite markers (®@py = 0.0957) but a much higher
degree of differentiation between the same populations
based on chloroplast markers (Opr = 0.249). The latter is
explained by the action of genetic drift on the smaller
effective population size of the uniparentally (particular
parternally) transmitted, haploid chloroplast genome [14].
In general, we found a clear but weak association
between the genetic clustering and the geographical
location of the common juniper populations studied;
neighbouring populations were generally also genetically
related. Exceptions to this general pattern were the
French populations Cocquerel and Grattepanche and
the German population Hithnermoor, which did not
cluster consistently to their geographical location. The
weak geographic structuring of genetic diversity on the
northwestern European scale was confirmed by a weak
isolation-by-distance signal. In contrast, Michalczyk
et al. [12] found no isolation-by-distance effects and no
meaningful geographic genetic structure in 23 common
juniper populations sampled throughout Central-Europe.
However, in Great Britain, Van Der Merwe et al. [5]
found a genetic clustering of geographically proximal
populations. A coherent genetic clustering of geographi-
cally nearby populations was also the case for the com-
mon juniper populations studied in Ireland although,
similar to our study, there were some exceptions [14].
The geographic patters of genetic diversity observed in
this study may be explained by the patterns of genetic
diversity in the original metapopulation prior to fragmen-
tation. Like Michalczyk et al. [12] hypothesized for Cen-
tral-Europe, the northwestern populations could also
originate form a large, continuous population character-
ized by high levels of genetic diversity, that was relatively
recently subject to fragmentation. Historical high rates of
pollen and seed-mediated gene flow could have main-
tained the genetic cohesion of the populations. The fairly
recent loss of individuals and populations may have been
more or less random with respect to gene content. The
low to moderate levels of population differentiation may
indicate that genetic drift has provoked weak but signifi-
cant fluctuations in allele frequencies between populations
after habitat fragmentation. The results of this study may
provide further support for the northern refugia hypoth-
esis, a recent controversial proposal, suggesting that trees
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were distributed much more widely in Europe during the
last glacial maximum (LGM, 21 ka BP) than previously
thought [35]. This hypothesis is in contrast to the general
understanding of the last few decades that during several
glacial maxima, most temperate tree species were
restricted to refuge areas in the Balkan, Italian and Iberian
peninsulas (the southern refugia hypothesis) [36,37]. Based
on the lack of a strong isolation-by-distance signal and the
absence of genetic lineages or coherent geographical pat-
terns of genetic diversity that could be traced back to
southern refugia, we assume that the cold-adapted,
drought-tolerant common juniper could have survived
throughout northwestern Europe in scattered and diffuse
habitats during the LGM (21 ka BP). This is also hypothe-
sized for common juniper in Central-Europe by Michalc-
zyk et al. [12]. Fossil records support the hypothesis that
juniper could have survived the LGM in Europe [12,38] in
contrast to tree species like oak and poplar that prefer
warmer conditions and were squeezed into lower latitudes
[39,40]. There is also evidence from a study on molecular
dating, based on cpDNA phylogeny conducted over the
Northern Hemisphere, that the genus Juniperus has an
extremely long history in Europe [41]. Juniperus may
already have been distributed across Europe during
the earliest Tertiary period (65 million years ago), at the
start of its history, and appears to have colonized Asia,
Africa and America from Europe via intercontinental land
bridges [41].

We observed high levels of within-population genetic
diversity (in terms of band richness and percentage poly-
morphic loci) in all common juniper populations studied.
This result is in line with previous genetic studies of com-
mon juniper employing different marker systems (nuclear
microsatellites, AFLPs, isozymes) [5,12-14]. While changes
in genetic diversity following a decrease in population size
can take a number of generations to become apparent,
which for trees may take many decades, this may not be
the case for inbreeding (i.e. mating between relatives) (e.g.
[42,43]). Although not statistically significant (p = 0.106), a
trend towards a higher inbreeding coefficient was found in
the younger individuals (height < 1 m) compared to the
older ones (height > 1 m) on the northwestern European
scale. It has to be mentioned that, due to a extremely low
recruitment in the studied populations, the number of
seedlings sampled was low and consequently limited the
power of this study.

Although it is suggested in previous studies that the
extremely low seed viability is likely not linked to neutral
genetic diversity [9], this is the first study that investigates
this relationship. We detected no correlation between
inbreeding coefficient or any other genetic diversity para-
meter, and seed viability across the studied populations in
northwestern Europe. Also, in accordance with the results
of Oostermeijer and De Knegt [13] we found no correlation
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between population size and any genetic diversity para-
meter. Reduction of the formerly widespread dry heathland
habitats of common juniper populations in northwestern
Europe mainly occurred since the beginning of the 20
century [13,44]. At present, most populations in northwes-
tern Europe are dominated by mature and old individuals
of 40 - 100 years and suffer from a lack of natural regenera-
tion [13,14,44]. Hence, they were established before or
shortly after habitat fragmentation occurred. This implies
that to date, the relict populations of northwestern Europe
retain the high proportion of genetic diversity that was
likely present when the populations were large and panmic-
tic. The ability of common juniper to reproduce clonally,
via resprouting and vegetative spread, may also buffer the
genetic effects of fragmentation as a result of extending the
time between generations (e.g. [45]). However, we found
the vegetative reproduction of common juniper in the
populations studied to be rather limited.

Conclusions

Our study contributes new data to the growing evidence
that seed-mediated dispersal of dioecious shrubs and trees
in fragmented landscapes is substantially higher than pre-
viously thought. The potential for seed-mediated dispersal
among populations in a fragmented landscape could
enable common juniper to naturally colonize suitable
habitats. Nevertheless, management strategies that exclu-
sively focus on seed dispersal would not guarantee recruit-
ment in common juniper because of the extremely low
levels of seed viability. These seems to be currently the
main threat to common juniper populations in northwes-
tern Europe (e.g. [9]). The low levels of seed viability
found within populations are not correlated to the levels
of neutral genetic diversity. The exact mechanisms behind
the lack of recruitment should be clarified by further
research. In the meanwhile, we suggest two main conser-
vation actions; firstly, static ex situ conservation of the pre-
sent high levels of genetic diversity by the establishment of
gene banks, and secondly, rejuvenation of existing, small
populations skewed to old plants by restoration planting
with young individuals grown from cuttings which should
enhance the seed production of the populations [46].
Given the high levels of local genetic diversity it is advisa-
ble to use locally sourced plant material for restoration
and rejuvenating on projects in order to avoid potential
outbreeding depression.

Methods

Study species

Juniperus communis L. (Cupressaceae) is a diploid, dioe-
cious, wind-pollinated, woody shrub or small tree. The
distribution range of common juniper basically covers the
entire Northern Hemisphere [47]. It is the most wide-
spread conifer taxon worldwide and known to have a
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broad ecological amplitude. Female individuals bear cones
that ripen fully in the autumn of the second or third year
of development and contain 1 - 3, rarely 4 seeds. Seeds are
mainly dispersed by birds, especially thrushes (Turdus
spp.) and common juniper does not produce a long-term
persistent seed bank [48]. Lifespan is estimated to be
about 100 years, although exceptionally individuals reach
over 200 years [46]. Genets with clonal shoots, however,
may readily exceed this age. Common juniper habitats
have been accorded a legal protection status in Europe
(EU Habitat Directive, Annex I, code 5130) and despite its
wide distribution, the species is on the Red List in several
European countries (e.g. the Netherlands [49], the UK [50]
and Belgium [51,52]). For more information about the spe-
cies, we refer to Thomas et al. [53].

Sample collection

In 2005, we sampled 13 natural common juniper popula-
tions along a north-south transect from north-Germany
and northern Netherlands to north France, and along an
east-west transect from northwest France to northwest
Germany (Figure 1). Populations located along the trans-
ect were selected for sampling when they contained at
least 100 individuals and were presumed natural. A popu-
lation was presumed natural if there was evidence based
on historical topographic maps or if personal communica-
tions with local people and nature conservationists
revealed that the population was at the site for many cen-
turies. When no populations with at least 100 individuals
were present, presumed natural populations with less indi-
viduals were included. The sampled populations included
three populations in northwest France, three populations
in Belgium, four in the Netherlands and three populations
in northwest Germany. The populations occurred on
heathlands or calcareous grasslands, both strongly frag-
mented habitats in the study area [7,8]. For each popula-
tion, the census population size was estimated based on
the point-centred quarter method (PCQ), which is a plot-
less sampling method to estimate the population density
[54]. Therefore, in each population, one to three random
sampling points were laid out depending on the size of the
population. In each of the four quarters around the sam-
pling points, distances were measured to a maximum of
four trees closest to this point; one for each of four height
classes (when available): < 1m,1-2m,2-3m, >3 m.
These height classes broadly reflect the following develop-
ment classes of the tree: seedlings, young plants, mature
plants and old plants [46]. Fresh needles were collected
from the measured trees in each quarter. The needles
were dried with silica gel in zip-locked bags until analysis.
Next to this, a random sample of ripe cones was collected
from the female shrubs at each sampling point, resulting
in 6 to 27 plants per population. Table 1 provides informa-
tion about the populations sampled.
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In 2008, we sampled the three natural (defined as above)
populations in Flanders that contain more than 100 indivi-
duals: the populations Heiderbos, Kattevennen and Hes-
selberg. The populations occurred on heathlands, a habitat
that has become highly fragmented in Flanders [55].
Moreover, we sampled 29 other locations in Flanders with
one to 38 relict individuals. The three natural Flemish
populations were analysed for genetic diversity statistics
while the spatial genetic structure and clonal structure was
inferred from Flemish samples collected on all the 32 loca-
tions. All sampling locations were located in the east of
Flanders (northeast Belgium). They were selected from an
earlier full inventory of Juniperus communis in Flanders
[56]. Again, individuals from different age classes were
sampled. The height of the shrubs was recorded as men-
tioned above. Shrubs were sampled at random at each
location since census population sizes often were too
small to use the PCQ-method. Information about the sam-
pling sites and their location is given in Table 1 and Figure
1, respectively.

Seed viability

Per shrub, 10 ripe cones were opened, the number of
seeds was counted and filled seeds were exposed to 1%
2,3,5 triphenyltetrazolium chloride (TTC) solution in
order to determine the viability of the embryos. Initially
colourless, TTC is converted to formazan-red in the pre-
sence of living tissue (see e.g. Miller [57] for more details
on the method).

DNA extraction and molecular genotyping

Genomic DNA was extracted from 20 mg of dried needles
using the Dneasy Plant Miniprep Kit (Qiagen, Helden,
Germany), according to manufacturer’s instructions and
followed by an additional treatment with 0.4 ug RNAse
(Fermentas) at room temperature for 2 min. DNA concen-
trations were estimated and standardised against known
concentrations of ADNA (Fermentas) on 1.5% agarose
gels.

AFLP analysis was performed on the northwestern
European and the Flemish samples according to Vos et al.
[58] and Van Der Merwe et al. [5] with following modifi-
cations. Restriction and ligation were performed in a single
step, e.g. 200 ng of genomic DNA was restriction digested
using the enzyme combination Pst/ (Fermentas) /Msel
(Fermentas) and ligated to the Pst/ and Msel adaptors. Pri-
mer combinations used for the generation of fingerprints
were Pstl-ACT + Msel-ACA, PstI-ACT + Msel-ACC, PstI-
AGT + Msel-ACC and PstI-AGT + Msel-ACA. Fragment
separation and detection took place on a NEN IR?> DNA
analyzer (Li-Cor Biosciences) using 36 cm denaturing
gels with 6.5% polyacrylamide. IRDye size standards (50 to
700 bp) were included for sizing of the fragments. Frag-
ments within the size range of 75 bp to 677 bp were
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scored with Saga Generation 2 (Li-Cor Biosciences) as pre-
sent or absent. Prior to data analysis, monomorphic loci
were discarded. Due to the long time period between the
analysis of the northwestern European samples and of the
Flemish samples, different PCR-machines and fabrication
batches of products were used. Hence, following Coart et
al. [59], the AFLP-data of the northwestern European
samples and of the Flemish samples were processed sepa-
rately. The number of individuals typed with AFLP mar-
kers is given in Table 1.

AFLP error rate and reproducibility

Reproducibility was evaluated on the dataset obtained
from the individuals sampled on the Flemish scale using
intra- and intergel replicates. 23 samples (12%, according
to the recommendations of Bonin et al. [23]) were chosen
randomly and analysed twice independently starting from
the same DNA -extraction. Samples with a profile that was
doubtful, for example profiles showing low band intensi-
ties, were discarded. We estimated the error rate at the
allele level as described by Bonin et al. [23] based on the
binary matrix obtained for the replicate samples. This
error rate is effectively the average Euclidean distance (= 1
- Simple Matching similarity index [60]) between replicate
pairs. The error rate was first used to eliminate unreliable
markers (markers difficult to score or unstable markers)
and to clean up the binary data matrix [30]. Secondly, we
recalculated the error rate based on the replicated samples
for the final markerset. In order to evaluate this error rate
in accordance to the goal of the study, we performed a
UPGMA-cluster-analysis based on the Simple Matching
similarity index calculated from the binary matrix of the
replicated samples using the programme TREECON [61].
We calculated the number of replicate pairs that were cor-
rectly assigned (i.e., as ‘sister’ to one another) in the cluster
analysis (e.g. see [25]). We also calculated the mean pair-
wise inter-individual genetic distance based on the Simple
Matching index for all the genotypes from the Flemish
dataset and from the northwestern European dataset, and
compared this with the mean intra-individual genetic dis-
tance (= equivalent to the error term). Furthermore, we
implemented the simulation procedure in the programme
AFLPOP [62] to investigate the power of the data for the
assignment test.

Habitat fragmentation and seed-mediated dispersal

To estimate the degree of habitat fragmentation in the
study area, we mapped the natural habitats suitable for
Juniperus communis with the programme ArcView version
3.1. (ESRI) and based on CORINE Land Cover 2006 vector
data (CLCO06) (version 13 - 02/2010, http://www.eea.
europa.eu/). CLCO6 classifies the European land cover into
44 categories derived from Landsat and SPOT satellite
images at a 1:100,000 scale and with a minimum mapping
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unit of 25 ha [63]. The following land cover types from
CLCO06 were considered as suitable habitats for Juniperus
communis: natural grasslands (class 3.2.1), moors and
heathlands (class 3.2.2), sclerophyllous vegetation (class
3.2.3) and transitional woodland-shrub (class 3.2.4). The
percentage of suitable habitat was calculated for northwes-
tern Europe within an area of 1.4E+7 ha, and within a 30
km radius buffer zone surrounding each sampled
population.

Seed-mediated dispersal events were estimated by
individual-based population assignment tests using the
computer program AFLPOP 1.1 [62]. Because we are
aware that we did not sample all the potential source
populations, our aim was not to allocate individuals to
some of the sampled populations, but to estimate migra-
tion rates by identifying immigrants for the populations
sampled on the northwestern European scale. First, the
likelihood was computed that an individual genotype
(G) may be found in each of the candidate populations
based on their respective dominant AFLP band frequen-
cies. G is then assigned to the population showing the
highest likelihood for G [64]. Given that pollen flow
might result in ambiguous assignments when low levels
of stringency are used [19], allocation tests were con-
ducted setting the minimum log-likelihood difference
(MLD) to 1 and 2. At these MLD = 1, MLD = 2 strin-
gency levels, an assignment to a population is made
when the probability of the given assignment is ten or
100 times more likely than the next most probable
assignment, respectively. Other settings in the program
were: replace zero frequencies by (1/(sample size+1))
and calculate a p-value for each individual’s log-likeli-
hood by creating empirical distributions from 1000 ran-
domly generated genotypes based on the presence
frequencies of each population. When the p-values for
an individual were below a certain warning threshold (<
0.001 in our case) for all candidate populations, it was
concluded that the individual did not originate from any
of the sampled populations.

Prior to the allocation test, we assessed the power of our
dataset for accurate assignment of the real genotypes with
the population assignment simulator of AFLPOP 1.1 [62].
The simulator generated 1000 random genotypes based
on the observed allele frequencies in each sampled popula-
tion. Those 1000 simulated genotypes were then blindly
reassigned to their most probable population. The simula-
tion process was repeated 10 times to check for the consis-
tency of the results. Because of geographical affinity and
small population size we pooled the samples from popula-
tions Kootwijkerzand and Loenen, and also the samples
from the populations Meenser Heide and Weinberg. The
latter populations were also pooled because of statistically
non-significant ®pr-pairwise values. This reduces the risk
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of misassignment due to similar allele frequencies between
population pairs.

Genetic structure

Population genetic structure was analysed based on AFLP
data on both spatial scales. Total genetic diversity was par-
titioned among and within populations by carrying out a
hierarchical analysis of molecular variance (AMOVA) on
Euclidian pairwise genetic distances [65]. The ®p1 analog
for Fst [66] was calculated based on Euclidian genetic dis-
tances, and its significance was determined using the
Monte Carlo procedure (999 permutations). Based on
these Euclidian pairwise genetic distances a principal coor-
dinates analysis (PCoA) was performed. These analyses
were carried out using GENALEX 6.2 [67]. To further
identify possible spatial patterns of genetic diversity, the
software BAPS 5.3 [68] was used to identify clusters of
genetically similar populations using a Bayesian approach.
A population mixture analysis was performed for the max-
imum number of clusters (K) ranging from K = 1 up to K
= 15. We ran the cluster analysis ten times in order to test
the reproducibility of the results. In order to identify a sig-
nificant isolation-by-distance effect [69], a Mantel test was
performed on pairwise genetic distances and geographic
distances. At the local (Flemish) scale, we investigated the
existence of a fine scale spatial genetic structure. We
plotted and regressed average pairwise kinship coefficient
of relatedness for dominant markers [70] against geogra-
phical distances with the software SPAGeDi 1.3 [71].

Genetic diversity

As common juniper can reproduce clonally, we first
checked whether the dataset contained similar ramets of
the same clone. This was done with AFLPdat [72] by
setting the maximum number of differences among
identical individuals to 15 bands. The latter was esti-
mated from 23 replicated samples. Further population
genetic analyses were restricted to the individuals
derived from sexual reproduction (i.e. genets). Genetic
diversity statistics were calculated based on AFLP data.
We calculated AFLP fragment frequencies with AFLP-
surv 1.0 [73] to estimate allele frequencies for each
population. This was based on a Bayesian approach with
a non-uniform prior distribution of allele frequencies
following Zhivotovsky [74], assuming either no, or some
deviation (Fis = 0.1) from Hardy-Weinberg genotypic
proportions according to the outcrossing nature of the
species. However, the results based on the different Fis-
values were very similar and therefore, only those based
on Fig = 0 are presented. Allele frequencies were then
used to calculate Nei’s gene diversity (Hj) and the per-
centage of polymorphic loci at the 5% level corrected
for the sample bias (PPL). Furthermore, band richness
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corrected for the sample bias (Br) was computed on the
AFLP data with AFLPDIV (first described in [59]). This
measure of genetic diversity represents the number of
phenotypes expected at each locus (i.e. each scored
AFLP fragment) and can be interpreted as an analogue
of allelic richness [59].

The level of inbreeding (Fis) was estimated from AFLP
fragment frequencies using FAFLPcalc [75]. FAFLPcalc
uses AFLP frequencies to estimate band frequencies that
are used to simulate data with a range of inbreeding coeffi-
cients. This approach assumes that half of the individuals
in a population are outbred, and that inbred individuals
will be more homozygous (exhibit more null phenotypes).
Scoring errors and high levels of non-independence
between bands can lead to poor results, which is why we
compare calculated F;s values only among our sample
populations and within a sampling year and not to those
from other studies.

In order to identify whether habitat fragmentation
resulted in a decrease of genetic diversity in younger
(height < 1 m) compared to older individuals (height > 1
m) of the common juniper populations, values of ®py
were calculated between the four different development
classes by AMOVA based on AFLP data for each popula-
tion separately. Also, values of ®pt and genetic diversity
statistics (PPL, Br, Hj) were calculated for pooled popula-
tion samples per height class within each spatial scale.
Average inbreeding coefficients (F;s) were compared
between young plants (height < 1 m) and older individuals
(> 1 m height) of the common juniper populations
sampled on the northwestern European scale by a t-test.
Finally, we used Spearman rank correlations to identify
possible relationships between AFLP-based genetic diver-
sity measures (PPL, Br, Hj and Fis) and population charac-
teristics (population size, population density, % filled seeds
and % viable seeds).
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