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Abstract

Background: The combination of optimized contribution dynamic selection and various mating
schemes was investigated over seven generations for a typical tree breeding scenario. The
allocation of mates was optimized using a simulated annealing algorithm for various object functions
including random mating (RM), positive assortative mating (PAM) and minimization of pair-wise
coancestry between mates (MCM) all combined with minimization of variance in family size and
coancestry. The present study considered two levels of heritability (0.05 and 0.25), two restrictions
on relatedness (group coancestry; | and 2%) and two maximum permissible numbers of crosses in
each generation (100 and 400). The infinitesimal genetic model was used to simulate the genetic
architecture of the trait that was the subject of selection. A framework of the long term genetic
contribution of ancestors was used to examine the impacts of the mating schemes on population
parameters.

Results: MCM schemes produced on average, an increased rate of genetic gain in the breeding
population, although the difference between schemes was small but significant after seven
generations (up to 7.1% more than obtained with RM). In addition, MCM reduced the level of
inbreeding by as much as 37% compared with RM, although the rate of inbreeding was similar after
three generations of selection. PAM schemes yielded levels of genetic gain similar to those
produced by RM, but the increase in the level of inbreeding was substantial (up to 43%).

Conclusion: The main reason why MCM schemes yielded higher genetic gains was the
improvement in managing the long term genetic contribution of founders in the population; this
was achieved by connecting unrelated families. In addition, the accumulation of inbreeding was
reduced by MCM schemes since the variance in long term genetic contributions of founders was
smaller than in the other schemes. Consequently, by combining an MCM scheme with an algorithm
that optimizes contributions of the selected individuals, a higher long term response is obtained
while reducing the risk within the breeding program.

Background didates are selected, the genetic variance will be quickly
The main goal of most breeding programs is to increase = reduced, thus compromising the long term response to
genetic merit while restricting the level of relatedness in  selection and increasing the risk that individuals will suf-
the breeding population. If too many highly ranked can-  fer from inbreeding depression. It is, therefore, important
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to restrict relatedness within the population so that there
is a healthy balance between genetic improvement and
genetic variability. Hence, in breeding theory, much atten-
tion has been paid to developing selection methods to
improve selection responses. [1] introduced the optimum
contribution (OC) method for maximizing the selection
differential at a predefined rate of inbreeding in the breed-
ing population. OC is a dynamic constrained quadratic
optimisation method that simultaneously selects the
number of candidates and their respective contribution to
the breeding population of the next generation. In com-
parative studies between OC and truncation selection, the
former produces increased genetic merit at the same level
of inbreeding, or a decreased level of inbreeding at the
same level of genetic improvement; this has been demon-
strated in simulations [1-3], using a deterministic
approach [4] and in analyses of real data, e.g. [5-7]. [8]
demonstrated how the OC method could be applied to
tree pedigrees by using simulations to evaluate different
long term breeding schemes. [9] examined the maximum
reduction in coancestry at a specified level of genetic
improvement in Eucalyptus globulus, whilst [10] assessed
the increase in genetic gain achieved using the OC method
in comparison with standard restricted selection in Pinus
sylvestris. These studies are, to our knowledge, the only
applications of quadratic optimisation selection in the
field of tree breeding.

In general, the impact of mating schemes on genetic
parameters has received less attention than the effect of
the optimum contribution method. The effect on selec-
tion response seems to depend on the combination of
methods used for selecting and allocating mates to create
the next breeding population. For example, [11] and [12]
found only a small difference in selection response that
was attributable to minimum coancestry mating (MCM)
compared with random mating (RM) in combination
with truncation selection. However, [13] and [14]
obtained a large improvement in genetic merit for an
MCM strategy compared with random mating, when used
together with a quadratic optimization selection method
(i.e. OC). They argued that the MCM scheme avoids
extreme relationships, e.g. full-sib matings, by connecting
unrelated families. A population structure with less
extreme relationships will improve the OC selection of
candidates to contribute to the next generation, since the
relationships between individuals with a high estimated
breeding value (EBV) will be reduced. It has been demon-
strated that the MCM strategy is particularly beneficial
when the population is small, has discrete generations
and the restriction on the increase in inbreeding is strin-
gent [13,15]; this is often the case in tree breeding pro-
grams, e.g. [16]. Consequently, MCM could be a feasible
option when choosing a crossing strategy to be used in a
tree breeding program.

http://www.biomedcentral.com/1471-2156/10/70

In forest tree breeding, most studies on the effect of mat-
ing schemes have compared positive assortative mating
(PAM) and RM (e.g. [16-19]). The idea underlying PAM is
to mate the best ranked trees with each other so that the
between-family additive genetic variance of the popula-
tion is increased [20]. As a result, selecting an elite part of
the population could enhance the genetic merit further,
i.e. selection for the deployment population [16-19].
None of the aforementioned studies used optimized
dynamic selection methods; they used static selection
methods where equal numbers of trees were selected from
each generation irrespective of the pedigree of the total
breeding population. [8] compared MCM to RM in com-
bination with OC selection and found that MCM delayed
inbreeding for one generation, but eventually the level of
inbreeding reach the same level for MCM and RM. Similar
conclusions have been reached by [13] and [21]. How-
ever, [8] did not compare differences in genetic improve-
ment between different mating schemes under conditions
where there was the same increase in relatedness. Further-
more, they only compared MCM in combination with
minimization of variance in family size to RM. It is, there-
fore, necessary to investigate further the effect of different
mating strategies on selection parameters when an OC
algorithm is used in a tree breeding context.

Recently, it has been demonstrated that, when using
quadratic optimization methods like the OC algorithm,
the selective advantage is a function of the Mendelian
sampling terms rather than the EBVs [22,23]. The breed-
ing value of an individual can be broken down into three
components [24]: (1) half of the EBV of the male parent;
(2) half of the EBV of the female parent; and (3) the Men-
delian sampling term, which is the aggregate deviation
arising from sampling the segregation of alleles within the
male parent and within the female parent. Simulations
have shown that more accurate estimates of the Mende-
lian sampling term will lead to greater long term genetic
gain without affecting the increase in inbreeding [22,23].
Improved accuracy of the Mendelian sampling term can
be achieved by using an individual's phenotypic record or
progeny information, as well as by development of more
efficient algorithms for its estimation, for example [23].

The goal of the current study was to investigate how differ-
ent mating strategies influence selection response and the
accumulation of inbreeding when using OC selection
within a typical forest tree breeding scenario. Compari-
sons were made between simulated populations over
seven generations of selection. The simulated pedigrees
were typical of those in tree breeding and the trees were
assumed to be monoecious. The mating schemes were
derived using a simulated annealing algorithm and objec-
tive functions were tested. The following mating strategies
were evaluated: (1) RM with no constraints on mating rel-
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atives; (2) PAM with no constraints on mating of relatives
but controls on the full-sib family size; (3) PAMCM: PAM
combined with minimum variance in coancestry; (4)
MCM1: regular MCM with no additional constraints; (5)
MCM2: MCM combined with minimizing variance in
family size; (6) MCM3: MCM combined with minimizing
family size and finally; (7) MCM4: a combination of min-
imizing the variances in both coancestry and family size.
We used stochastic Monte Carlo simulation procedures to
obtain parameter estimates and genetic evaluations are
performed using the individual tree model in a restricted
maximum likelihood (REML) framework. Moreover, the
theory of long term genetic contribution (i.e. based on
regression of Mendelian sampling terms over generations)
was used to predict any departure from the theoretical
maximum limit of genetic gain.

Results
All mating schemes resulted in similar levels of group
coancestry for each generation, and these were slightly

http://www.biomedcentral.com/1471-2156/10/70

lower than the pre-defined levels. Tables 1 and 2 show
summary statistics of Monte Carlo (MC) simulations for
all schemes considered at the two pre-defined levels of
coancestry and heritability (AC = 1; 2% and h2 = 0.05;
0.25) for a maximum of 100 permissible crosses. The data
in Table 3 represents the results when the maximum
number of crosses between parent trees was set to 400;
here we wanted to examine the effect of mating scheme on
selection parameters when the number of crosses was
large. Table 4 shows results from the regression analysis of
the long term genetic contribution on their estimated
Mendelian sampling term, which examines the efficiency
of the mating schemes in terms of deviation from theoret-
ical upper limit of genetic gain.

Genetic improvement

A less stringent restriction on coancestry resulted in higher
genetic merit at generation seven (G,), in comparison
with scenarios with very stringent restrictions (Figure 1;
Tables 1; 2). In addition, the response to selection was

Table I: Impact of mating schemes on selection parameters when AC = 1% and N,,,,, = 100

h? F; G, 2rl4 AVp N N, Ny <]
RM 0.25 0.0589 6.65 0.00587 -5.0 69.1 94.3 53.1 -0.000995
PAM 0.25 0.0775 6.61 0.00599 32 68.1 87.9 57.0 0.0223
PAMCM 0.25 0.0780 6.36 0.0061 | -35 67.8 86.7 57.8 0.0249
MCMI 0.25 0.0379 6.58 0.00589 -6.3 68.6 89.9 55.8 -0.0228
MCM2 0.25 0.0396 6.56 0.00579 -10.8 703 98.6 50.7 -0.0218
MCM3 0.25 0.0416 6.85 0.00585 -9.4 70.9 100.0 50.0 -0.0191
MCM4 0.25 0.0527 6.69 0.00600 -0.6 70.4 100 50 -0.00731
RM 0.05 0.0613 5.62 0.00631 -7.0 77.6 96.3 51.9 0.00128
PAM 0.05 0.0879 5.56 0.00660 37 76.2 91.4 54.8 0.0345
PAMCM 0.05 0.0871 5.48 0.00668 9.3 753 90.1 55.6 0.0361
MCMI 0.05 0.0389 5.72 0.00620 -4.0 76.1 92.8 53.9 -0.0228
MCM2 0.05 0.0399 6.01 0.00629 -4.7 783 98.9 50.5 -0.0223
MCM3 0.05 0.0418 5.91 0.00623 -4.9 783 100.0 50.0 -0.0198
MCM4 0.05 0.0536 5.8l 0.00637 0.2 784 100 50 -0.00723

Investigated parameters were: accumulated inbreeding (F;), accumulated genetic merit (G;), sum of squared long term genetic contributions (2r2/
4), difference in additive genetic variance component as a percentage (AV,), average number of selected trees per generation (N,,), average
number of crosses per generation (N,.), average number of full-sibs/family in each generation (Ng,), amount of deviation from Hardy-Weinberg
equilibrium (&) at generation seven. Standard errors ranged between 0.0001 and 0.0016 for F;, 0.08 and 0.09 for G,, 0.00004 and 0.00024 for >.r2/
4.
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Table 2: Impact of mating schemes on selection parameters when AC = 2%, N, .. = 100 and h2= 0.05

F, G, 2r24 AV N, N N oy
RM 0.124 7.07 0.0127 -9.0 44 83.5 60.0 0.00247
PAM 0.156 7.14 0.0129 7.8 42.5 74.8 67.1 0.0441
PAMCM 0.157 6.95 0.0127 52 41.6 70.3 715 0.0438
MCMI 0.0916 6.96 0.0113 -0.6 41.7 70.4 722 -0.0334
MCM2 0.0959 7.39 0.0119 -9.0 46.2 94.8 528 -0.0307
MCM3 0.105 7.51 0.0118 -4.8 46.3 100.0 50.0 -0.0206
MCM4 0.119 7.57 0.0121 7.3 46.3 99.4 50.3 -0.00639

Investigated parameters were: accumulated inbreeding (F;), accumulated genetic merit (G;), sum of squared long term genetic contributions of
founders (2r2/4), difference in additive genetic variance component in percentage (AV,), average number of selected trees per generation (N),

average number of crosses per generation (N,

), average number of full-sibs/family in each generation (Nj,), deviation from H-W equilibrium (o)

at generation seven. Standard errors ranged between 0.0004 and 0.0030 for F;, 0.1 and 0.13 for G;, 0.0001 and 0.0005 for >.r2/4.

higher when h? = 0.25 in comparison with h2 = 0.05 due
to the higher precision of EBVs. The overall benefit of
MCM on G, relative to RM was somewhat better when h?
was small, although far from all MCM schemes produced
any improved G,. MCM2, 3 and 4 always resulted in
higher levels of G, in comparison with RM, with the
improvement ranging from 2 to 7%. The only exception
was when AC was severely restricted and when h2 was
large, in which case RM resulted in similar levels of genetic
merit in comparison with those obtained using MCM
schemes (i.e. no significant difference was achieved in
G,). The greatest impact of non random mating on G, was
for AC = 2% and h2 = 0.05, resulting in 6.2% and 7.1%

increased merit for MCM3 and MCM4, respectively.
MCM1 always produced less gain than that achieved by
MCM2-4, suggesting that the latter schemes produce a
better population structure (i.e. they connect more fami-
lies). This finding is supported by the average number of
crosses for each scheme; MCM 2, 3 and 4 produced high-
est number of crosses in all scenarios (Tables 1, 2 and 3).

Both PAM and PAMCM resulted in similar levels of G, to
those produced by the RM scheme. There was no obvious
benefit of avoiding extreme relationships in terms of accu-
mulated gain because PAMCM did not increase G, com-
pared to RM. In fact, when h2 was high and when there

Table 3: Impact of mating schemes on selection parameters when AC = 1%, N, .. = 400 and h2= 0.05

F G Yr2l4 AV, N, N, Ny, P

RM 0.0628 7.22 0.00690 -12.5 2.1 338.1 14.8 0.000736
PAM 0.0830 6.87 0.00700 24 108.1 279.9 17.9 0.0261
PAMCM 0.0837 7.13 0.00707 0.1 107.9 275.2 18.3 0.0251
MCMI 0.0409 7.15 0.00673 -6.8 108.8 302.9 16.7 -0.0223
MCM2 0.0430 7.24 0.00676 -9.5 115.3 359.1 14.0 -0.0212
MCM3 0.0471 7.29 0.00685 75 116.9 400.0 12.5 -0.0165
MCM4 0.0590 7.32 0.00689 -10.4 118.9 396.5 12.6 -0.00374

Investigated parameters were: accumulated inbreeding (F), accumulated genetic merit (G), sum of squared long term genetic contributions of
founders (2r2/4), reduction in additive genetic variance component (AV,), average number of selected trees per generation (N,), average number
of crosses per generation (N,,), average number of full-sibs/family in each generation (Ng,), deviation from H-W equilibrium (o) at generation
seven. Standard errors ranged between 0.0002 and 0.0014 for F;, 0.07 and 0.10 for G;, 0.00005 and 0.00008 for >’r2/4.
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Table 4: Residual variance of linear regression

AC[%] h2 o 2[104]
RM I 0.05 3.8l
PAMCM I 0.05 398
MCM 2 I 0.05 376
RM I 0.25 341
PAMCM I 0.25 353
MCM2 I 0.25 325
RM 2 0.05 14.61
PAMCM 2 0.05 14.82
MCM2 2 0.05 13.68
RM 2 0.25 11.94
PAMCM 2 0.25 11.68
MCM2 2 0.25 11.30

Relationship between long term genetic contribution of founders (r)
and Mendelian sampling term of the founders (a,,,) estimated at
generation 7 when N, = 100 for schemes RM, PAMCM and MCM2.

was severe restriction of AC, a considerably lower level of
G, was attained (4.4% lower than the G, value attained by
RM). PAM produced a somewhat higher G, when AC =
2%, although the difference was not large.

The level of genetic merit increased for all schemes when
the maximum number of permissible matings (N ..)
increased from 100 to 400 (Tables 1; 3; Figure 1). How-
ever, with the exception of PAM, which achieved some-
what lower merit, there was no significant difference in
genetic merit at generation seven for RM than for the other
schemes. Hence, if N is increased, the relative impor-
tance of effective mating schemes on improvement in gain
is reduced. In general, when N ., = 400, the between-fam-
ily selection intensity increased and, since the size of the
full-sib families was rather large in both scenarios, the
within-family selection intensity did not have a great
effect on the outcome in G,. In addition, conversion of
the mating proportions from the OC algorithm into the
number of crosses for large N, would result in a better
approximation to the optimal solution. Furthermore, Fig-
ure 1 shows that the rate of gain (AG) varied between the
schemes, where MCM?2 seems to have the highest AG for
N, .= 100 at later stages of the breeding program (gener-
ations 5 and 6). This suggests that MCM2 would increase

http://www.biomedcentral.com/1471-2156/10/70

genetic gain more than RM for selection schemes contin-
uing beyond seven generations.

Accumulated level of inbreeding

In general, the level of inbreeding was slightly higher for
h2=0.05 than for h2= 0.25 (Table 1). One possible expla-
nation is that if the level of heritability is very low, the best
linear unbiased predictor (BLUP) analysis takes more
family information into account and then the OC algo-
rithm selects more trees. When mating proportions of the
selected trees are transformed into the number of crosses,
the trees that make limited contributions can be discarded
in mate allocations if h2is 0.05. MCM schemes were more
efficient in reducing F, in comparison with RM when AC
was lower (i.e. more with rigid constraints). MCM1
yielded the lowest F, of all schemes, reducing F, by 26-
37% in comparison with corresponding levels produced
by RM. F, was always lower for MCM1 than for MCM2,
probably as a result of the extra restriction on variation in
family size in MCM2, thus allocating mates that were least
related. Moreover, compared with RM, MCM schemes
always gave a lower sum of squared long term genetic con-
tributions of the founders, suggesting better management
of the founder contributions to descendants.

There was a two generation delay in inbreeding in MCM1
in comparison with RM and PAM (Figure 2). The reason
for such a result has been discussed in several studies, i.e.
[8,11,21]. However, after the initial differences in
inbreeding, the rate was similar between all schemes. The
level of inbreeding for PAM was higher than the levels
reported for RM, which agrees well with conclusions from
similar studies, e.g. [16]. The F, level was between 26 and
43% higher than corresponding levels obtained by RM.
The most likely cause for this phenomenon may be a
higher frequency of matings between related trees (i.e.
more full-sib matings), particularly at low levels of h2. The
high variance in the long term genetic contribution of
founder trees and the strong positive deviation from ideal
a, is in accord with the high levels of inbreeding for PAM.

Perhaps not very intuitively, PAMCM always resulted in a
high F,, between 27-42% more than corresponding levels
for RM (Tables 1, 2, 3; Figure 2). The explanation can
partly be seen in the large variance of founder contribu-
tions, suggesting that a few founders contribute a great
deal and, consequently, the rate of inbreeding increases
[24]. In addition, relatives are mated to a greater extent in
PAMCM, which results in a large positive deviation from
Hardy-Weinberg equilibrium (&) compared to all the
other schemes (except PAM). It seems probable that more
crosses between half-sibs are allocated using PAMCM, due
to the correlation in EBV between half-sibs combined
with the relatively high number of crosses performed. As
a result, more half-sibs (or other similar levels of related-
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MCM2
RM

R e
Generation

Selection response. Accumulated additive genetic merit in the breeding population when h2 = 0.05 for RM and MCM2 (a)
N .x = 100, AC = 1%; (b) N, .« = 400, AC = 1%; (c) N,.,, = 100, AC = 2%.

ness) are crossed, particularly at low h?, because crosses
between full-sibs are avoided (Tables 1, 2, 3).

When N, .. was set to 400, the level of accumulated
inbreeding increased slightly in comparison with N, =
100 for all schemes (Tables 1; 3), with the exception of
PAM and PAMCM. One possible reason is that trees that
make a high contribution are involved in more matings if
N,..« is higher, thus increasing the proportion of genes
transmitted to the next generation. This conclusion is sup-
ported by the greater sum of squared genetic long term
contributions of founders when N_ . is 400 compared to
when it is 100. For PAM and PAMCM the lower level of ¢,
at N .. = 400 suggests that the deviation from H-W equi-
librium is less than for N ,, = 100, which would lead to a
reduction in F,.

Number of trees selected and crosses performed

In general, more selections and crosses were made when
h2=0.05 for all schemes than when h2= 0.25. The reason
for this difference in number of selections might be that
more family information is taken into account in the
BLUP evaluations, which create higher correlations of
EBVs between relatives. Consequently, OC selected more
trees to reach the pre-defined level of coancestry when h?
was low. For PAM, this difference was not very large in
comparison with the difference for the MCM schemes,
suggesting that the latter schemes performed better at low
levels of h2. In addition, a stringent constraint on AC
resulted in a larger number of both selections and matings
at the same level of h2 (Tables 1 and 2)

Since MCM3 allocated mates in order to minimize family
size, the number of crosses performed was highest in com-
parison with all the other schemes. The difference in
number of crosses performed between the schemes was
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Inbreeding. Accumulated inbreeding in the breeding population when h2=0.05 (a) N, = 100, AC = 1%; (b) N,,,. = 400, AC

1%; (c) N, = 100, AC = 2%.

most pronounced at AC = 2% (Table 2). Including a large
number of families produces a better family structure (i.e.
connects more families) and increases the possibility that
the OC algorithm will select trees to contribute to the next
generation within the restrictions on coancestry (i.e.
increasing the between-family selection intensity).
Clearly, the schemes that produce the highest levels of
genetic gain also involve both a larger number of selec-
tions and more crosses. However, all schemes produced a
very similar average number of selections, particularly
when AC was small (Tables 1 and 3).

Development of additive genetic variance components
Table 1, 2, 3 and Figure 3 demonstrate the reduction in the
additive genetic variance component (V,) in the breeding

population over seven generations of selection. We only
show the additive genetic variance because non-additive
genetic variance was assumed to be absent. No general dif-
ference in the trajectories of V, was detectable between
mating schemes, apart from a slight reduction in most
schemes that could be a result of either the Bulmer effect
[25] or the build up of inbreeding. This result suggests that
if OC selection is applied to the breeding population, the
choice of mating scheme does not greatly affect the devel-
opment of the additive genetic variance. On the other
hand, PAM and PAMCM resulted in the lowest reduction
in V,, sometimes even an increased V, was observed after
seven generations of selection. Moreover, when h2 was
low, more trees were selected on average, thus slowing
down the reduction in V,.
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The impact on the additive variance of setting N ,. to 400
is shown in Table 3 and Figure 3b. In all cases, V, was
reduced more when N, .. = 400 in comparison with N
= 100. This may be because of the increased sum of
squared long term genetic contributions or the increased
level of inbreeding, reducing the within-family additive
variance component more compared to N_ . = 100
(Tables 1 and 3, Figure 3).

The mean squared error (MSE) over replicates (MC itera-
tions) of estimated variance components varied between
mating schemes. For V,, RM and MCM schemes resulted
in approximately constant MSE over generations. PAM
and PAMCM showed a similar pattern for the first five
generations, but MSE increased during last two genera-
tions. For Vi, no real trends were detectable, suggesting
that accuracy of REML estimates of V|, were unaffected by
the number of generations in the pedigree. MSE results are
presented in Additional file 1.

Long term genetic contributions and selective advantage

Figure 4 demonstrates the influence of the estimated Men-
delian sampling terms (a,,), at generation 7, on the long
term genetic contribution (r) of the founders. Table 4 lists
the residual variance of the linear regression. It should be
noted that r displayed non-zero variation over selection
candidates at generation seven (i.e. for founder i:Var(r;,
Tigs - Tiny) > 0, where N is the number of selection candi-
dates in generation 7) in all scenarios, which could indi-
cate a lack of convergence. Nevertheless, the results
provide information on the efficiency of the different mat-
ing schemes (i.e. in managing the contribution of the
founders). We have chosen to present the three most
interesting schemes in terms of accumulated genetic
merit, namely RM, PAMCM and MCM2. Clearly, the dif-

ference in residual variance (o7 ) of the linear regression
varied between the different mating schemes, indicating
differences in departure from the optimal allocation of r

on a,,. In all scenarios, MCM2 resulted in lower ¢? com-

pared to the corresponding ¢ obtained by RM and
PAMCM. In addition, PAMCM always produced the high-
est o7 of the schemes considered. The difference in ¢}

can be seen in Figure 4, where some founders have a much
larger r in comparison with the optimum (i.e. the regres-
sion line), this is particularly clear in Figure 4b. In Figure
4c the r values are distributed much more evenly around
the line in comparison with their distribution in Figure
4b. The optimal allocation of r clearly depends on the
level of the heritability (Table 4). The slopes of the regres-

http://www.biomedcentral.com/1471-2156/10/70

sion lines are plotted in Figure 4, demonstrating that
PAMCM produced the largest regression coefficient (b,,)

of all schemes. This result implies that the contribution of
selected trees became more variable for PAMCM com-
pared with the other schemes and that a few trees make a
very high contribution (see also Figure 4b). Conse-
quently, a more equal long term contribution of founder
trees facilitates the OC algorithm in terms of deviation
from the ideal solution during selection decisions. The
patterns found here would, however, be clearer if the var-
iance in long term contributions of founders over
descendants would be reduced further (i.e. by including
more generations of selection).

Discussion

Here we have demonstrated that different strategies for
mate allocation result in different genetic parameters in a
tree breeding scenario when optimized contribution
selection (OC) was applied over seven generations. In the
scenarios considered, the rate of increase in coancestry
(AC) was restricted to either 1 or 2% for two different lev-
els of heritability (0.05 and 0.25). We found that, in gen-
eral, the minimum coancestry mating (MCM) schemes
produced a higher level of genetic merit (G,) and lower
level of inbreeding (F,) after seven generations of selec-
tion compared to equivalent results achieved by RM. Up
to 7.1% increase in genetic merit was achieved by MCM2,
MCM3, and MCM4 in comparison with corresponding
results obtained by RM. On the other hand, MCM1
yielded the lowest level of accumulated inbreeding, with
a maximum decrease in F, of 37% compared with the
equivalent estimate obtained through RM. The two mat-
ing schemes that used positive assortative mating com-
bined with restrictions on variance in either family size or
coancestry (PAM and PAMCM, respectively) resulted in
similar levels of accumulated genetic merit but higher lev-
els of inbreeding compared with RM. In addition, regres-
sions of the long term genetic contribution (r) of founders
on estimated Mendelian sampling terms (a,,) showed
that the minimum coancestry schemes resulted in lower
residual variance and, therefore, less deviation from the
ideal level of genetic gain. We also demonstrated that the
MCM schemes resulted in lower sums of squared r for
founders, suggesting that these schemes produce the low-
est rate of inbreeding (AF) in the population. For esti-
mates of r, we used a robust, deterministic approach that
can handle large, complex pedigrees, as suggested by [26].

Response to selection

There are several reasons why the MCM schemes pro-
duced a better response to selection. First, because of the
larger number of families created, the between-family
additive variance was greater; this can be exploited by the
OC algorithm. This is probably one of the main effects
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Additive genetic variance. Development of the additive genetic variance component in the breeding population when h2 =
0.05, solid line: RM, dashed line: PAMCM and dashed-dotted line: MCM2 (a) N,,,,, = 100, AC = 1%; (b) N, = 400, AC = 1%;

(€) N, = 100, AC = 2%.

that enhanced the selection response in comparison with
RM, since the number of both selections and crosses per-
formed using the MCM schemes was always higher. PAM
and PAMCM produced a number of selections and levels
of accumulated gain that were similar to RM. We also
found that a larger number of crosses produced a better
integer approximation to the optimal solution when con-
verting the mating proportion suggested by the OC
method into the actual number of matings. Second, in the
framework of long term genetic contributions, MCM
schemes showed least deviation from the theoretically
attainable genetic merit in the population. The reason for
this outcome is probably because MCM schemes result in
better management (usage) of long term genetic contribu-
tions by founders when selecting trees and their mating

proportions for each generation of selection. Hence, a
more even contribution of trees and avoidance of mating
between close relatives caused unrelated families to be
connected to a greater extent, thus the OC algorithm can
increase the selection differential. Third, a lower level of
inbreeding in MCM schemes resulted in a lower reduction
in Mendelian sampling variance (less within-family addi-
tive variance). Therefore, the level of within-family selec-
tion response will be diminished according to R, =
i,,Op, M, » Where oy, is the within-family additive standard
deviation, i, is the within-family selection intensity and
hy, is the square root of the within-family heritability. The
relatively high level of inbreeding in the PAM and
PAMCM schemes is probably one of the reasons that they
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contribution and Mendelian sampling term of the founders estimated at generation 7 and the value of the regression coefficient,
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the standard error is given in parentheses. N, = 100, AC = 1% and h2= 0.05: (a) RM; (b) PAMCM; (c) MCM2.

yielded slightly lower levels of selection response than RM
and MCM.

When the maximum number of created families in each
generation was increased from 100 to 400, in general,
increased levels of genetic merit were obtained. However,
the relative differences in genetic merit between the mat-
ing schemes were reduced. The most likely reason is that
management of the long term contribution of ancestors is
more important in schemes where fewer full-sib families
are created in each generation, since the OC algorithm
provides a better opportunity for increasing the between-
family selection intensity if the relationships between
families are more equal. Consequently, if suitable mating

strategies are utilized, such as the MCM schemes, the level
of genetic gain will be enhanced in schemes where the
number of crosses is few.

A simulation study of animal breeding programs [13]
found that schemes that minimize coancestry yield an
increased long term response of up to 22% in comparison
with RM schemes after 20 generations of selection. Similar
results were found by [14] in a study that allowed for
selections over multiple generations. The greater differ-
ences in selection response between MCM and RM
schemes reported in these studies, compared with our
findings, suggest that it is even more favourable to employ
an MCM scheme in long term breeding. In addition, [13]
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found that a strict restriction on the allowed rate of
inbreeding (AF) favours MCM schemes in terms of accu-
mulated genetic merit in comparison with that achieved
by RM. However, with a less stringent restriction on AF,
they achieved less difference in merit between MCM and
RM. Our results contradict this finding since we obtained
a greater difference in merit between MCM schemes and
RM when the restriction placed on relatedness was less
stringent. One reason may be that different levels of
enhanced within-family selection response were obtained
for the different mating schemes in our study as a result of
the population structure (i.e. the size of full-sib families
used).

When PAM has been combined with static selection meth-
ods, little improvement in response to selection in the
breeding population has resulted, compared with RM, i.e.
[17,19]. As a mating method, PAM is not designed to
improve population structure, but instead tries to separate
the population into several sub-lines. Initially, we simu-
lated a strict PAM scheme without the additional restric-
tion on family size. However, very few crosses were made
and this severely restricted the OC algorithm in terms of
accumulated genetic gain (results not shown). When we
included minimization of variance in family size,
enhanced levels of genetic gain were obtained. Moreover,
for both the PAM and PAMCM schemes, we found higher
levels of inbreeding, thus reducing the within-family addi-
tive genetic variance (Mendelian sampling term). In the
short term (one or two generations), however, the impact
of the population structure is low in terms of genetic
improvement. It should be emphasised, that the purpose
of PAM is to increase between-family additive variance,
while the OC algorithm counteracts the effect of PAM by
attempting to decrease the between-family variance. All
MCM methods have the opposite effect, since they try to
avoid matings between relatives as much as possible, lead-
ing to a better population structure because unrelated
families are connected to a greater extent. Hence, by
increasing the solution space (i.e. fewer related families to
choose from), OC can benefit more from the resulting
population structure.

Inbreeding

The level of coancestry will inevitably rise when direc-
tional selection is applied to a closed breeding popula-
tion. Consequently, inbreeding will also accumulate. By
using MCM, the level of inbreeding can be delayed, but
will eventually reach the same level as RM. The reason
why MCM and RM will generate similar levels of inbreed-
ing in the long term is that all MCM schemes produce
greater negative deviation from Hardy-Weinberg equilib-
rium (see Results). Hence, the asymptotic level of inbreed-
ing will be equal even though the level of inbreeding is
lower in the short and medium terms considered here.

http://www.biomedcentral.com/1471-2156/10/70

[21] compared the performance of mating schemes for
conservation purposes and suggested that minimum
coancestry mating would produce higher levels of accu-
mulated inbreeding after approximately 300 generations,
i.e. well outside the range for most forest tree improve-
ment scenarios.

Genetic contributions of ancestors and pedigree
development

We have shown that OC selection provides different
departures from the ideal attainable genetic gain for the
mating schemes implemented here with restrictions
placed on coancestry. We draw this conclusion by exam-
ining the residual variance of the regression line of r on
a,, corresponding to the part of r that does not contribute
to the overall genetic gain in the breeding population
[22]. The MCM strategy combined with minimization of
the variance of family size yielded lower residual variances
in all scenarios compared with RM and, consequently,
resulted in a genetic gain that was closer to the optimal
attainable gain. The difference in residual variance
between the mating schemes is partly a result of the man-
agement of r in the population, which is improved by con-
necting unrelated families or controlling family size,
amongst other things. As a result, the OC algorithm
increases selection intensity between families. There are
other factors that contribute to the variance around the
regression line. [2] suggested that as more information
about a pedigree becomes available (i.e. increased accu-
racy of estimates of both r and a), the contribution of each
generation proposed by OC will also change (see also
[27]). Since true breeding values are not known, deviation
from the optimal solution will be a result of estimation
errors, particular at lower levels of heritability. In addi-
tion, since the selection program as a whole is a multi-
generation process, contributions cannot be obtained
independently without changing the long term contribu-
tions of ancestors [22,27]. However, more work is needed
to better understand the mechanisms behind the relation-
ships between genetic gain and pedigree development in
a quadratic index framework; for example, producing the-
oretical predictions of the attainable rate of gain that can
be achieved by different mating designs and restrictions
on relatedness.

Practical considerations in tree breeding

[8] suggested that OC selection could be used for clone
selection for deployment populations (e.g. seed
orchards). OC should increase the genetic merit of the
seeds obtained in the orchard compared with merit
obtained from non-optimal selection methods. The geno-
types selected for seed orchard use will be a subset of the
genotypes included in the main breeding population.
Therefore, a restriction on relatedness of the selected sub-
set of clones is needed to maintain a reasonable level of
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genetic variability. Hence, by ensuring careful manage-
ment of the long term genetic contributions of ancestors
and by connecting unrelated families, the OC method
would increase genetic gain in the deployment popula-
tion by increasing selection intensity between families in
the breeding population. In addition, it is important to
take the additive genetic variance (V,) of the breeding
population into consideration since a higher level of V,
could be exploited [16]. We found no clear pattern when
examining the trajectories of V, for the different mating
schemes, although PAM and PAMCM yielded less reduc-
tion and sometimes even a slight increase in V, compared
with the other schemes. On the other hand, PAM and
PAMCM increased the level of inbreeding by up to 44% in
comparison with RM and even more in comparison with
the MCM schemes; this is not desirable in production
populations. This difference between the mating schemes
is important to remember.

The levels of heritability (0.05 and 0.25) used in the cur-
rent study were based on levels reported in [10], which are
representative for traits in breeding populations of conifer
species. Typically, traits that correspond to volume pro-
duction are important, such as diameter at breast height
(DBH) and stem height (H), where DBH and H corre-
spond to low and high levels of heritability.

It should be pointed out that the SA algorithm, for some
of the mating schemes, was assigned to minimize an
object function containing two separate terms or objec-
tives (see Additional file 2 for all object functions used).
As a result, this approach might give an unbalanced
response on the distinct objectives, because it might favor
the objective that is most variable across permutations.
This issue needs to be further investigated in order to opti-
mize multiple objectives more efficient using the SA algo-
rithm in breeding situations.

Conclusion

By using different mating schemes combined with opti-
mum contribution selection, different levels of response
to selection and accumulation of inbreeding were found
in a typical tree breeding scenario. The differences in the
parameters obtained between the mating schemes were
most obvious when the number of controlled crosses in
each generation was small. Minimum coancestry mating
resulted in the greatest level of genetic gain, while the level
of accumulated inbreeding was significantly lower in all
scenarios. Positive assortative mating schemes yielded a
similar level of genetic gain as random mating, although
the level of accumulated inbreeding was significantly
higher in all cases. Our findings are supported by the the-
ory of long term genetic contributions.

http://www.biomedcentral.com/1471-2156/10/70

Methods

Selection procedure

[10] presented a modification of the OC algorithm in [8],
which was used to select individuals dynamically. The
quadratic objective function f(c,) of the OC algorithm is
obtained by introducing LaGrangian multipliers, 4, and
A, combined with the constraints on relatedness and on
total contribution

fle) = by = Ao(ciA ¢y —2C 1) = A4(c(1-1),
(1)

where ¢, is a vector containing the mating proportion of
the candidate trees in the breeding population at round t
(" denotes the transpose of the vector), A, is the additive
relationship matrix between candidate trees, b, is a vector
containing the EBV of the candidate trees, 1 is a vector of
ones in all entries and C,,; is the constraint on group
coancestry in the population at generation t+1. The
restriction on group coancestry holds if the increase
between generations is small [1]. In most studies using
OC selection, AF is used to restrict the selection of individ-
uals in each generation rather than the increase in
coancestry in the breeding population, i.e. [2,13]. How-
ever, we decided to restrict group coancestry, since it is not
influenced directly by the mating scheme. Furthermore,
we restricted the total mating contribution instead of the
contributions from each sex, since most conifer forest tree
species are monoecious (see details in [8]). In addition, in
order to obtain an appropriate mating program, c, needs
to be transformed into integer values; these are called con-
tribution units (&) [8]. ¢ specify how many potential
crosses (matings) each tree can participate in. Further-
more, the limit of the allowed maximum number of
crosses each generation is set to N, = 2.4 /2. Depend-
ing on the outcome of the mate allocation procedure
(described in next section), the actual number of crosses
performed (N,,) could then be less or equal to the
allowed maximum number of crosses N, ... Each cross
between two parents resulted in one family where the size
of the family (i.e. the number of full-sibs) was computed
as dividing the total number of plants available each gen-
eration (5000) with N, . Here, we used the following pro-
cedure to convert ¢, into ¢

1. multiply the contribution vector by twice the maxi-
mum number of crosses: 2 N . c,

2. round down 2 N, ¢, = ¢, to the nearest integer
below the actual value for each tree i, to obtain the
temporary number of crosses summed over all trees
2iSump, i 2 = Nymp, (i-€. an integer value)

3. count the total number of families produced so far,
N

tmp
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a. if N N

tmp < Nmax

i. increase the number of matings for the tree i
with the highest deviation between the real and
integer numbers by one (&, i = Simp, i + 1) and
consequently increase N, by one

b. otherwise
i. exit the loop and set ¢ = ¢,
where Ny, and &, are temporary variables.

Mating optimization procedure

Optimization of the mating proportions selected individ-
uals in each generation was performed using the simu-
lated annealing (SA) approach of [8]. In each generation,
the SA algorithm is used to obtain a mate allocation
matrix, X, defining how mating between selected individ-
uals should be performed in the breeding program. The
order of X is n x n, where n is the number of selected par-
ents. X(i, j) = 0 indicates that trees i and j are not mated
and consequently, if X(i, j) > O, trees i and j are mated. In
addition, the number of non-zero elements in X is the
actual number of crosses N, while the sum of all non-
zero elements in X is the maximum number of crosses
Ninax (i€ 22X (i, j) = Npjpy). The SA algorithm is a sto-
chastic search algorithm that tries to locate a global mini-
mum of a loss function [28]. The main advantage of using
the algorithm is that it avoids getting stuck at a local min-
imum en route to a global minimum. Each iteration of the
SA algorithm starts by defining the loss function, L(X),
then two randomly chosen matings are rearranged using
uniform random numbers (i.e. matings (i, j) and (%, [) are
randomly chosen and are permuted into (i, [) and (, j) so
that X is permuted into X'). A new loss function, L(X"), is
computed and compared with L(X). If L(X') < L(X), the
new configuration is kept.

However, if L(X') > L(X), there is still a chance that the
new configuration will be accepted, depending on the
"temperature" of the system. As the number of iterations
increases, the temperature decreases (i.e. the system cools
down) and the probability of accepting a new configura-
tion if L(X") > L(X) decreases. The probability of accepting
a new state (p,,) if L(X') > L(X) is

cpTy

where ¢, is the Bolzmanns constant and T}, is the tempera-
ture of the system [29]. Furthermore, since there is full
control of the temperature, c, is set to 1. The temperature
decays according to T;,, ; = T}, (1 - @) where « is chosen
according to the size and complexity of the optimization

o p{L(X)L(X)} @)
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problem. In the current study,  was set to 0.01 and T, to
1. Eventually, as the iterations proceed, T, becomes very
low and no further changes occur; at this point, we obtain
one solution to our optimization problem. The initial X
was obtained by first ranking all trees according to their
contribution and then assigning as many contribution
units between the top ranked and the second ranked tree
as possible, i.e. X(1, 2) = £ ,, since ¢ ,< ¢ ;. Then the first
and third ranked trees are assigned contribution units and
so on until all contribution units of the best ranked tree
are assigned. By continuing this procedure, all contribu-
tion units are allocated between all selected trees, even
though it might require adding an extra unit to ¢ of the
penultimate ranked tree. This approximation will most
probably have very little influence on the outcome of the
simulation process. The SA algorithm has been used
extensively for calculating optimal mating schemes in var-
ious breeding situations, e.g. [13,15,30].

Mating strategies
The following mating strategies were compared:

RM - random mating with no constraints on the mating of
relatives. L(X) was set to a constant which was kept
throughout the iteration procedure, leading to all sug-
gested mating changes being accepted. The total number
of changes (iterations in the SA algorithm) was set to 30
000.

PAM - positive assortative mating based on EBV combined
with minimization of variance in family size. Hence, L(X)
consisted of two terms: one computed the difference in
EBV between mating pairs while the other computed the
variance in allocation of contribution units between trees.
A strict PAM scheme with no constraints on the mating of
relatives was implemented first (i.e. only the rank of par-
ents was used), but this lead to very large family sizes,
which severely restricted the OC algorithm.

PAMCM - PAM combined with minimization of coances-
try variance (scheme MCM4), because it is very likely that
close relatives will be mated in a strict PAM scheme. Esti-
mated EBVs tend to be similar within families and there-
fore full-sibs are likely to be adjacent to each other,
particularly at the lower level of heritability considered
here (h2=0.05). As a result, full-sibs will be mated more
often in PAM than in a RM scenario; this could severely
restrict the OC algorithm when selecting from all availa-
ble candidate trees. Therefore, a combination of PAM and
minimization of coancestry variance should lead to a
more appropriate population structure, and resulting in
an improved outcome for the OC algorithm in compari-
son with strict PAM. Here, L(X) contained the same term
as in the PAM scheme (pairwise EBV between potential
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mates) but also minimizing variance in pairwise coances-
try between mates.

MCM1 - standard minimum coancestry mating (MCM),
which assigns mating pairs based on the lowest possible
pairwise coancestry with no additional constraints.
Hence, inbreeding in the offspring generation is mini-
mized. Theoretically, this option should produce the low-
est variance in long term contributions in comparison
with all other schemes since the only aim of the scheme is
to minimize pairwise coancestry between mates. Conse-
quently, the increase in inbreeding of the population will
be minimized [31].

MCM2 - To achieve a more even population structure,
MCM was combined with minimization of variance in
family size. By adding this feature to the standard MCM,
the genetic merit of the breeding population should be
enhanced when using a quadratic selection procedure, as
demonstrated by [13]. L(X) comprised of one term mini-
mizing coancestry between mates (see MCM1) and one
term minimizing variance in family size (see PAM).

MCM3 - MCM combined with minimizing family size,
which would behave in a similar manner to a factorial
mating scheme. It has been predicted that this mating
scheme will decrease inbreeding in animal breeding situ-
ations [32] and reduce the increase in relatedness in tree
breeding [33]. Here, L(X) contained one term minimizing
coancestry between mates (see MCM1) and one term min-
imizing the family size so that as many half-sib families
were created as possible.

MCM4 - here, minimal variance in coancestry was used,
since this option should avoid extreme matings (i.e. full-
sib matings) and therefore, produce a better population
structure. To improve the population structure further, we
added minimization of variance in family size. Conse-
quently, L(X) contained terms that minimized variance in
both pairwise coancestry between mates (e.g. PAMCM)
and in full-sib family size (e.g. PAM).

We ran the SA algorithm with different numbers of itera-
tions and different decreases in temperature, depending
on the ratio of accepted/non-accepted proposals for X. In
one case (i.e. RM), simpler algorithms for computing the
mating scheme may have been more convenient. None-
theless, since we already had the SA algorithm imple-
mented in the simulation program, we choose to utilize it
as much as possible. This also facilitated comparison
between mating schemes because they were all based on
the same algorithm. Mathematical descriptions of the loss
functions that define the mating schemes are presented in
Additional file 2.

http://www.biomedcentral.com/1471-2156/10/70

Long term genetic contribution and Mendelian sampling
term

[34] introduced the concept of long term genetic contri-
bution, r;, which is the proportion of genes, inherited
from ancestor i by a defined generation of descendants.
For a non-random mating population, [31] proved that
the increase in inbreeding, AF, is a function of the sum of
squared long term genetic contributions from ancestors to

ziri2/4’

AF=(1—a)2iri2/4, where « is the departure from

descendants, according to

complete random mating (i.e. deviation from the Hardy-
Weinberg equilibrium). Hence, to minimize the rate of
inbreeding in the population, the sum of squared long
term genetic contributions should be minimized. To esti-
mate 1; for all ancestors i, we used the deterministic

approach proposed by [26]. Since we found a non-zero
variation in r; over different descendants (i.e. the long

term genetic contribution of founders did not converge),
_ N . .
weused 7; = ZH 1/ N where r; is the long term contri-

bution of ancestor i to a particular descendent j and N is
the total number of offspring in the last generation (i.e., N
=5000). Here, we chose the founder population as ances-
tors when estimating 7;.

In selection algorithms using quadratic indices, [31]
defined the expected rate of genetic gain as a function of
the long term genetic contributions of ancestors and their
respective Mendelian sampling term (a)

E(AG) = 2 ra;. 3)

Hence, (3) indicates that accumulated genetic gain in the
breeding population depends on utilization of the Men-
delian sampling term, which corresponds to each individ-
uals' unique contribution to the gene pool. Another
important property of (3) is that the rate of gain in the
population is related to the pedigree (by means of r;),
which is not apparent with the standard quantitative
genetic formula for gain (i.e. the breeders equation [35]).
A convenient mating scheme can, therefore, improve the
rate of gain in the breeding population through better
management of 7. Moreover, [2] demonstrated that when
using quadratic indices, the ideal solution is obtained
when the long term genetic contributions of selection can-
didates are assigned in an exact linear fashion to the best
available estimate of their Mendelian sampling term. The
variation around the regression line of r on a would then
correspond to the departure from the optimal solution
(i.e. the maximum attainable AG given the constraint put
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on relatedness), which [22] used to prove that the selec-
tive advantage is a function of a. We used the following
linear regression to determine the impact of the mating
scheme on the allocation of r on a at generation 7:

1 =b,a, +c+e, (4)

where b, corresponds to the regression coefficient, a, is
the estimated Mendelian sampling term, c is the intercept
and e;~N(0, 0,2) is the residual effect. Only trees having a
positive contribution (i.e., selected trees) were included in
the regression analysis. High values of b,, indicate a less
equal contribution (utilization) of the selected individu-
als [2]. Typically, the value of b,, depends on the restric-
tions placed on relatedness and how the population
structure is improved by the mating scheme.

Simulated data

The infinitesimal genetic model [25] was used to simulate
a tree breeding program over multiple generations. The
initial population of 100 founders was assumed to be in
HW-equilibrium, i.e. unselected and unrelated, where the
true breeding value of founder i was generated from N(O,

o?2) and the phenotypic value was created by adding a
normally distributed environmental deviation to the gen-
otypic value, sampled from N(0, o2 ), where ¢} and o
corresponds to the additive genetic and environmental

variances in the founder population. Initially, o’ was

always 1 while o? varied depending on the level of herit-

ability used in the simulation. Two different levels of her-
itability were evaluated (0.05 and 0.25), and two
constraints on AC were tested (1 and 2%). No systematic
environmental or non-additive genetic effects were simu-
lated. In addition, each founder were crossed with two
other founders according to a double-pair mating design
where each full-sib family contained 50 full-sibs, resulting
in 5000 selection candidates in total. Equal population
size was maintained throughout the simulation. OC selec-
tion was then applied to the breeding population over
seven discrete generations; genetic and population param-
eters were calculated and stored for each generation. The
simulation started at generation zero where the founders
were generated and finished after generation seven. Two
different maximum numbers of crosses (i.e. number of
families) per generation were tested in order to examine
how the different population structures affected the selec-
tion parameters (100 and 400). Since the OC algorithm
required inverting the additive relationship matrix of
available selection candidates, we chose to restrict the

http://www.biomedcentral.com/1471-2156/10/70

number of candidates from each full-sib family according
to their EBV so that the full-sibs having the highest EBV
were available for selection. The number of restrictions on
available full-sibs depended on the constraint on AC and
the available mating scheme under evaluation in the cur-
rent simulation, but varied typically between 5 and 10. To
further improve the speed of the OC algorithm, we imple-
mented the method suggested by [36]. See [9] for an alter-
native selection method based on the simulated
annealing approach that avoids inversion of the relation-
ship matrix. The candidate trees were then mated accord-
ing to X, obtained from the SA algorithm, creating new
selection candidates. During generation t, the additive val-

ues of the offspring were sampled from

MVN ( BV, A2 ) , where BV, is a vector containing the

average true breeding values of the parents in the order
5000 x 1 (i.e. one element for each candidate tree), and A,

is the additive relationship matrix between candidates in
the order 5000 x 5000. EBV and genetic variance compo-
nents were estimated for each generation using the indi-
vidual tree model [37,38]. The software used in the
genetic evaluation procedure was ASReml [39]. In addi-
tion, the deviation from H-W equilibrium at generation t,

a,, was computed using Wright's F-statistics [40]

(-a)=0-F)/(1~k), (5)

where k, is the average pairwise coancestry and F, is the
average inbreeding coefficient in the selected population.
F, and k, were obtained from the additive relationship
matrix at generation t. After completing seven generations
of selection, the long term genetic contributions of the
founders were estimated by using the algorithm suggested
by [26] and all additive effects (i.e. true breeding values)
were stored. In total, 100 replicates were generated and
median values of the parameters of interest were calcu-
lated.
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