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Abstract

High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be
ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing
variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant
function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop
(GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by
PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and
adjusting the significance level for correlations between variants yielded significant associations with blood pressure
traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027
in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with
systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart
from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively
weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for
FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting
variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common
variants, which was observed to depend on linkage disequilibrium structure.

Background
With the availability of very dense genetic marker data
sets, such as sequence data, even large association stud-
ies can become underpowered. This raises the need to
filter, or prioritize, or jointly test genetic variants.
Filters or priors on genes may be derived from methy-

lation or expression data if available in the same individ-
uals. Alternatively, one may use external information.
Recently, multiple annotation tools have become available
using several databases and algorithms that predict

functional effects of genetic variants. Commonly used are,
for example, ANNOVAR (Annotate Variation) [1], Var-
iantTools [2], PolyPhen [3], SIFT (Sorting Intolerant From
Tolerant) [4], ENCODE (Encyclopedia of DNA Elements)
[5], RegulomeDB [6], CADD (Combined Annotation-
Dependent Depletion) [7], or Gerp++ [8]. Tools like
ANNOVAR additionally provide variant annotation to
genes and to regions such as conserved regions among
species, predicted transcription factor binding sites, and
segmental duplication regions. Many of the above-listed
tools also provide information on regulatory elements
that control gene activity. This article demonstrates
that functional scores can contribute to the success of
association studies. Simultaneously, functional scores may
differ substantially between databases and prediction tools
as they can be based on different functional aspects.
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Additionally, variant annotations to chromosomal positions
continue to be updated with the National Center for Bio-
technology Information (NCBI) [9] human genome build
as standard. Furthermore, variants can be annotated to
genes based on different sources, such as ENSEMBL [10],
Vega [11], GENCODE [12], and many more. Researchers
also use a variety of definitions of flanking regions. Finally,
genes may be grouped by function or biological pathway,
again with substantial variability between data bases such as
KEGG [13], Biocarta [14], or Pathway Interaction Database
[15]. This article discusses approaches that filtered or prior-
itized genetic variants, regions, or genes. Pathway-based
approaches, although also incorporating filters or priors,
are discussed separately by Kent [16].
Many researchers filter genetic variants. The simplest

forms of filters are minor allele frequency (MAF), candidate
genes or variants, or considering the exome. Filters and
statistical models are chosen to increase the power under a
hypothetical disease model. The advent of sequencing
renewed interest in disease mechanisms less frequent but
more penetrant than common single nucleotide polymor-
phisms (SNPs) of genome-wide association studies
(GWAS). This led, for example, to screening for recessive
variants by examining runs of homozygosity [17, 18]. When
multiple rare causal variants cluster within a gene, identity-
by-descent (IBD) mapping may be more powerful than
single-locus association testing [19]. IBD mapping can be
used in 2-step approaches. For example, Balliu et al [20]
identified regions where hypertension cases shared more
segments of IBD than controls in one part of the sample.
They modeled aggregate effects of each of these regions on
blood pressure (BP) in the sample remainder. Aggregation
tests are used especially for testing rare single-nucleotide
variants (SNVs). Aggregation tests are burden tests,
variance-component tests, or a combination of both, such
as SKAT-O (optimal unified sequence kernel association
test) (see, eg, Lee et al [21] for a review). Kernel-based
approaches (see Schaid [22] for a review) such as the
sequence kernel association test (SKAT) [23] are variance-
component tests. Examples of genetic burden tests are T5,
combined multivariate collapsing (CMC) [24], or C-α [25];
see also Santorico et al [26]. Aggregation tests can prioritize
SNVs by weighting minor allele dosages in the test statistic.
Typical weights account for MAF, but may also incorporate
putative functional relevance of SNVs [27, 28]. Moreover,
weights may be used to combine aggregation test statistics
[21, 29, 30], and one may weight p values while controlling
the false discovery rate (FDR) [31, 32]. For example, GWAS
p values may be weighted based on functional annotations.
For aggregation tests on genes, p value weights can be uti-
lized to integrate gene expression or other omics data [33].
This article summarizes contributions of the Genetic

Analysis Workshop (GAW) 19 group on filtering vari-
ants and placing informative priors (Tables 1 and 2).

These investigations found that improving SNV grouping
or selection can noticeably increase power. Moreover, in-
cluding functional scores or gene expression data as filters
or weights on variants, genes, or when combining test
statistics assisted in detecting associations. Some con-
tributions also exploited SNV correlations to increase
power or improved the multiple-testing adjusted sig-
nificance threshold by accounting for SNV correlations.

Materials
Analyzed data were provided by GAW 19 and included
a family sample (n = 959) with extended pedigrees of
Mexican Americans from the San Antonio Family Heart
Study (SAFHS) and the San Antonio Family Diabetes/
Gallbladder Study (SAFDS/ SAFGS) [34]. The family
sample also contained 103 unrelated sequenced subjects;
259 subjects had gene expression data. This study was
designed to identify low-frequency or rare variants influ-
encing susceptibility to type 2 diabetes (T2D) as part of
the T2D Genetic Exploration by Next-generation sequen-
cing in Ethnic Samples (T2D-GENES) Consortium. Pheno-
types included real and simulated longitudinal systolic (SBP)
and diastolic blood pressure (DBP) and hypertension (HT)
status. Available were sequence for 464 pedigree members
and GWAS SNPs for all 959 subjects. Additionally, all sub-
jects were imputed to sequence based on original genotypes
and familial relationships [34]. Approaches described herein
mostly analyzed imputed dosages to avoid missing geno-
types and to maximize sample size. Zhang et al [28] ana-
lyzed the GAW19 sample of 1943 independent Hispanic
subjects with whole exome sequence. This sample had been
ascertained by T2D status. However, GAW19 provided real
and simulated cross-sectional BP traits instead [35], using
the same trait-simulation model as for the family study.
All approaches described herein are nonlongitudinal

analyses of BP traits (SBP, DBP, or HT) in relation to minor
allele dosages of sequence SNVs or genome-wide SNPs.

Methods
Statistical methods employed by this group (see Table 1)
to incorporate filters or informative priors are mostly
based on regression models [27, 30, 33, 36, 37]; one is
also based on counting methods [28]. Analyses of family
data adjusted for familial dependence based on the kin-
ship matrix. They included the familial covariance in a
linear mixed model [27, 30, 36] or transformed the trait
to a conditionally independent surrogate variable [33].
Analyses of independent subjects accounted for popula-
tion structure (cryptic relatedness and admixture) [37]
by using the programs Eigensoft [38] and Admixture [39].

Annotating genetic variants for location and function
A variety of freely available genetic databases and highly
developed software tools support annotation of location
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and biological function of SNVs. In our group, SNV loca-
tions were obtained by ANNOVAR [28, 36] or determined
based on reference data, for example, from the Genome
Reference Consortium [40] or the International Haplotype
Map (HapMap) Consortium [41] [30, 37]. Reference data
were also used to determine linkage disequilibrium (LD)
blocks [30] with Haploview [42].
Kim and Wei [27] and Almeida et al [36] used functional

annotations from ENCODE, PolyPhen or PolyPhen2, and
SIFT, while Liu et al [37] used CADD. In contrast, Zhang
et al [28] annotated putative protein binding sites based on
2 different algorithms using random forest classifiers [43].

Filtering genetic variants
Not all areas of the genome were studied. Some
researchers filtered the data prior to analyses. Zhang
et al [28] investigated exome sequence and Almeida et al
[36] molecularly functional nonsynonymous SNVs pre-
dicted by PolyPhen and SIFT. Liu et al [37] examined
IBD sharing regions on chromosome 3. Malzahn et al
[30] considered gene-containing LD blocks for selected
candidate genes. Ho et al [33] analyzed rare SNV burden
in genes containing less than 50 and more than 1 rare
SNV (MAF <0.01).

Accounting for correlations between genetic variants
An important difference between methods is that variant
correlations can either be a nuisance or may be used to in-
crease power. For example, IBD mapping exploits variant
correlations. IBD mapping can be more powerful than
single-locus association testing when multiple causal rare
variants cluster within a gene [19]. Therefore, Liu et al
[37] tested the relationship between IBD sharing status
and trait differences and sums for pairs of individuals.
Moreover, the power of kernel methods such as SKAT
may be increased through the exploitation of variant cor-
relations [44]. This ability can be utilized fully by analyzing
LD blocks [30]. On the other hand, single-locus methods
need to account for variant correlations to appropriately
correct the significance level for multiple testing. Hence,
Almeida et al [36] determined the effective number of
independent tests by extreme value theory based on
replicates of a simulated unassociated trait.

Correcting the significance level for the number of
independent tests
The significance level used with multiple testing is al-
ways an issue as too conservative a correction will cause
false negatives and not correcting enough will cause false
positives.

Table 1 Statistical tests and analyzed data

Marker data Data set Statistical tests Covariates Trait(s)

Almeida et al [36]

Sequence Family study Single-variant regression in
SOLAR

Smoking, BP medication, PC1-3,
sex, age, age2, sex*age, sex*age2

Real SBP and DBP at first time
point, own simulated trait for H0

Liu et al [37]

Chr3: GWASmp
and sequence

Unrelated individuals
(from family study)

Regress pairwise DBP residual
difference and sum on IBD
sharing status; sequence data
analyses by SKAT-O

Sex, age, smoking, PC 1-3 Real DBP at first time point

Kim and Wei [27]

Sequence Family study Informative SNV weights in
burden test T5 and SKAT;
with R: seqMeta

Age, sex, smoking, BP
medication

Real SBP at earliest available
measurement

Zhang et al [28]

Exome
sequence

Unrelated individuals
(large Hispanic sample)

LRT, C-α, CMC on informatively
weighted SNV burden

None Simulated HT status; real SBP, DBP
with cutoffs for case-control status

Malzahn et al [30]

Sequence and
GWASmp

Family study SKAT with R (coxme, kinship2,
QuadCompForm); strategies
for joint testing of rare and
common SNVs

Sex, age, sex*age; subjects not
on BP medication

Real and simulated SBP at first
time point

Ho et al [33]

Sequence and
GWASmp

Family study, including
gene expression data

Seq-aSum-VS burden test;
regression on gene expression
data; gene set enrichment
analysis

PC1-3 Average real SBP and DBP

BP blood pressure, Chr Chromosome, CMC Combined multivariate collapsing, DBP diastolic blood pressure, GWASmp genome-wide association study marker panel,
HT hypertension, IBD identity-by-descent, LRT likelihood ratio test, PC principal component, SBP systolic blood pressure, SKAT sequence kernel association test, SNV
single nucleotide variant, Seq-aSum-VS sequential sum
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Almeida et al [36] adjusted the significance level for
single locus analyses by estimating the number of inde-
pendent tests [45]. A total of 1000 replicates of a quanti-
tative phenotype with no genetic effects were simulated
and tested on whole genome sequence data, using linear
mixed models in SOLAR (Sequential Oligogenic Linkage
Analysis Routines) [46]. The smallest p value per simula-
tion run was extracted. The density of these 1000 extremely
small p values was fitted to a theoretical beta distribution
beta(1,ne) where ne is the effective number of independent
tests [47]; yielding the adjusted significance level a� ¼ 0:05

ne
.

This procedure was applied to both whole genome se-
quence and functional nonsynonymous SNVs.

Identity-by-descent mapping
IBD mapping aims to detect loci sharing ancestral segments
in unrelated individuals. In particular, unrelated subject-
pairs with smaller trait differences are expected to share
significantly more rare causative variants than pairs with
larger trait differences. Liu et al [37] estimated IBD sharing
segments with BEAGLE [48]. The squared trait difference
(D) and squared trait sum (S) for trait DBP between pairs

of unrelated subjects was regressed on IBD sharing status.

This yielded parameter estimates for slopes ðβ̂ S; β̂DÞ and
variances (σS

2, σD
2 ), which were combined into an overall slope

estimate β̂ ¼ σ2D
σ2Sþσ2D

� �
β̂ s þ σ2S

σ2Sþσ2D

� �
β̂D. Linkage was tested

with test statistic t ¼ β̂

SE β̂ð Þ under the null hypothesis of an

overall slope of zero [37]. The significance threshold for non-
independent pairs was estimated by permutation procedure.

Priors on genes and variants
Genetic priors can be incorporated by variant weights in
aggregation tests such as burden tests or SKAT [21].
Burden tests collapse minor allele dosages xik of a set of
i = 1,…,m variants into a burden score sk = ∑i = 1

m ωixik per
individual k using a priori specified variant weights ωi.
One tests trait association with genetic burden sk. Al-
though burden tests are powerful when causal SNVs
have the same effect direction, SKAT is more powerful
when effect directions differ or if many noncausal SNVs
are included in testing [21, 49]. SKAT is based on an
underlying Bayesian model that estimates a random ef-
fect per SNV [50]. Specified is a kernel matrix of genetic

Table 2 Filters, priors, and findings

Filter Prior Conclusions Annotation

Almeida et al [36]

Functional annotation, LD-corrected
effective number of tests

None LD-correction in WGS reduces
multiple-testing burden by 85 %,
significant associations: PFH14
with SBP, MAP4 with DBP

Location: ANNOVAR; functional
annotation: PolyPhen, SIFT

Liu et al [37]

IBD sharing None No significances, ZPLD1 had
strongest evidence

IBD mapping: BEAGLE; functional
annotation: CADD

Kim and Wei [27]

Sliding window on MAF ≤5 % SNVs SNV-weights: based on MAF
or regulatory importance

Significant association: SNUPN Functional annotation: ENCODE,
RegulomeDB, PolyPhen2

Zhang et al [28]

Genes, exome-sequence SNV-weights: up-weight protein
binding sites, apply direction
weights

Top-ranked genes differ between
weighted burden tests LRT, C-α,
CMC; but good overlap with
literature

ANNOVAR, variant tools; random
forest classifiers assign SNVs to
protein binding sites; DSSP, PSAIA,
DOMINO

Malzahn et al [30]

Gene covering LD-blocks SNV-weights: using MAF SKAT: power depends on SNV
weights, exploiting LD is very
beneficial, optimal strategy for
joint testing rare and common
SNVs depends on LD structure

Haploview with HapMap data for
LD-calculation

Overall weight: on rare SNV
variance component in SKAT

Ho et al [33]

Rare SNVs in genes with >1 and <50
rare SNVs (MAF < 0.01)

p value weights: improve gene
ranking

Power of burden tests improved
by incorporating phenotype
associated gene expression into
p value weights

Genes: hg19; GO biological process
categories

CADD combined annotation dependent depletion, DBP diastolic blood pressure, DOMINO database of domain–peptide interactions, DSSP define secondary structure of proteins,
ENCODE encyclopedia of DNA elements, GO gene ontology, IBD identity-by-descent, LD linkage disequilibrium, MAFminor allele frequency, PSAIA protein structure and interaction
analyzer, SBP systolic blood pressure, SIFT sorting intolerant from tolerant, SKAT sequence kernel association test, SNV single nucleotide variant,WGS whole genome sequence
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between-subject similarity and this kernel constitutes a
prior on genetic model space [51]. SNV weights are incor-
porated in the kernel (see, eg, Malzahn et al [30]).
Typically, rarer SNVs get assigned more weight to coun-

terbalance their reduced power compared to more frequent
SNVs. Used are, for example, weights ωj ¼ 1

MAFj 1−MAFjð Þ
[52], inverse MAF weights ωj ¼ 1

MAFi
, or beta-weights such

as ωj = b(MAFi) [23], where b is the probability density
function of a beta(1, 25) random variable. Malzahn et al
[30] compared the power of SKAT when using different
SNV weights and different kernel functions that either
allow or do not allow for SNV interactions in the genetic
model. Alternatively, SNV weights may be based on regula-
tory importance [27] or protein binding effects [28].

Incorporating functional information into variant weights
Kim and Wei [27] categorized SNVs according to Regulo-
meDB and PolyPhen2 functional relevance scores. SNV
weights were defined based on f(s) = S2 where s equaled
the reverse order of categories, namely s = 6, 5, 4, 3, 2, 1
for category 1 (“most likely affecting binding and expres-
sion”) to category 6 (“not functionally relevant”). Kim and
Wei [27] tested rare SNVs jointly, in sets defined by slid-
ing windows of 4 kb size, for association with SBP. They
compared the power of SNV weighting schemes in SKAT

(ωj ¼
ffiffiffiffiffiffiffiffiffiffi
f sj
� �q

versus ωj = b(MAFj)), and burden test T5

(ωj = f(sj) versus ωj ¼ 1
MAFj 1−MAFjð Þ). SKAT and T5 provide

analytical asymptotically exact p values with good small
sample size behavior.
Zhang et al [28] used a likelihood ratio test (LRT) [53]

to test if the proportion of subjects with an informatively
weighted minor allele burden exceeding a given thresh-
old differed between HT cases and controls. P values
were obtained by permutation procedure. SNV weights
ωi accounted for putative effect direction and distin-
guished between functional SNVs in binding-sites (|ωi|
= 10), not in binding-sites (|ωi| = 5), and nonfunctional
SNVs (|ωi| = 1). The informatively weighted LRT was
compared with C-α and CMC burden tests.

Optimal joint testing of rare and common variants
When not filtering for rare or common SNVs, optimal
joint testing of both becomes an issue. Suppose, one com-
puted 2 SKAT statistics, Qrare and Qcommon, separately on
rare SNVs and common SNVs, in the same region of
interest, for the same trait, based on the same genetic null
model. As SKAT is a variance-component test, combining
Qrare and Qcommon [29]

Qws ¼ 1−λð Þ⋅Qrare þ λ⋅Qcommon ð1Þ
weights the rare SNV variance-component by overall a
priori weight (1-λ) relative to the common SNV variance-

component (see Ionita-Laza et al [29] and Malzahn et al
[30] for choices of λ). The weighted sum test (1) is another
way of structuring a prior in SKAT. Note that Qrare and
Qcommon may use different kernel functions or different
SNV weights. Malzahn et al [30] compared this form of
joint testing of rare and common SNVs with the default
choice of entering all SNVs with appropriate weights into
a single kernel. Exact p values for SKAT and weighted sum
test (1) were obtained by Davies method [54]. Another
investigated alternative was Fisher pooling of the corre-
lated p values resulting from the separate rare SNV and
common SNV SKAT statistics. Fisher pooling accounted
for correlations by Satterthwaite approximation and
Brown’s method ([55]; see also [29, 30]).
Note that analogously to equation (1), SKAT-O combines

SKAT and burden tests with statistic Q = (1 − ρ)QSKAT +
ρQburden where 0 ≤ ρ ≤ 1 [56].

Informed p value weighting for genes
Ho et al [33] obtained gene-wise p values, pg , for associ-
ation of average BP T with rare SNV burden sg in genes
g that had more than 1 and less than 50 rare SNVs
(MAF <0.01)

Tebs;g⋅sg ð2Þ
Restricting the number of rare SNVs avoids collapsing

too many null variants. Ho et al [33] used the sequential
sum test [57], which data-adaptively assigned SNV weights
ωi = 0, 1, − 1. Earlier, Genovese et al [31] and Roeder and
Wasserman [32] had proven that informative weighting of
p values

pg
νg

with weights vg > 0; �vg ¼ 1 maintains proper

FDR control; where
pg
νg
≤αFDR means significance. Ho et al

[33] determined such weights vg as follows. They tested if
rare minor allele burden s�g (with SNV weights ωi = 1, for

simplicity) also associated with gene expression Eg

EgjT e bE;g⋅s�g þ c⋅T ð3Þ

and further if gene expression Eg associated with trait
value T

T js�g e bT ;g⋅Eg þ d⋅s�g ð4Þ

Association tests (2) to (4) were made conditionally
independent by adjusting test (3) for trait value T and
test (4) for rare minor allele burden s�g (Fig. 1). P

value weights νg ¼ ν�g �v�g were derived as ν�g ¼ max

^bE;g
SE ^bE;gð Þ
� �2

� ^bT ;g
SE ^bT ;gð Þ
� �2

 !
where the maximum was

over all gene expression measurements and �v�g was

the average of all ν�g.
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Results and discussion
The results for this GAW19 working group varied widely
as a result of the different objectives of each contributor.
Table 2 provides a brief summary of specific results.
Under H0, extreme p values follow a beta distribution

[47]. Almeida et al [36] reported that the beta distribu-
tion provided an excellent fit to determine the effective
number of independent tests ne for n single-locus tests.
For whole genome sequence, ne

n ¼ 15%; that is, account-
ing for LD reduced the multiple-testing burden by 85 %.
However, significant associations could only be found
when LD-correcting the significance level after a priori
reducing sequence data based on functional annotations.
Then 2 SNPs were detected: rs218966 in gene PHF14 as-
sociated with SBP and rs9836027 in MAP4 associated
with DBP.
Liu et al [37] scanned chromosome 3 (GWAS data)

for IBD sharing segments that associated with DBP. No
genome-wide significance was found. However, several
risk variants were detected in the region of gene ZPLD1
by using CADD functional scores and sequence for the
most promising region at 3q12.3.
In the GAW19 trait simulation model, SNV effect

sizes were based on PolyPhen2 functional prediction
scores (Fig. 2) [35]. In Figs. 2 and 3, displayed SNV ef-
fects, PolyPhen2 scores, and the assignment to positions
and genes (NCBI build37, human genome build 19)
came from the simulation answers. To illustrate differ-
ences between functional annotations, SIFT scores (and
rs-numbers) were added by annotating sequence (variant
call format [vcf] files) with ANNOVAR and merging vcf
files and simulation answers by chromosome and position.
RegulomeDB scores were merged by dbsnp138 rs-identifier.
Furthermore, functional scores were transformed to have

the same directionality (Fig. 3). Different functional annota-
tions focus on different information about SNVs and only
annotate selected SNVs. PolyPhen2 and SIFT both annotate
nonsynonymous coding SNVs by a metric score that can be
categorized to distinguish benign mutations from damaging
ones affecting protein function. Nevertheless, PolyPhen2
and SIFT scores differ to a substantial extent in value and
category (Fig. 3a). RegulomeDB annotates regulatory SNVs
by an ordinal score ranging from the highest evidence
(eQTL, expression quantitative trait locus) to the low-
est. Figure 3c illustrates that some SNVs were rated to
affect gene expression and transcription factor binding
(RegulomeDB scores 1 to 5) but not the protein func-
tion (scored “benign” by PolyPhen2). For simulated BP,
SIFT and RegulomeDB annotations yield mismatched
filters or priors whenever they deviate from the Poly-
Phen2 score used to simulate SNV effects. For example,
SIFT annotated some SNVs with large effects in gene
TNN as benign mutations (Fig. 3b) and only few SNVs
in associated genes were rated to be of regulatory im-
portance (Fig. 3d). Nevertheless, for real SBP, several
multiple-testing adjusted significant windows (2 with
SKAT, 4 with burden test T5) were only found when in-
cluding RegulomeDB scores as variant weights for rare
SNV analysis [27]. One of these regions contained
SNUPN [27] which is a novel finding not previously re-
ported to associate with BP. T5 and SKAT maintained the
nominal significance level on simulated unassociated trait
Q1 also when incorporating RegulomeDB scores into vari-
ant weights [27]. Kim and Wei [27] and Zhang et al [28]

Fig. 1 Informed p value weighting for genes based on conditionally
independent associations between rare variant burden, gene expression,
and trait. The p value weight vg was defined as the product of the
association strengths of rare SNV burden with gene expression and
gene expression with trait value

Fig. 2 SNV effect sizes on GAW19 simulated DBP increase with
increasing PolyPhen2 scores. Depicted are 6 genes with a range of
SNV effect sizes that could be simultaneously displayed. Symbols
depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥),
MUC13(✷), CGN(■)
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both recommended using relatively big differences in SNV
weights distinguishing functional from nonfunctional
SNVs. Zhang et al [28] observed that different burden
tests with functionally informative SNV weights yielded
different top ranked genes. Although no gene was signifi-
cant, many of them had been reported in the BP literature
before. For SKAT, Malzahn et al [30] found that variant
weights, but not kernel choice, had a strong influence on
power, for rare as well as common SNVs. Kernel methods
may gain power by exploiting SNV correlations. This can
be utilized fully by analyzing LD blocks [30]. LD structure
also influenced which strategy yielded the best joint test of
rare and common SNVs with SKAT [30].
When using gene expression data to informatively

weight gene-wise p values for association of rare SNV

burden with BP [33], 153 genes (out of 6118) reached
nominal significance (weighted p ≤0.05). P value
weights were determined such that evidence for pheno-
type associated gene expression lowered burden test
p values. As no gene reached multiple-testing adjusted
significance, Ho et al [33] used gene set enrichment
analysis as aggregation test to relate the 153 top genes
to biological pathways.

Conclusions
All analyses presented herein used a cross-sectional de-
sign by analyzing trait data of the first examination, the
first available examination, or longitudinally averaged
traits. This mainly contributed to differences in sample

Fig. 3 Comparison between the PolyPhen2, SIFT, and RegulomeDB functional prediction scores. Left column: Correlation of PolyPhen2 functional
prediction scores with (a) SIFT or (c) RegulomeDB scores. Functional scores were transformed to have the same directionality. Nonsynonymous
coding SNVs that alter the protein function should receive a PolyPhen2 score of 1 and a SIFT score of 0. Scores are metric and can be categorized as
displayed. RegulomeDB annotates regulatory SNVs by an ordinal score ranging from the highest evidence (eQTL, expression quantitative trait locus) to
the lowest. Right column: Filters or priors based on (b) SIFT or (d) RegulomeDB functional scores are partially mismatched on GAW19 simulated DBP.
Symbols depict SNVs in the same gene: LEPR (▲), TNN (♣), HIF3A (●), MAP4(♥), MUC13(✷), CGN(■)
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size and trait variability. Furthermore, analyzing trait
values at different time points may affect the marginal
effect of genes that interact with age.
Including biological knowledge increased the power of

association studies performed in our GAW group; espe-
cially filtering variants based on putative functional rele-
vance. Prior weights can be included at different stages
of the testing procedure. They can be incorporated into
the test statistic of SKAT or burden tests, used when
combining test statistics, or applied to association test p
values. Selecting variant-sets also should take genetic struc-
tures into consideration, such as LD or IBD sharing. More-
over, the effective number of independent tests can be
determined relatively easily by extreme value theory. This
enables appropriate adjustment of the significance level for
multiple testing to avoid an overly conservative approach.
Ideally, variant grouping and selection, inclusion of bio-
logical information, and significance level adjustment can
be applied simultaneously. Strategies like these are useful
in increasing power in analyses of highly dense genetic data
sets.
Filtering variants clearly boosted power in the discussed

studies. However, filtering might also lose information.
Functional scores such as PolyPhen2, SIFT, CADD, or
RegulomeDB differ as they focus on different information
about SNVs. Moreover, appropriateness of functional
scores for a considered trait is a priori unknown. Hence,
one is well advised to use and combine multiple functional
annotations into a single filter or prior. This is feasible
as functional annotations yield strong filters that greatly
reduce the SNV space.
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