
PROCEEDINGS Open Access

Longitudinal analytical approaches to
genetic data
Yen-Feng Chiu1, Anne E. Justice2 and Phillip E. Melton3*

From Genetic Analysis Workshop 19
Vienna, Austria. 24-26 August 2014

Abstract

Background: Longitudinal phenotypic data provides a rich potential resource for genetic studies which may allow for
greater understanding of variants and their covariates over time. Herein, we review 3 longitudinal analytical approaches
from the Genetic Analysis Workshop 19 (GAW19). These contributions investigated both genome-wide association
(GWA) and whole genome sequence (WGS) data from odd numbered chromosomes on up to 4 time points for blood
pressure–related phenotypes. The statistical models used included generalized estimating equations (GEEs), latent class
growth modeling (LCGM), linear mixed-effect (LME), and variance components (VC). The goal of these analyses was to
test statistical approaches that use repeat measurements to increase genetic signal for variant identification.

Results: Two analytical methods were applied to the GAW19: GWA using real phenotypic data, and one approach to
WGS using 200 simulated replicates. The first GWA approach applied a GEE-based model to identify gene-based
associations with 4 derived hypertension phenotypes. This GEE model identified 1 significant locus, GRM7, which
passed multiple test corrections for 2 hypertension-derived traits. The second GWA approach employed the LME to
estimate genetic associations with systolic blood pressure (SBP) change trajectories identified using LCGM. This LCGM
method identified 5 SBP trajectories and association analyses identified a genome-wide significant locus, near ATOX1 (p
= 1.0E−8). Finally, a third VC-based model using WGS and simulated SBP phenotypes that constrained the β coefficient
for a genetic variant across each time point was calculated and compared to an unconstrained approach. This
constrained VC approach demonstrated increased power for WGS variants of moderate effect, but when larger genetic
effects were present, averaging across time points was as effective.

Conclusion: In this paper, we summarize 3 GAW19 contributions applying novel statistical methods and testing
previously proposed techniques under alternative conditions for longitudinal genetic association. We conclude that
these approaches when appropriately applied have the potential to: (a) increase statistical power; (b) decrease trait
heterogeneity and standard error; (c) decrease computational burden in WGS; and (d) have the potential to identify
genetic variants influencing subphenotypes important for understanding disease progression.

Background
Analysis of longitudinal measurements in genetic epidemi-
ology provides a methodological strategy for the under-
standing of changes affecting long-term averages and
changes in complex disease phenotypes over time. The
design of these longitudinal studies may provide additional
phenotypic information regarding age of onset, allowing for

more precise definition of complex disease status. Inclusion
of repeat measurements potentially allows for an increased
understanding of the trajectory of traits and disease pro-
gression. Finally, longitudinal studies permit the perspective
measurement of time-varying covariates and potential
interactions that are not accounted for in traditional genetic
studies focused on an individual time point [1].
In addition to these advantages, there are challenges in

the appropriate statistical methodology and interpretation
of longitudinal data. Repeat measurements from the same
subject are often correlated and those statistical models that
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assume independent measurements are inappropriate. In
family-based genetic studies, correlation among family
members also needs to be considered [2]. The inclusion of
collapsed summary statistics (ie, average of repeat measure-
ments, slope) or repeat measurements for each individual
needs to be carefully considered. Finally, the computational
routines utilized need to be properly evaluated, as advanced
statistical methods such as generalized estimating equations
(GEEs) and linear mixed-effect (LME) models that account
for the addition of pedigree structure may not be scalable
to large genetic data sets.
A number of recent genetic epidemiological studies have

used longitudinal measurements in order to take advantage
of repeat measurements of time-varying variables [3–6].
These studies have focused on the application of current
high-density genotype and simulated data to assess the stat-
istical power and accuracy of including repeat measure-
ments in genetic studies. In addition, participants in 3
previous Genetic Analysis Workshops (GAWs)—GAW13,
GAW16, and GAW18—have sought to develop statistical
approaches to observed and simulated repeat measure-
ments [2, 7–9]. All these previous GAW groups presented
a heterogeneous range of statistical methods for longitu-
dinal analysis. The GAW13 group investigated phenotypic
and genetic data from the Framingham Heart Study (FHS)
families and categorized 13 contributions into 2 basic
approaches: (a) 2-step modeling, where repeat measure-
ments were collapsed to 1 summary statistic per individual
(ie, average, slope) and this statistic was used in standard
univariate statistical models; and (b) joint modeling, where
model parameters were estimated simultaneously. For sum-
mary statistic collapsing, they found that the mean-type
statistic provided greater statistical power than the slope-
type statistic [8]. The GAW16 group also investigated FHS
family data focusing on single nucleotide polymorphism
(SNP) genotypes and cardiovascular-related phenotypes.
They did not divide their approaches into hierarchical
subdivisions, but concluded that the precision of the
genetic effects on the phenotype is improved with the
incorporation of longitudinal data [9].
Two GAW18 groups investigated longitudinal mea-

surements, with one group focused on methods using
genome-wide association (GWA) SNPs and a second
group focused on whole genome sequence (WGS) data or
a combination of GWA and WGS. Both of these groups
used blood pressure phenotypes from the Type 2 Diabetes
Genetic Exploration by Next-Generation Sequencing in
Ethnic Samples (T2D-GENES) consortium. In addition,
for GAW18, there was a limited sample of unrelated
individuals [2, 7]. The GAW18 GWA group focused on 8
longitudinal methods and their comparison with univari-
ate association models. They found that missing data and
limited sample size were the most common challenges
and that this led to little concordance of the findings

across groups [7]. The GAW18 WGS and GWA group
categorized 8 contributions into 2 broad groups based on
handling of dependence structures: (a) LME, where
random effects are used to capture dependence structures;
and (b) variance component (VC) models, where depend-
ence structures are constructed based on multiple compo-
nents of VC matrices for the multivariate Gaussian
response. In this group, there was little consensus on
overall findings, a result of the heterogeneous nature of
the contributions, but they came to 3 conclusions: (a) stat-
istical power can be gained with longitudinal measure-
ments; (b) inclusion of family structure allows for more
accurate genotyping and detection of rare variants; and (c)
fitting LME and VC models for repeat measurements
presents computational challenges [2]. The common
nature of all previous GAW longitudinal groups was the
variety of statistical procedures applied, which often did
not allow for direct comparison of results across the
different models. This heterogeneous nature of statistical
approaches for longitudinal data in previous GAWs, with
no standard procedure used for comparison, is a potential
reason for the lack of utilization of these proposed
methods outside of statistical genetic workshops.
In this paper, we summarize 3 GAW19 contributions

(Table 1) that are focused on the development of statis-
tical methods using repeat measurement and either
GWA [10, 11] or WGS [12]. Similar to previous GAWs,
investigators in this group applied a variety of statistical
approaches and strategies to deal with the advantages
and challenges incorporating longitudinal measurements
mentioned above. The focus of our GAW19 working
group was on the use of statistical procedures to identify
either common (GWA) or rare (WGS) variants associated
with phenotypic variation using repeat measurements. All
of these discussed contributions used pedigree-based in-
formation, as only the family-based data contained repeat
measurements. The 2 GWA contributions analyzed the
real GAW19 data [10, 11], while the WGS contribution
used the simulated GAW19 data set [12] with prior know-
ledge of the answers.

Methods
GAW19 data
GAW19 data utilized a format similar to that used in
GAW18 [13, 14], with corrections on a few individuals’
phenotypes and the inclusion of transcriptomic probes
from the microarray. It included a real and a simulated
data set of 200 phenotype replicates. The real data set
was provided by T2D-GENES and included information
from 20 Mexican American families, with WGS for 464
selected individuals and approximately 500,000 GWA
SNPs for 959 pedigree members. Real phenotypes in-
cluded sex, along with repeat measurements from 4 exam-
inations for systolic (SBP) and diastolic blood pressure
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(DBP), age, year of examination, antihypertensive medica-
tion use, and current tobacco smoking status. The average
follow-up interval between 2 visits was 5.27 years. The
missing frequency of hypertension status/blood pressure
at the 4 visits was 17 %, 40 %, 40 %, and 76 %, respectively.
Simulated WGS data, cleaned of Mendelian errors,

were provided for 959 individuals (464 directly se-
quenced and the remaining imputed) for 8,348,674 vari-
ants from odd-numbered autosomes and did not include
structural variants. The 200 simulated replicates in-
cluded phenotypic measurements from 3 time points
generated using the same pedigree structures and the
same 849 individuals who had both phenotype and im-
puted sequence data in the real data set. For individuals
not examined at all-time points in the real data set,
missing ages at exam were filled in by adding or sub-
tracting 3.9 years between exams 1 and 2 and/or
6.9 years between exams 1 and 3. Information regarding
SBP, DBP, hypertension diagnosis, medication use, and
tobacco smoking were generated for each simulation
replicate.

GAW19 approaches
Genome-wide association
In the first GWA approach, Chiu et al. [10] developed a
multipoint linkage disequilibrium (LD) mapping method
to localize disease susceptibility loci using chromosome
3 GWA SNPs (see Table 1). Their model accounted for
correlations between subjects in families, between
markers, and repeat measurements within subjects, sim-
ultaneously using the GEE approach [15, 16]. An inde-
pendent working correlation matrix was assumed in
GEEs. Four different ways of defining hypertension phe-
notypes were evaluated: (a) ever having hypertension
(Ever); (b) incidence event with status changed from un-
affected to affected (Progression); (c) first available visit
as baseline only (Baseline); and (d) all available time
points (Longitudinal). They compared the estimates of
the disease locus positions, their standard errors, the
genetic effect estimate at the disease loci, and their sig-
nificance for the 4 phenotypes to examine the efficiency
gained from using repeatedly measured phenotypes. In
this approach, genotypes are treated as random. Given
the phenotype, these missing GWA SNPs are presum-
ably independent of the phenotype, making missing
completely at random (MCAR) a legitimate assumption.
In the second GWA approach, Justice et al. [11] aimed

to identify susceptibility loci associated with SBP change
trajectories. All subjects with at least 2 measurements
were included, assuming missing data were MCAR. First,
the structural equation modeling (SEM) implemented in
Mplus v7.11 [17] was used to identify covariates in esti-
mating the SBP change trajectories while taking into ac-
count potential genetic effects using SNPs previously

identified for SBP, DBP, and pulse pressure (PP). GEE
was used within the SEM framework to account for the
correlations within an individual and within a pedigree.
Significant covariates in the SEM were included to ac-
count for their impact on an individual’s trajectory
through a semiparametric latent class growth modeling
(LCGM). Identification of SBP trajectories was con-
ducted assuming a censored normal distribution using
multivariate mixture models implemented in PROC
TRAJ in SAS version 9.2 (Cary, NC, USA). This model
assumes that given class membership, the repeated mea-
surements for the ith individual are independent. Each
LCGM trajectory group was ranked based on health risk,
defined as the average number of cumulative years as
hypertensive (ie, members of group 1 exhibiting the few-
est number of hypertensive years and group 5 the great-
est). Pairwise GWA analyses between groups, with
group 1 as the referent group, were conducted using the
MMAP (mixed models analysis for pedigrees) comput-
ing package [18]. MMAP estimates VCs within the
LMM framework to account for relatedness between in-
dividuals assuming an unstructured covariance. An addi-
tive genetic model was assumed, and the first 4 principal
components (PCs) as fixed effects were included to
control for population structure. All available SNPs on
odd-numbered chromosomes and with a minor allele
frequency of less than 1 % were analyzed. Additionally,
to make use of the entire data set, the rank ordered
groups of trajectories were treated as a continuous trait
in the GWA.

Whole genome sequence
In the third approach, Melton et al. [12] conducted
multivariate association for the WGS within the VC
framework to test for main effects on SBP measure-
ments across 3 time points from 200 simulated pheno-
type replicates. This technique built upon a constrained
maximum likelihood approach, which takes into account
all repeat measurements of a phenotype in families. This
method investigated the effect of a variant on the mean
trait values of all measured longitudinal phenotypes by
constraining the displacement in trait means with each
copy of the minor allele to be equal. The genetic and en-
vironmental correlations are modeled through random
effects allowing for correlations between all measure-
ments. Comparisons were made among 3 statistical ap-
proaches: (a) constrained, where the β coefficient of a
variant or gene region on the mean trait value was con-
strained to be equal across all measurements; (b) uncon-
strained, where the variant or gene region β coefficient
was estimated separately for each time point; and (c) the
average SBP measurement from 3 time points. They first
conducted a univariate approach of the average of SBP
measurements from 3 time points using 9 variants from
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the GAW19 answers, and 20 randomly ascertained vari-
ants as negative controls. Then, both constrained and
unconstrained multivariate association were conducted
for the same variants. Finally, a gene-based test was per-
formed for 2 regions, the MAP4 region on chromosome
3 and a randomly ascertained equivalent region on
chromosome 1. The gene-based test applies gene-specific
relationship matrices to determine the proportion of the
trait’s variance explained by an individual gene as a result
of the departure of its localized empirical kinship estimate
from the pedigree-derived theoretical kinship estimates.
All analyses included the covariates baseline age, sex, their
interactions, smoking status, and were performed using
the computer package SOLAR (Sequential Oligogenic
Linkage Analysis Routines) [19].

Results
Genome-wide association
In the first GWA approach, Chiu et al. [10] used multi-
point LD with GEE to conduct gene-based association
tests between SNPs within 1095 genes on chromosome
3 and 4 derived phenotypes of hypertension status: (a)
Ever; (b) Progression; (c) Baseline; and (d) Longitudinal.
Of 1095 genes tested, 119 (Ever), 79 (Progression),
and 42 (Longitudinal) were significantly associated
(P <4.57 × 10−5), using a Bonferroni multiple correction
for number of genes, with hypertension status. A total of
49 genes were identified in association with Baseline
hypertension. Several gene regions identified in this study
were near previously implicated hypertension genes (eg,
GRM7, SLC4A7, ADAMTS9). Also, the results of the Ever
and Progression phenotypes were very similar, with 21
overlapping significant genes and similar standard errors.
There was 1 overlapping locus, GRM7, which passed mul-
tiple test corrections for both Baseline and Longitudinal.
Additionally, of those gene regions with nominal signifi-
cance (p <0.05) for both Longitudinal and Baseline pheno-
types, 64 % of these regions exhibited lower standard
error for the Longitudinal phenotype as compared to
Baseline [10].
In the second GWA approach, Justice et al. [11] found

that sex, age, and PCs were important covariates for
SNP associations with temporal changes in SBP. After
adjusting for sex at each time point, 5 distinct SBP
change trajectory classes were identified in the LCGM
modeled against age. These 5 classes were ranked based
on perceived health risk by average number of observed
cumulative years as hypertensive, class 1 with the lowest
number of cumulative years as hypertensive and class 5
with the highest number of cumulative years. Associ-
ation analyses identified 8 loci (index SNP ± 500 kb) that
reached suggestive significance (p <1.6E-6) in 1 or more
pairwise-association tests, and including one that reached
genome-wide significance (p <1.3E-7) near the ATOX1

gene (rs17112252, p = 1E-8) for the pairwise association
analysis of trajectory group 2. The greatest number of
suggestive loci (4) were identified in trajectory class 5,
the class with the greatest perceived health risk and
the smallest sample size (N = 136), including rs4756864
(p = 1.7E-7) within a previously implicated SBP associ-
ated region [11, 20].

Whole genome sequence
In the third approach for WGS, Melton et al. [12] suc-
cessfully identified the simulated association of the
MAP4 variants 3_48040283 and 3_47957996 as being
genome-wide significant (p value <5.0E-9) in 99.5 % of
the 200 replicates for the unconstrained and 100 % of
the replicates for the constrained method. For the
remaining 7 variants tested, there was some variation
across the models, but overall the constrained approach
showed increased power. Although when larger genetic
effects were present, collapsing, using the average across
measures, was equally effective. For the gene-based test,
averaging all repeat measurements displayed the greatest
power in detecting the simulated true-positive effects for
the MAP4 region. The gene-based test using only
baseline SBP had greater power to detect true-positive
effects than did either the constrained or uncon-
strained models, but this was likely because the au-
thors used all available variants in each region tested
rather than prioritizing variants based on functional
annotation [21]. Overall, the gene-based approach was
less powerful at detecting significant associations in
the MAP4 region as compared to the individual vari-
ant association tests.

Discussion
A direct comparison of results between each contribu-
tion summarized herein is made difficult by the variabil-
ity in phenotype, genotype, and analytical method
implemented (see Table 1). However, there are some
common strengths and potential limitations of these
statistical approaches that can be highlighted. Addition-
ally, these papers bring to light some important avenues
for further exploration in the genetic association of lon-
gitudinally assessed phenotypes.

Challenges for incorporating longitudinal data
Number of time points
Given the stochastic changes in observations across
age/time, if SBP or hypertension status is measured at
only a single time point, the genetic effect may be
over- or underestimated. Over time, and as more
measurements are collected, we may obtain better esti-
mates and converge to the true genetic effect. However,
the present studies are limited by the number of available
time/age points at which measures were taken. Both
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Chiu et al. [10] and Justice et al. [11] used the real
GAW19 data set, which included up to 4 measures,
but was subject to missing data. Melton et al. [12]
used the simulated GAW19 phenotypes with 3 avail-
able time points, but no missing information. The
small number of time points may be more of a limit-
ing factor for Justice et al. [11]. Their SBP change
trajectories were modeled against 4 measures of age
and, therefore, limited to the quadratic term. It is
likely that with additional time/age points, predicted
SBP trajectories [11] would be changed and genetic
effect estimates would be improved [10, 12].

Availability of informative covariates
As mentioned above, only a select number of covariates
were available for inclusion in these analyses (age, sex,
smoking, medication use). There are other potential var-
iables that may be of interest when adjusting SBP and
hypertension status, and that may be of particular con-
cern for longitudinal data. For example, behavioral rec-
ommendations that accompany medical prescriptions
could be important mediators or effect modifiers for the
genetic influence of changes in blood pressure between
visits at the same scale as medication use (eg, physical
activity, diet) [22, 23]. However, behavioral covariates
other than smoking were not included for GAW19.

Strengths identified
Decreased computational and analyst burden
As noted in the GAW18 longitudinal WGS and GWA
summary paper, computational burden, total analysis
time, and analyst burden may be limiting factors, espe-
cially for WGS [2]. However, these 3 GAW19 contribu-
tions attempted to address some issues imposed by
conducting genetic analysis on repeat measurements. All
3 groups applied a form of collapsing, or used a derived
variable by collapsing repeated measurements to a single
measure or group variable (eg, the average of all mea-
sures, trajectory class, hypertension progression). Using
WGS, Melton et al. [12] showed that a univariate aver-
age across all time points not only increased power to
detect genetic effects, but by collapsing the repeat mea-
surements into a single phenotype, allowed for
utilization of the software program, SOLAR [19], which
reduced analyst burden and computational time. Al-
though the evaluated multipoint LD method imple-
mented by Chiu et al. [10] does require sophisticated
analytical and programming skills, multiple repeat mea-
surements helped improve efficiency of the estimates.
These phenotypic collapsing techniques can also be ana-
lyzed using alternative GWA approaches. Justice et al.
[11] used group-based trajectory analysis to identify sub-
phenotypes of SBP change for use in GWA using widely
available software [11]. This approach also reduces

computational time, and analyst burden; however, no
direct comparison was performed with cross-sectional
GWA of SBP.

Incorporation of correlation between time points, which can
increase power
One of the greatest possible benefits for longitudinal
data is in the use of correlations between repeat mea-
surements within subjects, which increases power to de-
tect genetic effects by decreasing trait heterogeneity.
Chiu et al. [10] and Melton et al. [12] both leveraged
these correlations in their approaches, analyzing hyper-
tension across time using multipoint [10] and maximum
likelihood for multivariate association [12], respectively.
Melton et al. [12] showed an increase in power for longi-
tudinally measured phenotypes over a single measure.
Alternatively, the LCGMs used by Justice et al. [11] are
based on the assumption that given class membership,
the observations within a person are independent. The
correlation among repeated measures, according to these
models, is captured completely by the trajectory class of
each individual [11]. We cannot comment directly on
the possible improvement in power for Chiu et al. [10]
or Justice et al. [11] as both studies applied these
methods to real data and therefore the “true” associations
are unknown. However, generalization of previously impli-
cated hypertension (GRM7, SLC4A7, ADAMTS9) and
SBP-associated loci (PLEKHA7) from cross-sectional ana-
lyses with much larger sample sizes, provide strong evi-
dence that these statistical models are robust. Future work
will be required to definitively show increased power using
either method.

Identify unique trajectories of disease-risk progression
Recent studies that have partitioned heterogeneous phe-
notypes into meaningful subphenotypes have proven
useful for the identification of novel genetic susceptibil-
ities and allowed for the estimation of previously missing
heritability in complex disease traits (eg, cancer, autism,
schizophrenia) [24–27]. These studies suggest that meth-
odological innovations that identify homogenous sub-
phenotypes may be useful for characterizing the genetic
influence of longitudinal phenotypic change and disease
progression [6]. Justice et al. [11] chose to use a LCGM
trajectory method to identify underlying classes of SBP
changes. In other words, this research group was primar-
ily interested in identifying genetic risk variants that in-
crease susceptibility to patterns of SBP change across
age that may provide additional information on hyper-
tension risk and prognosis. Similar approaches have
been proposed elsewhere and validated using simulated
continuous traits [6]. Similarly, Chiu et al. [10] defined
important subphenotypes of incident hypertension
that are shown to improve effect estimation and may
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represent important subphenotypes for disease pro-
gression [10].

Evidence of improvement of effect estimation over cross-
sectional analysis
Chiu et al. [10] showed that using longitudinal assessments
of incident hypertension (Ever, Progression, and Longitu-
dinal) decreased the standard error of effect estimates over
Baseline-only phenotype analyses. This method may prove
useful for analyzing other incident diseases across time (eg,
diabetes, stroke, coronary heart disease).

Improve ability to detect rare variants with moderate to
large genetic effects, even with minimal collapsed
phenotypes (average across measurements)
WGS poses an increased challenge for longitudinal data,
because of rare-variant identification and the computa-
tional burden of analyzing millions of markers simultan-
eously using complex, multilevel models. Family-based
studies are useful for conducting rare-variant identifica-
tion because of their ability to distinguish true variants
from sequencing errors, reduce genetic heterogeneity,
and increase the number of allelic copies. Therefore, the
GAW19 family data set is ideal for improving statistical
models incorporating repeat measurements using WGS.
Additionally, Melton et al. [12] were able to improve the
ability to detect rare variant associations by using min-
imal collapsing methods, thus decreasing computational
burden and time.

Conclusions
In this paper, we summarize 3 GAW19 contributions ap-
plying novel statistical methods and testing of previously
proposed techniques under alternative conditions for
longitudinal genetic association. Although these statis-
tical techniques varied, each evaluated the potential ben-
efits of using phenotype collapsing and noncollapsing
approaches to analyze longitudinal phenotypes. These
longitudinal approaches may: (a) increase power to de-
tect genetic effects; (b) decrease trait heterogeneity and
standard error of effect estimates; (c) decrease computa-
tional burden for WGS; and (d) have the potential to
identify subphenotypes important for understanding dis-
ease progression. Disease progression is a complicated
process; however, genetic variants and biological path-
ways will offer new means to identify disease susceptibil-
ity, predict progression, and highlight effective public
health interventions.
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