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Abstract

Background: Identification of genetic variants that are associated with fatty acid composition in beef will enhance
our understanding of host genetic influence on the trait and also allow for more effective improvement of beef
fatty acid profiles through genomic selection and marker-assisted diet management. In this study, 81 and 83 fatty
acid traits were measured in subcutaneous adipose (SQ) and longissimus lumborum muscle (LL), respectively, from
1366 purebred and crossbred beef steers and heifers that were genotyped on the Illumina BovineSNP50 Beadchip.
The objective was to conduct genome-wide association studies (GWAS) for the fatty acid traits and to evaluate the
accuracy of genomic prediction for fatty acid composition using genomic best linear unbiased prediction (GBLUP)
and Bayesian methods.

Results: In total, 302 and 360 significant SNPs spanning all autosomal chromosomes were identified to be associated
with fatty acid composition in SQ and LL tissues, respectively. Proportions of total genetic variance explained by
individual significant SNPs ranged from 0.03 to 11.06 % in SQ, and from 0.005 to 24.28 % in the LL muscle. Markers
with relatively large effects were located near fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), and thyroid
hormone responsive (THRSP) genes. For the majority of the fatty acid traits studied, the accuracy of genomic prediction
was relatively low (<0.40). Relatively high accuracies (> = 0.50) were achieved for 10:0, 12:0, 14:0, 15:0, 16:0, 9c-14:1,
12c-16:1, 13c-18:1, and health index (HI) in LL, and for 12:0, 14:0, 15:0, 10 t,12c-18:2, and 11 t,13c + 11c,13 t-18:2 in
SQ. The Bayesian method performed similarly as GBLUP for most of the traits but substantially better for traits
that were affected by SNPs of large effects as identified by GWAS.

Conclusions: Fatty acid composition in beef is influenced by a few host genes with major effects and many
genes of smaller effects. With the current training population size and marker density, genomic prediction has
the potential to predict the breeding values of fatty acid composition in beef cattle at a moderate to relatively
high accuracy for fatty acids that have moderate to high heritability.

Keywords: Fatty acid composition, Beef cattle, Genome-wide association study, Genomic prediction, Single
nucleotide polymorphism

* Correspondence: changxi.li@agr.gc.ca
1Department of Agricultural, Food and Nutritional Science, University of
Alberta, Edmonton, AB T6G 2P5, Canada
2Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E
Trail, Lacombe, AB T4L 1 W1, Canada
Full list of author information is available at the end of the article

© 2015 Chen et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chen et al. BMC Genetics  (2015) 16:135 
DOI 10.1186/s12863-015-0290-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-015-0290-0&domain=pdf
mailto:changxi.li@agr.gc.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Dietary fats influence risks for developing cardiovascular
disease, obesity and various forms of cancer, and have
led to recommendations to limit consumption of some
foods including beef [1]. Recommendations to limit beef
consumption are mainly related to its relatively high
content of saturated fatty acids (SFAs) as SFA consump-
tion is believed to have negative effects on human health
[2, 3]. Beef, however, is also a natural source of polyun-
saturated fatty acid (PUFA) biohydrogenation interme-
diates (BHI) including vaccenic acid (11 t-18:1) and
conjugated linoleic acids (CLAs), which have a number
of purported health benefits [4–6]. In addition, beef is
rich in monounsaturated fatty acids (MUFAs), in par-
ticular oleic acid 9c-18:1, which is the main fatty acid
found in healthy Mediterranean diets, and may also
contribute positively to beef flavour and tenderness [7].
Considerable efforts have, therefore, gone into improving
beef fatty acid profiles in beef to meet the consumers’
growing demand for more nutritious, healthier and more
palatable meat. Diet is known to have a major influence
on beef fatty acid composition [8], but the use of genomic
technologies to improve beef fatty acid profiles have not
been thoroughly investigated [9].
The fatty acid composition of beef is a complex trait

with heritability estimates ranging from near 0 to 0.73,
depending on populations and the types of fatty acid
[10–18]. To further elucidate the genetic control of host
animals on fatty acid composition, chromosomal regions
or quantitative trait loci (QTL) and candidate genes that
are associated with fatty acid composition in beef cattle
have been identified on multiple chromosomes based on
low density DNA markers [19–21], and based on candidate
gene DNA marker association analyses [22–36]. Genome-
wide association studies (GWAS) using a relatively
high density of single nucleotide polymorphism (SNP)
markers (e.g. Illumina BovineSNP50 Beadchip) in re-
cent years have assisted in the search for DNA
markers associated with the fatty acid composition of
beef, but studies are limited to a small number of fatty
acids in certain beef breeds [7, 37, 38]. Saatchi et al.
[16] analyzed 49 fatty acid traits in steaks of Angus
beef cattle and reported results of GWAS and genomic
prediction of direct genomic breeding values of the
fatty acid traits. Onogi et al. [39] also reported gen-
omic prediction for 8 fatty acid traits in Japanese Black cat-
tle. Many fatty acids with potential health value (i.e.
PUFA-BHI) were, however, not reported in those studies.
In this study, we comprehensively analyzed fatty acid
profiles and report GWAS and genomic prediction of
breeding values for 81 and 83 individual and grouped
fatty acids in subcutaneous adipose (SQ) and longissimus
lumborum muscle (LL), respectively, in Canadian beef
cattle populations.

Results and discussion
Descriptive statistics and genomic heritability estimates
Summary statistics and genomic heritability estimates for
the 81 fatty acid traits of SQ and 83 fatty acid traits of LL
are presented in Table 1. In general, the estimates of herit-
ability for the same fatty acids are comparable in both the
adipose and muscle tissues, with a correlation coefficient
of 0.61. Relatively higher (>0.40) heritability estimates
were found for 10:0, 12:0, 18:0, ai15:0, 9c-14:1, 9c-16:1,
13c-18:1, 18:3n-3, 18:2n-6, n-3, n-6, sumtrans 18:1, total
PUFA, P/S, and P/(S + B) in the SQ tissue, and for 12:0,
14:0, 16:0, 9c-14:1, 9c-16:1, 12c-16:1, 9c-18:1, 13c-18:1,
SFA, SFA + BFA, MUFA, n-6/n-3, and health index (HI)
in the LL muscle, which suggests greater direct host gen-
etic effects on these traits in the corresponding tissues.
Very low (<0.05) or zero heritability were observed for
22:0, 7c-17:1, 12 t-18:1, 15 t-18:1, 6 t,8 t:18:2, 7 t,9 t-18:2,
9 t,11 t-18:2, 10 t,12 t-18:2, 12 t,14 t-18:2, and n-6/n-3 in
the SQ tissue, and for 7c-17:1, 15 t-18:1, 6 t,8 t-18:2,
7 t,9 t-18:2, 7 t,9c-18:2, 8 t,10 t-18:2, 12 t,14 t-18:2 in the
LL muscle, which indicates weak host direct genetic con-
trol on these traits. In general, the heritability estimates
for the fatty acids in this study are in line with those re-
ported in other studies [10, 12, 15]. Therefore, the gen-
omic estimated additive genetic variance and heritability
for the fatty acid traits were further used in the calculation
of total genetic variance explained by significant markers
identified in GWAS and in the derivation of realised ac-
curacy of genomic prediction in this study.

Genome-wide association study
In total, 302 and 360 significant SNPs spanning all auto-
somal chromosomes were identified to be associated
with one or more fatty acid traits in the SQ and LL tis-
sues, respectively, at the genome-wise empirical signifi-
cance threshold at α = 0.05. Significant SNPs and their
distributions over the genome varied for different fatty
acid traits. Manhattan plots of posterior probability of in-
clusion (PPI) were provided in Additional file 1 for all
fatty acid traits in the two tissues. Proportions of geno-
typic variance explained by individual significant SNPs
ranged from 0.03 to 11.06 % in SQ, and from 0.005 to
24.28 % in LL. Among these, 28 and 41 SNPs individually
explained greater than 1 % of total genetic variance for at
least one fatty acid trait in the SQ and LL tissues, respect-
ively. Figures 1 and 2 showed these SNPs and their associ-
ated traits in SQ and LL, respectively. Of these SNPs,
SNP rs41921177 at the location of BTA19:51326750
had the largest effects on multiple fatty acid traits in both
tissues, followed by SNP rs42714483 at BTA29:18090509
and SNP rs42090719 at BTA26:20903573. Details of all
significant SNPs including SNP name, chromosome pos-
ition, allele substitution effect, percentage of total genetic
variance explained, and PPI were also provided in
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Table 1 Summary statistics of mean, standard deviation (SD), additive genetic variance (σa2), and heritability estimates (h2 ± SE)

Subcutaneous adipose Longissimus lumborum

Traita Mean (SD) σa2 × 104 h2 ± SE Mean (SD) σa2 × 104 h2 ± SE

10:0 0.051 (0.014) 0.66 0.43 ± 0.06 0.056 (0.012) 0.60 0.37 ± 0.09

12:0 0.071 (0.017) 1.60 0.53 ± 0.08 0.072 (0.015) 1.30 0.57 ± 0.07

13:0 0.028 (0.010) 0.28 0.26 ± 0.07 0.027 (0.009) 0.14 0.16 ± 0.06

14:0 3.204 (0.599) 1605.35 0.35 ± 0.11 2.804 (0.486) 1292.53 0.53 ± 0.10

15:0 0.642 (0.167) 90.38 0.22 ± 0.10 0.502 (0.111) 38.96 0.23 ± 0.10

16:0 25.092 (2.594) 12965.10 0.21 ± 0.06 24.607 (2.056) 11278.40 0.42 ± 0.08

17:0 1.709 (0.445) 575.54 0.32 ± 0.11 1.548 (0.329) 326.58 0.31 ± 0.12

18:0 10.545 (1.956) 14701.00 0.41 ± 0.07 12.406 (1.417) 7779.92 0.38 ± 0.09

19:0 0.108 (0.032) 0.90 0.06 ± 0.03 0.090 (0.029) 0.82 0.08 ± 0.04

20:0 0.082 (0.019) 0.75 0.20 ± 0.06 0.089 (0.016) 0.55 0.18 ± 0.06

22:0 0.033 (0.009) 0.000036 0.00 ± 0.03 0.069 (0.021) 0.73 0.09 ± 0.05

24:0 0.035 (0.015) 0.60 0.22 ± 0.07 0.151 (0.070) 7.65 0.21 ± 0.07

SFA 41.598 (3.469) 36697.00 0.29 ± 0.07 42.421 (2.695) 25765.90 0.43 ± 0.08

iso14:0 0.031 (0.012) 0.14 0.12 ± 0.05 0.027 (0.008) 0.050 0.10 ± 0.05

iso15:0 0.109 (0.026) 1.11 0.22 ± 0.06 0.082 (0.015) 0.52 0.25 ± 0.07

ai15:0 0.180 (0.048) 11.26 0.52 ± 0.08 0.140 (0.028) 3.07 0.30 ± 0.10

iso16:0 0.177 (0.041) 5.97 0.34 ± 0.08 0.140 (0.027) 1.98 0.22 ± 0.08

iso17:0 0.382 (0.062) 12.74 0.31 ± 0.08 0.345 (0.062) 5.48 0.11 ± 0.05

ai17:0 0.672 (0.095) 22.50 0.22 ± 0.07 0.489 (0.076) 15.93 0.19 ± 0.08

iso18:0 0.163 (0.037) 3.25 0.23 ± 0.07 0.133 (0.028) 1.95 0.21 ± 0.08

BFA 1.714 (0.261) 225.65 0.29 ± 0.08 1.356 (0.203) 94.08 0.16 ± 0.07

SFA + BFA 43.312 (3.561) 38438.00 0.28 ± 0.07 43.777 (2.681) 25797.30 0.43 ± 0.08

9c-14:1 1.046 (0.390) 542.74 0.43 ± 0.08 0.640 (0.184) 185.50 0.59 ± 0.07

9c-15:1 0.034 (0.012) 0.38 0.23 ± 0.08 0.026 (0.009) 0.073 0.08 ± 0.04

7c-16:1 0.140 (0.025) 1.90 0.34 ± 0.07 0.136 (0.019) 1.20 0.30 ± 0.09

9c-16:1 4.247 (1.096) 4450.52 0.42 ± 0.07 3.408 (0.564) 1730.54 0.64 ± 0.07

11 t-16:1 0.047 (0.012) 0.21 0.12 ± 0.05 0.042 (0.012) 0.12 0.06 ± 0.04

12c-16:1 0.239 (0.090) 23.77 0.36 ± 0.07 0.168 (0.044) 9.70 0.53 ± 0.07

7c-17:1 0.023 (0.009) 0 0 0.025 (0.013) 0.040 0.02 ± 0.03

9c-17:1 1.377 (0.340) 267.08 0.19 ± 0.09 1.191 (0.298) 130.35 0.15 ± 0.07

9c-18:1 37.917 (4.343) 30916.80 0.13 ± 0.05 36.679 (2.997) 35344.80 0.47 ± 0.07

11c-18:1 1.960 (1.736) 1591.98 0.05 ± 0.04 1.836 (0.244) 152.64 0.30 ± 0.10

12c-18:1 0.260 (0.079) 6.88 0.09 ± 0.04 0.227 (0.071) 6.70 0.13 ± 0.06

13c-18:1 0.487 (0.159) 83.84 0.44 ± 0.07 0.396 (0.089) 40.17 0.57 ± 0.07

14c-18:1 0.053 (0.011) 0.17 0.12 ± 0.05 0.048 (0.009) 0.13 0.19 ± 0.06

15c-18:1 0.248 (0.060) 13.68 0.38 ± 0.07 0.204 (0.044) 5.62 0.28 ± 0.07

6 t + 8 t-18:1 0.275 (0.121) 38.18 0.34 ± 0.06 0.193 (0.085) 14.30 0.21 ± 0.07

9 t-18:1 0.291 (0.094) 18.74 0.27 ± 0.06 0.232 (0.067) 9.04 0.22 ± 0.07

10 t-18:1 2.908 (1.685) 10759.90 0.38 ± 0.11 2.028 (1.119) 4230.39 0.36 ± 0.10

11 t-18:1 0.546 (0.234) 119.36 0.17 ± 0.07 0.441 (0.164) 70.08 0.26 ± 0.08

12 t-18:1 0.184 (0.172) 0.00012 0 0.137 (0.029) 1.06 0.13 ± 0.05

15 t-18:1 0.169 (0.179) 1.45 0.00 ± 0.03 0.130 (0.079) 2.25 0.04 ± 0.05

16 t-18:1 0.113 (0.037) 2.51 0.11 ± 0.05 0.092 (0.026) 1.78 0.19 ± 0.08

sumtrans18:1 4.486 (1.687) 10976.60 0.42 ± 0.09 3.252 (1.131) 4357.97 0.37 ± 0.09
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Table 1 Summary statistics of mean, standard deviation (SD), additive genetic variance (σa2), and heritability estimates (h2 ± SE)
(Continued)

9c-20:1 0.107 (0.019) 0.82 0.22 ± 0.08 0.090 (0.013) 0.20 0.08 ± 0.04

11c-20:1 0.270 (0.075) 15.80 0.37 ± 0.07 0.198 (0.035) 5.20 0.38 ± 0.08

MUFA 52.941 (3.583) 37044.00 0.26 ± 0.06 48.565 (2.691) 26915.70 0.47 ± 0.06

9c,13 t + 8 t,12c-18:2 0.242 (0.045) 6.07 0.30 ± 0.09 0.165 (0.029) 1.94 0.24 ± 0.08

9c,15c-18:2 0.184 (0.044) 5.29 0.27 ± 0.07 0.178 (0.036) 3.28 0.25 ± 0.08

8 t,13c-18:2 0.165 (0.043) 4.38 0.19 ± 0.08 0.121 (0.025) 0.63 0.10 ± 0.05

11 t,15c-18:2 0.162 (0.100) 32.52 0.32 ± 0.08 0.122 (0.070) 17.25 0.37 ± 0.08

9c,11 t + 9 t,11c-18:2 0.471 (0.358) 33.83 0.25 ± 0.06 0.257 (0.062) 9.26 0.16 ± 0.06

6 t,8 t-18:2 0.0024 (0.003) 0 0 0.0019 (0.004) 0.0002 0.00 ± 0.03

7 t,9c-18:2 0.108 (0.083) 11.38 0.25 ± 0.09 0.060 (0.060) 1.22 0.03 ± 0.03

12 t,14 t-18:2 0.0088 (0.011) 0.041 0.02 ± 0.01 0.0061 (0.008) 0.023 0.03 ± 0.02

11 t,13 t-18:2 0.0083 (0.006) 0.017 0.10 ± 0.04 0.0060 (0.002) 0.0056 0.15 ± 0.05

10 t,12 t-18:2 0.010 (0.005) 0 0 0.0061 (0.002) 0.0049 0.12 ± 0.05

9 t,11 t-18:2 0.014 (0.010) 0 0 0.0092 (0.003) 0.0083 0.08 ± 0.04

8 t,10 t-18:2 0.0026 (0.002) 0.0020 0.08 ± 0.04 0.0017 (0.002) 0.00084 0.04 ± 0.04

7 t,9 t-18:2 0.0069 (0.005) 0.0020 0.02 ± 0.02 0.0041 (0.003) 0.0010 0.01 ± 0.02

12 t,14c + 12c,14 t −18:2 0.012 (0.010) 0.042 0.07 ± 0.03 0.0068 (0.003) 0.018 0.21 ± 0.07

11 t,13c + 11c,13 t −18:2 0.024 (0.024) 0.15 0.15 ± 0.05 0.012 (0.005) 0.031 0.14 ± 0.06

10 t,12c-18:2 0.025 (0.012) 0.32 0.24 ± 0.07 0.018 (0.010) 0.065 0.07 ± 0.04

8 t,10c-18:2 0.012 (0.010) 0.022 0.11 ± 0.05 0.0079 (0.003) 0.018 0.21 ± 0.07

Total CLA 0.704 (0.493) 77.85 0.30 ± 0.06 0.395 (0.080) 11.21 0.15 ± 0.05

18:2n-6 1.876 (0.587) 1032.59 0.53 ± 0.08 4.387 (1.612) 5072.90 0.39 ± 0.08

18:3n-3 0.211 (0.055) 11.32 0.43 ± 0.07 0.297 (0.082) 8.60 0.20 ± 0.06

18:3n-6 0.0023 (0.006) 0.027 0.06 ± 0.05 0.043 (0.016) 0.51 0.16 ± 0.07

20:2n-6 0.038 (0.013) 0.22 0.19 ± 0.05 0.068 (0.022) 0.41 0.11 ± 0.05

20:3n-6 0.059 (0.017) 0.32 0.08 ± 0.04 0.292 (0.098) 23.30 0.32 ± 0.08

20:3n-9 0.017 (0.016) 0.12 0.06 ± 0.04 0.066 (0.025) 1.28 0.20 ± 0.06

20:4n-6 0.040 (0.012) 0.22 0.15 ± 0.05 1.000 (0.412) 277.29 0.25 ± 0.07

20:5n-3 ND NA NA 0.029 (0.009) 0.049 0.05 ± 0.04

22:4n-6 0.031 (0.011) 0.19 0.13 ± 0.05 0.136 (0.045) 4.67 0.20 ± 0.08

22:5n-3 0.017 (0.010) 0.05 0.11 ± 0.05 0.332 (0.126) 28.06 0.20 ± 0.07

22:6n-3 ND NA NA 0.046 (0.023) 0.78 0.16 ± 0.05

PUFA 2.290 (0.627) 1252.63 0.51 ± 0.08 6.695 (2.231) 8788.56 0.31 ± 0.08

n-3 0.228 (0.054) 10.59 0.40 ± 0.07 0.704 (0.208) 58.08 0.17 ± 0.06

n-6 2.046 (0.602) 1058.05 0.51 ± 0.08 5.926 (2.107) 8016.81 0.34 ± 0.08

n-6/n-3 9.263 (5.078) 2605.22 0.01 ± 0.02 8.628 (2.526) 9313.42 0.42 ± 0.09

P/S 0.056 (0.016) 0.77 0.50 ± 0.07 0.160 (0.058) 6.60 0.30 ± 0.09

P/(S + B) 0.053 (0.015) 0.69 0.50 ± 0.08 0.155 (0.056) 6.03 0.30 ± 0.09

HI 1.488 (0.265) 236.45 0.32 ± 0.08 1.566 (0.232) 201.90 0.47 ± 0.08
aThe concentrations of fatty acids were expressed as a percentage of fatty acid methyl esters (FAME) quantified. c = cis, t = trans. SFA = 10:0 + 12:0 + 13:0 + 14:0 +
15:0 + 16:0 + 17:0 + 18:0 + 19:0 + 20:0 + 22:0 + 24:0; BFA = iso14:0 + iso15:0 + ai15:0 + iso16:0 + iso17:0 + ai17:0 + iso18:0; SFA + BFA: sum of SFA and BFA; sumtrans18:1 =
6 t/8 t-18:1 + 9 t-18:1 + 10 t-18:1 + 11 t-18:1 + 12 t-18:1 + 15 t-18:1 + 16 t-18:1; MUFA= 9c-14:1 + 9c-15:1 + 7c-16:1 + 9c-16:1 + 11 t-16:1 + 12c-16:1 + 7c-17:1 + 9c-17:1 + 9c-
18:1 + 11c-18:1 + 12c-18:1 + 13c-18:1 + 14c-18:1 + 15c-18:1 + 9c-20:1 + 11c-20 + 6 t/8 t-18:1 + 9 t-18:1 + 10 t-18:1 + 11 t-18:1 + 12 t-18:1 + 15 t-18:1 + 16 t-18:1;
Total CLA = 9c,11 t + 9 t,11c-18:2 + 6 t,8 t-18:2 + 7 t,9c-18:2 + 12 t,(14 t-18:2 + 11 t,13 t)-18:2 + 10 t,12 t-18:2 + 9 t,11 t-18:2 + 8 t,10 t-18:2 + 7 t,9 t-18:2 + (12 t,14c +
12c,14 t) -18:2 + (11 t,13c + 11c,13 t)-18:2 + 10 t,12c-18:2 + 8 t,10c-18:2; PUFA = 18:2n-6 + 18:3n-6 + 18:3n-3 + 20:2n-6 + 20:3n-9 + 20:3n-6 + 20:4n-6 + 22:4n-6 + 22:5n-3+
22:6n-3; n-3 = 18:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3; n-6 = 18:2n-6 + 18:3n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6; n-6/n-3: ratio between n-6 and n-3; P/S = PUFA/SFA;
P/(S + B) = PUFA/(SFA + BFA); HI = (MUFA + PUFA) / (4 × 14:0 + 16:0)
ND not detected, NA not applicable
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additional files (Additional file 2 for SQ and Additional file
3 for LL). Candidate genes within 1 mega base pair (Mb)
region centering the significant SNPs were provided separ-
ately (Additional file 4).
SNP rs41921177 was significantly associated with 19 in-

dividual and grouped fatty acids in the LL muscle includ-
ing SFAs 10:0, 12:0, 13:0, 14:0, 15:0, 16:0, 18:0, branched
fatty acids (BFAs) ai 15:0 and iso 18:0, MUFAs 9c-14:1,
9c-15:1, 9c-16:1, 12c-16:1, 9c-18:1, 11c-20:1, grouped fatty
acids total SFA, SFA + BFA, total MUFA and HI, with gen-
etic variance explained from 1.37 % (18:0) to 24.28 %
(14:0). The same SNP also showed significant associations
with 11 of the above fatty acids in SQ including saturated
fatty acids 12:0, 14:0, 15:0, 16:0, SFA, monounsaturated

fatty acids 9c-14:1, 9c-15:1, 9c-16:1, 9c-18:1, 12c-16:1 and
HI, explaining 0.33 % (SFA) to 11:06 % (14:0) of the gen-
etic variance (also see Additional file 2). This chromo-
somal region was previously identified to be associated
with 14:0, 16:0, 16:1 and 18:1 in adipose and muscle tis-
sues of a Jersey and Limousin crossbred beef cattle
[21], with 9c-18:1, and 14:0, 14:1, 16:0, 16:1 in intra-
muscular fat of Japanese Black cattle [7, 37], with 14:0,
16:0, 9c-14:1 and 9c-18:1 in adipose tissue of an Austra-
lian multi-breed beef population [38], with 14:0, 14:1,
16:0, 16:1, 9c-18:1, MUFA, SFA, and Atherogenic index
(AI, the inverse of HI) in muscle of American Angus
beef cattle [16]. The association of this chromosomal
region with the fatty acid traits was therefore confirmed

Fig. 1 Summary of fatty acid trait associations across genomic regions (SNPs) and percentage of genetic variance explained by significant SNPs in
the subcutaneous adipose tissue (SQ). Each row represents a trait and each column represents a SNP. Only traits with at least one significant SNP
explaining greater than 1 % of genetic variance were listed, and only SNPs that explain greater than 1 % of genetic variance for at least one trait
were shown. The top of the figure shows the chromosome and position and the bottom shows the name of the SNP. Va %: percentage of genetic
variance
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in both the SQ and LL tissues of a Canadian beef popu-
lation of diverse breed compositions, indicating a strong
host genetic effect on the fatty acid composition in
beef tissues. Multiple genes are within 1 Mb region
centering the SNP (see Additional file 4), with FASN
being a strong candidate gene due to its function in
fatty acid synthesis [40, 41]. Different SNPs of the
FASN gene have also been reported to be associated
with concentrations of saturated and monounsaturated
fatty acids in various beef and dairy cattle populations
[7, 16, 18, 22, 37, 38, 40–45].
SNP rs42714483 showed significant associations with

concentrations of 15 fatty acids in the LL tissue and 10
fatty acids in SQ including 10:0, 12:0, 13:0, 14:0, 15:0,
9c-14:1, 12c-16:1, 13c-18:1, 9c,15c-18:2, and HI in both
the tissues, and 16:0, 18:0, 9c-15:1, 9c-16:1, and 9c-18:1
in the LL tissue. Saatchi et al. [16] also identified the same
chromosomal region associated with fatty acids 14:0,
9c-14:1, 16:0, 16:1, 18:0, 9c-18:1, and AI, and Kelly et al.
[38] found SNPs in the same chromosomal region that

were associated with fatty acids 14:0, 9c-14:1 in subcuta-
neous adipose tissue of an Australian multi-breed beef
population [38]. These results strongly support that
the chromosome region on BTA 29 harbors host genes
that influence fatty acid composition of beef tissues.
In this study, the SNP at BTA29:18090509 is a mis-
sense mutation (T/C) of the thyroid hormone respon-
sive gene (THRSP), causing amino acid change from
isoleucine to valine (I16V). Recently THRSP has been
considered as a candidate gene for fatty acid composi-
tion in beef [16, 46]. Substitution of allele T with C of
this missense mutation was associated with decrease
of 10:0, 12:0, 13:0, 14:0, 15:0, 16:0, 9c-14:1, 9c-15:1,
9c-16:1, 12c-16:1, 13c-18:1, 9c,15c-18:2, and increase
of 18:0, 9c-18:1, and HI (see Additional files 2 and 3).
The direction of the allele substitution effect on differ-
ent fatty acid traits also coincided with that of SNP
rs41921177, which is close to FASN gene, suggesting
possible co-ordinations between THRSP and FASN
genes in fatty acid synthesis.

Fig. 2 Summary of fatty acid trait associations across genomic regions (SNPs) and percentage of genetic variance explained by significant SNPs in
longissimus lumborum muscle (LL). Each row represents a trait and each column represents a SNP. Only traits with at least one significant SNP
explaining greater than 1 % of genetic variance were listed, and only SNPs that explain greater than 1 % of genetic variance for at least one trait
were shown. The top of the figure shows the chromosome and position and the bottom shows the name of the SNP. Va %: percentage of genetic
variance
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SNP rs42090719 at BTA26: 20903573 was found to be
significantly associated with 9c-14:1, 12c-16:1, 13c-18:1
in both the LL and SQ tissues, 9c,15c-18:2 and CLA iso-
mers 11 t,13c + 11c,13 t-18:2 (also see Additional file 3) in
the LL tissue. In addition, SNP rs41646463 at
BTA26:21258113 also showed significant associations
with 13c-18:1 in both the LL and SQ tissues. In the
nearby chromosomal region of BTA26:18994785, SNP
rs109465094 was significantly associated with 9c-14:1,
12c-16:1, 13c-18:1 and 9c,15c-18:2 in LL. The chromo-
somal regions on BTA 26 were previously found associ-
ated with a variety of fatty acids in muscle of American
Angus and in adipose tissue in an Australian multi-breed
beef population, and stearoyl-CoA desaturase gene (SCD)
was suggested as a candidate gene [16, 38]. The two SNPs,
rs42090719 and rs41646463, are within 250 kilo base pairs
(Kb) of SCD. The other SNP rs109465094 is more than
2 Mb distant from SCD, indicating a possible alternative
candidate gene or its association could merely be due
to LD with SCD. Linkage disequilibrium between SNPs
around the SCD gene were analysed and visualised using
the Haploview software [47] and results are shown in
Additional file 5. Indeed, the three significant SNPs are in
moderate to high LD with SNPs in a LD block containing
the SCD gene. The SCD gene is involved in the synthesis
of particular MUFA and CLA isomers, in creating a
double bond at the Δ9 position of fatty-acyl CoA [48, 49].
SCD has been reported to be associated with both meat
and milk fatty acid composition in cattle [7, 16, 18, 32, 34,
37, 38, 42, 50–56]. The present study showed that SNPs
close to the SCD gene were associated with many MUFAs
and several CLA isomers but none of the SFAs, which
supports the proposed role of SCD in fatty acid compos-
ition in beef. However, in this study none of the SNPs
around SCD were associated with oleic acid, 9c-18:1, the
most abundant MUFA in beef. This could be partly due to
lack of SNPs in the current panel that are in a high LD
with SCD to capture all its effects. Interestingly, several
other studies also showed no associations between SCD
and oleic acid in various beef and dairy cattle populations,
using different SNP panels or SCD gene SNP [7, 16, 38,
50, 51, 57], although two other studies have reported sig-
nificant associations between SCD SNP variants and oleic
acid concentrations in Japanese Black cattle [18, 32]. The
role of SCD on the concentration of oleic acid in beef is
worthy of further investigation.
Other SNPs on BTA 1, 3, 4, 5, 6, 7, 10, 16, 20, 23, 24,

25, 28 and on 1, 2, 4, 5, 6, 8, 10, 13, 14, 16, 23, 24, 25,
27, 28 were found significantly associated with one or
more fatty acid concentrations in the SQ and LL, respect-
ively, but with relatively smaller effects (Figs. 1 and 2).
The SNP rs41642879 at BTA23:6760915 was associated
with 12:0, 14:0, and HI of both the LL and SQ, and with
16:0, 9c-14:1 in LL tissue. There are several genes within

the 1 Mb window centering the SNP. One possible can-
didate gene is the glutamate-cysteine ligase catalytic
subunit gene (GCLC), which is involved in the synthesis
of glutathione (GSH) [58]. Glutathione has an antioxidant
function by oxidizing itself into Glutathione disulfide
(GSSG), which in turn is reduced to GSH at the expense of
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase [58]. The latter is essential for fatty acid synthesis
[40]. The SNP rs41574597 at BTA23:25956421 was found
to be associated with 11c-20:1 in both tissues. Several
genes belonging to the butyrophilin family are located
nearby. Butyrophilin is the major protein associated
with milk fat droplets and has been reported to be re-
lated to milk quality in cattle [59]. However, it was sug-
gested that butyrophilin is specific to mammary tissue
[60] hence its role in meat fatty acid production remains
unclear.
Fewer SNPs were identified for PUFAs (90 in SQ and

87 in LL) in comparison to the number of significant
SNPs for SFAs (121 in SQ and 117 in LL) and MUFAs
(174 in SQ and 120 in LL). One SNP rs41582945 at
BTA2:50069820 explained 2.45 % of genetic variance for
dihomo-gamma-linolenic acid (Dihomo-GLA, 20:3n-6)
in LL. However, no known genes exist in the 1 Mb region
of this SNP. Several SNPs were also found to be associated
with the intermediate product of Dihomo-GLA, arachi-
domic acid in LL (20:4n-6). The most significant SNP
rs110776216 on BTA2:131968682 explained 1.91 % of
total genetic variance of 20:4n-6 and was located within
the endothelin converting enzyme 1 gene (ECE1) which
encodes the enzyme that converts big endothelin-1 to
endothelin-1. Endothelin-1 was previously found to stimu-
late arachidonic acid release in human pericardial smooth
muscle cells [61, 62]. In this study, no significant SNPs
were found to be associated with iso14:0, 7c-17:1, 15 t-
18:1, 9c-20:1, 6 t,8 t-18:2, 7 t,9c-18:2, 9 t,11 t-18:2,
8 t,10 t-18:2, 7 t,9 t-18:2, 20:5n3 in LL and 22:0, 7c-17:1,
11c-18:1, 12 t-18:1, 15 t-18:1, 6 t,8 t-18:2, 10 t,12 t-18:2,
9 t,11 t-18:2, 8 t,10 t-18:2, 7 t,9 t-18:2, 18:3n6, 20:3n9, and
n-6/n-3 in SQ. These fatty acid traits had very low or near
zero heritability estimates (Table 1), therefore their con-
centrations were less likely influenced by host direct gen-
etic effects.

Genomic prediction
Realized accuracies of genomic prediction measured as
the Pearson’s correlation coefficients between genomic es-
timated breeding values (GEBV) and adjusted phenotypic
values of fatty acid traits divided by square root of herit-
ability are presented in Table 2. Accuracies of breeding
values estimated from the pedigree-based BLUP method
(PBLUP) are also presented in Table 2 as comparisons.
The realized accuracy of genomic prediction ranged
from −0.05 for 15 t-18:1 to 0.73 for 14:0 in the LL
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Table 2 Realised accuracy (±SE) of breeding value prediction for fatty acid traits in the subcutaneous adipose and longissimus
lumborum musle

Subcutaneous adipose Longissimus lumborum

Traita PBLUP GBLUP BayesCπ PBLUP GBLUP BayesCπ

10:0 0.32 ± 0.05 0.37 ± 0.05 0.45 ± 0.05 0.27 ± 0.05 0.37 ± 0.07 0.53 ± 0.06

12:0 0.26 ± 0.04 0.42 ± 0.03 0.58 ± 0.02 0.23 ± 0.03 0.31 ± 0.06 0.53 ± 0.04

13:0 0.06 ± 0.06 0.35 ± 0.04 0.34 ± 0.04 −0.05 ± 0.06 0.31 ± 0.07 0.32 ± 0.07

14:0 0.34 ± 0.04 0.39 ± 0.05 0.61 ± 0.04 0.27 ± 0.04 0.45 ± 0.06 0.73 ± 0.04

15:0 0.38 ± 0.06 0.55 ± 0.06 0.62 ± 0.06 0.26 ± 0.06 0.57 ± 0.08 0.69 ± 0.08

16:0 0.34 ± 0.05 0.28 ± 0.05 0.31 ± 0.05 0.23 ± 0.03 0.36 ± 0.05 0.50 ± 0.05

17:0 0.30 ± 0.05 0.33 ± 0.05 0.34 ± 0.05 0.29 ± 0.05 0.40 ± 0.04 0.46 ± 0.04

18:0 0.15 ± 0.05 0.29 ± 0.06 0.29 ± 0.07 0.24 ± 0.05 0.35 ± 0.05 0.38 ± 0.04

19:0 0.33 ± 0.10 0.40 ± 0.09 0.40 ± 0.10 0.18 ± 0.11 0.18 ± 0.13 0.18 ± 0.13

20:0 0.05 ± 0.06 0.22 ± 0.08 0.21 ± 0.08 0.25 ± 0.05 0.24 ± 0.05 0.24 ± 0.05

22:0 0.24 ± 0.07 0.36 ± 0.05 0.38 ± 0.05 0.17 ± 0.06 0.44 ± 0.07 0.43 ± 0.08

24:0 - - - 0.23 ± 0.06 0.27 ± 0.06 0.28 ± 0.06

SFA 0.29 ± 0.06 0.28 ± 0.07 0.29 ± 0.07 0.14 ± 0.04 0.37 ± 0.06 0.43 ± 0.06

iso14:0 0.16 ± 0.10 0.25 ± 0.10 0.24 ± 0.09 0.30 ± 0.05 0.18 ± 0.08 0.18 ± 0.08

iso15:0 0.20 ± 0.05 0.24 ± 0.07 0.25 ± 0.07 0.17 ± 0.03 0.20 ± 0.07 0.18 ± 0.07

ai15:0 0.21 ± 0.03 0.30 ± 0.04 0.31 ± 0.04 0.18 ± 0.04 0.37 ± 0.05 0.39 ± 0.05

iso16:0 0.20 ± 0.07 0.27 ± 0.06 0.28 ± 0.05 0.15 ± 0.04 0.28 ± 0.06 0.29 ± 0.05

iso17:0 0.18 ± 0.06 0.27 ± 0.05 0.27 ± 0.05 0.25 ± 0.07 0.29 ± 0.06 0.29 ± 0.06

ai17:0 0.14 ± 0.08 0.33 ± 0.08 0.31 ± 0.08 0.15 ± 0.04 0.34 ± 0.04 0.34 ± 0.05

iso18:0 0.12 ± 0.05 0.22 ± 0.05 0.22 ± 0.05 0.21 ± 0.05 0.33 ± 0.06 0.37 ± 0.06

BFA 0.20 ± 0.06 0.31 ± 0.05 0.31 ± 0.05 0.17 ± 0.05 0.32 ± 0.04 0.32 ± 0.04

SFA + BFA 0.30 ± 0.06 0.29 ± 0.07 0.31 ± 0.07 0.14 ± 0.04 0.36 ± 0.06 0.42 ± 0.06

9c-14:1 0.19 ± 0.06 0.31 ± 0.04 0.43 ± 0.04 0.27 ± 0.06 0.34 ± 0.04 0.55 ± 0.03

9c-15:1 0.16 ± 0.06 0.23 ± 0.07 0.23 ± 0.08 0.24 ± 0.11 0.36 ± 0.10 0.37 ± 0.10

7c-16:1 0.19 ± 0.05 0.18 ± 0.07 0.20 ± 0.07 0.16 ± 0.07 0.22 ± 0.05 0.24 ± 0.05

9c-16:1 0.13 ± 0.04 0.25 ± 0.06 0.26 ± 0.07 0.29 ± 0.03 0.37 ± 0.03 0.49 ± 0.02

11 t-16:1 0.14 ± 0.08 0.33 ± 0.05 0.33 ± 0.05 0.08 ± 0.08 0.12 ± 0.09 0.13 ± 0.10

12c-16:1 0.22 ± 0.05 0.34 ± 0.03 0.43 ± 0.03 0.25 ± 0.05 0.32 ± 0.04 0.55 ± 0.02

7c-17:1 - - - −0.02 ± 0.15 0.33 ± 0.24 0.32 ± 0.21

9c-17:1 0.34 ± 0.07 0.48 ± 0.06 0.48 ± 0.05 0.37 ± 0.08 0.40 ± 0.08 0.40 ± 0.08

9c-18:1 0.35 ± 0.10 0.30 ± 0.10 0.29 ± 0.10 0.14 ± 0.03 0.27 ± 0.06 0.37 ± 0.05

11c-18:1 0.57 ± 0.18 0.57 ± 0.18 0.55 ± 0.18 0.29 ± 0.02 0.44 ± 0.07 0.45 ± 0.07

12c-18:1 0.00 ± 0.09 0.11 ± 0.10 0.11 ± 0.09 0.11 ± 0.10 0.18 ± 0.10 0.19 ± 0.10

13c-18:1 0.19 ± 0.05 0.36 ± 0.04 0.41 ± 0.04 0.21 ± 0.03 0.36 ± 0.05 0.51 ± 0.04

14c-18:1 0.10 ± 0.09 0.28 ± 0.11 0.28 ± 0.11 0.15 ± 0.09 0.17 ± 0.07 0.17 ± 0.07

15c-18:1 0.20 ± 0.04 0.30 ± 0.04 0.31 ± 0.04 0.19 ± 0.05 0.26 ± 0.05 0.25 ± 0.06

6 t + 8 t-18:1 0.30 ± 0.06 0.35 ± 0.04 0.34 ± 0.04 0.20 ± 0.07 0.29 ± 0.04 0.30 ± 0.04

9 t-18:1 0.30 ± 0.09 0.33 ± 0.06 0.33 ± 0.06 0.26 ± 0.08 0.31 ± 0.04 0.32 ± 0.04

10 t-18:1 0.28 ± 0.03 0.42 ± 0.03 0.43 ± 0.03 0.26 ± 0.03 0.41 ± 0.03 0.42 ± 0.03

11 t-18:1 0.35 ± 0.08 0.43 ± 0.09 0.42 ± 0.09 0.29 ± 0.04 0.38 ± 0.04 0.35 ± 0.05

12 t-18:1 - - - 0.05 ± 0.07 0.27 ± 0.10 0.26 ± 0.10

15 t-18:1 - - - −0.26 ± 0.15 −0.05 ± 0.16 −0.01 ± 0.16

16 t-18:1 0.41 ± 0.07 0.65 ± 0.13 0.64 ± 0.13 0.33 ± 0.05 0.47 ± 0.07 0.48 ± 0.07
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Table 2 Realised accuracy (±SE) of breeding value prediction for fatty acid traits in the subcutaneous adipose and longissimus
lumborum musle (Continued)

sumtrans18:1 0.22 ± 0.03 0.35 ± 0.04 0.35 ± 0.03 0.25 ± 0.02 0.36 ± 0.03 0.37 ± 0.03

9c-20:1 0.33 ± 0.06 0.45 ± 0.07 0.45 ± 0.07 −0.03 ± 0.10 0.02 ± 0.09 0.00 ± 0.09

11c-20:1 0.20 ± 0.05 0.27 ± 0.04 0.30 ± 0.04 0.35 ± 0.06 0.37 ± 0.05 0.47 ± 0.04

MUFA 0.29 ± 0.07 0.29 ± 0.08 0.30 ± 0.08 0.11 ± 0.03 0.25 ± 0.07 0.31 ± 0.06

9c,13 t + 8 t,12c-18:2 0.22 ± 0.05 0.34 ± 0.07 0.33 ± 0.07 0.14 ± 0.06 0.36 ± 0.08 0.36 ± 0.08

9c,15c-18:2 0.18 ± 0.07 0.33 ± 0.05 0.35 ± 0.05 0.22 ± 0.04 0.38 ± 0.06 0.45 ± 0.06

8 t,13c-18:2 0.23 ± 0.05 0.38 ± 0.06 0.37 ± 0.06 0.02 ± 0.10 0.30 ± 0.04 0.31 ± 0.04

11 t,15c-18:2 0.25 ± 0.05 0.31 ± 0.06 0.32 ± 0.06 0.25 ± 0.03 0.34 ± 0.04 0.36 ± 0.04

9c,11 t + 9 t,11c-18:2 0.05 ± 0.08 0.25 ± 0.07 0.24 ± 0.07 0.26 ± 0.05 0.26 ± 0.07 0.25 ± 0.06

7 t,9c-18:2 0.58 ± 0.14 0.63 ± 0.12 0.64 ± 0.13 0.43 ± 0.22 0.31 ± 0.25 0.28 ± 0.26

12 t,14 t-18:2 0.06 ± 0.28 0.44 ± 0.33 0.41 ± 0.34 0.25 ± 0.19 0.50 ± 0.23 0.48 ± 0.22

11 t,13 t-18:2 0.48 ± 0.16 0.47 ± 0.11 0.46 ± 0.12 0.11 ± 0.10 0.06 ± 0.09 0.06 ± 0.09

10 t,12 t-18:2 - - - 0.09 ± 0.08 0.08 ± 0.11 0.08 ± 0.11

9 t,11 t-18:2 - - - 0.11 ± 0.10 0.01 ± 0.08 0.02 ± 0.08

8 t,10 t-18:2 0.35 ± 0.14 0.28 ± 0.14 0.28 ± 0.13 0.24 ± 0.13 −0.01 ± 0.10 0.05 ± 0.11

7 t,9 t-18:2 0.41 ± 0.44 0.10 ± 0.47 0.04 ± 0.48 - - -

12 t,14c + 12c,14 t −18:2 −0.01 ± 0.26 0.32 ± 0.25 0.34 ± 0.24 0.06 ± 0.09 0.04 ± 0.07 0.04 ± 0.07

11 t,13c + 11c,13 t −18:2 0.54 ± 0.06 0.56 ± 0.08 0.54 ± 0.08 0.16 ± 0.10 0.29 ± 0.06 0.30 ± 0.06

10 t,12c-18:2 0.44 ± 0.09 0.52 ± 0.07 0.52 ± 0.08 0.04 ± 0.12 0.21 ± 0.14 0.22 ± 0.14

8 t,10c-18:2 0.33 ± 0.17 0.32 ± 0.14 0.31 ± 0.14 0.27 ± 0.08 0.15 ± 0.07 0.13 ± 0.07

Total CLA 0.25 ± 0.09 0.37 ± 0.09 0.36 ± 0.10 0.12 ± 0.06 0.06 ± 0.06 0.06 ± 0.06

18:2n-6 0.21 ± 0.02 0.35 ± 0.04 0.36 ± 0.04 0.15 ± 0.05 0.29 ± 0.04 0.32 ± 0.04

18:3n-3 0.27 ± 0.04 0.38 ± 0.04 0.38 ± 0.04 0.28 ± 0.06 0.33 ± 0.04 0.34 ± 0.04

18:3n-6 0.10 ± 0.11 0.09 ± 0.09 0.11 ± 0.09 0.20 ± 0.05 0.36 ± 0.05 0.41 ± 0.04

20:2n-6 0.20 ± 0.07 0.06 ± 0.05 0.06 ± 0.06 0.07 ± 0.11 0.10 ± 0.07 0.11 ± 0.07

20:3n-6 0.10 ± 0.11 0.24 ± 0.11 0.22 ± 0.11 0.14 ± 0.03 0.32 ± 0.04 0.34 ± 0.05

20:3n-9 0.20 ± 0.16 −0.03 ± 0.11 −0.05 ± 0.13 0.12 ± 0.04 0.33 ± 0.07 0.33 ± 0.07

20:4n-6 −0.10 ± 0.04 0.10 ± 0.09 0.09 ± 0.08 0.09 ± 0.03 0.29 ± 0.06 0.31 ± 0.05

20:5n-3 - - - 0.32 ± 0.06 0.10 ± 0.11 0.09 ± 0.11

22:4n-6 0.10 ± 0.04 0.19 ± 0.08 0.19 ± 0.08 0.15 ± 0.06 0.38 ± 0.08 0.40 ± 0.08

22:5n-3 0.04 ± 0.10 0.14 ± 0.08 0.14 ± 0.08 0.15 ± 0.04 0.39 ± 0.07 0.39 ± 0.07

22:6n-3 - - - 0.00 ± 0.05 0.10 ± 0.08 0.10 ± 0.07

PUFA 0.21 ± 0.02 0.35 ± 0.04 0.36 ± 0.04 0.14 ± 0.04 0.30 ± 0.04 0.33 ± 0.04

n-3 0.27 ± 0.04 0.37 ± 0.05 0.38 ± 0.04 0.22 ± 0.04 0.40 ± 0.05 0.40 ± 0.05

n-6 0.20 ± 0.02 0.35 ± 0.04 0.36 ± 0.04 0.14 ± 0.04 0.29 ± 0.04 0.32 ± 0.04

n-6/n-3 - - - 0.11 ± 0.04 0.16 ± 0.04 0.14 ± 0.04

P/S 0.19 ± 0.03 0.33 ± 0.04 0.34 ± 0.04 0.14 ± 0.03 0.38 ± 0.04 0.39 ± 0.03

P/(S + B) 0.19 ± 0.03 0.33 ± 0.04 0.34 ± 0.04 0.14 ± 0.09 0.38 ± 0.04 0.39 ± 0.04

HI 0.31 ± 0.05 0.30 ± 0.05 0.38 ± 0.05 0.22 ± 0.05 0.41 ± 0.06 0.59 ± 0.06
aThe concentrations of fatty acids were expressed as a percentage of fatty acid methyl esters (FAME) quantified. c = cis, t = trans. SFA = 10:0 + 12:0 + 13:0 + 14:0 +
15:0 + 16:0 + 17:0 + 18:0 + 19:0 + 20:0 + 22:0 + 24:0; BFA = iso14:0 + iso15:0 + ai15:0 + iso16:0 + iso17:0 + ai17:0 + iso18:0; SFA + BFA: sum of SFA and BFA;
sumtrans18:1 = 6 t/8 t-18:1 + 9 t-18:1 + 10 t-18:1 + 11 t-18:1 + 12 t-18:1 + 15 t-18:1 + 16 t-18:1; MUFA = 9c-14:1 + 9c-15:1 + 7c-16:1 + 9c-16:1 + 11 t-16:1 + 12c-16:1 +
7c-17:1 + 9c-17:1 + 9c-18:1 + 11c-18:1 + 12c-18:1 + 13c-18:1 + 14c-18:1 + 15c-18:1 + 9c-20:1 + 11c-20 + 6 t/8 t-18:1 + 9 t-18:1 + 10 t-18:1 + 11 t-18:1 + 12 t-18:1 +
15 t-18:1 + 16 t-18:1; Total CLA = 9c,11 t + 9 t,11c-18:2 + 6 t,8 t-18:2 + 7 t,9c-18:2 + 12 t,(14 t-18:2 + 11 t,13 t)-18:2 + 10 t,12 t-18:2 + 9 t,11 t-18:2 + 8 t,10 t-18:2 +
7 t,9 t-18:2 + (12 t,14c + 12c,14 t) -18:2 + (11 t,13c + 11c,13 t)-18:2 + 10 t,12c-18:2 + 8 t,10c-18:2; PUFA = 18:2n-6 + 18:3n-6 + 18:3n-3 + 20:2n-6 + 20:3n-9 +
20:3n-6 + 20:4n-6 + 22:4n-6 + 22:5n-3+ 22:6n-3; n-3 = 18:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3; n-6 = 18:2n-6 + 18:3n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6; n-6/n-3: ratio
between n-6 and n-3; P/S = PUFA/SFA; P/(S + B) = PUFA/(SFA + BFA); HI = (MUFA + PUFA) / (4 × 14:0 + 16:0). ‘-’ = not calculated due to a zero heritability
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muscle, and varied from −0.05 for 20:3n-9 to 0.65 for
16 t-18:1 in the SQ tissue. Averaged across all traits,
accuracies from PBLUP, GBLUP, and the Bayesian method
were 0.23, 0.32, and 0.35, respectively, in SQ, and 0.17,
0.39, and 0.46, respectively, in LL. These results suggested
the effectiveness of genomic prediction using either GBLUP
or the Bayesian method. However, the incompleteness of
the pedigree (only one generation) may largely contribute
to the low accuracy for the PBLUP method. It should be
noted that the realized accuracy could be overestimated
when heritability is underestimated as pointed out by
Lourenco et al. [63]. Accuracies that were substantially
overestimated tended to have relatively large SE (>0.10)
as shown in Table 2. Additionally, Pearson’s correlation
coefficient between estimated breeding values and ad-
justed phenotypes, and regression coefficient by regres-
sing adjusted phenotypes on estimated breeding values
were also calculated and provided in Additional file 6.
The correlation coefficients averaged 0.11, 0.15, and 0.15
for PBLUP, GBLUP, and the Bayesian method, respect-
ively, in SQ, and averaged 0.08, 0.14, and 0.16, respectively
in LL. The average regression coefficients in SQ were 1.02,
0.77, and 0.92, and were 1.04, 0.90, and 0.83 in LL for
PBLUP, GBLUP, and the Bayesian method, respectively.
The regression coefficient is expected to be 1 if the esti-
mated breeding values were unbiased predictions of the
true breeding values. Nevertheless, for most of the fatty
acid traits, the accuracy of genomic prediction were rela-
tively low (<0.40), which was expected given the low herit-
ability estimates and the small sample size used in this
study [64]. Relatively higher accuracy (r(GEBV,y)/h ≥ 0.50
with SE < 0.10) were achieved for 10:0 (0.53), 12:0 (0.53),
14:0 (0.73), 15:0 (0.69), 16:0 (0.50), 9c-14:1 (0.55), 12c-16:1
(0.55), 13c-18:1 (0.51), and HI (0.59) in LL, and for 12:0
(0.58), 14:0 (0.61), 15:0 (0.62), 10 t,12c-18:2 (0.52), and
11 t,13c + 11c,13 t-18:2 (0.56) in SQ. The relatively higher
accuracy for certain saturated and monounsaturated fatty
acids, and HI, and relatively lower accuracy for CLAs and
other PUFAs in muscle were compatible with the magni-
tude of their estimated heritability (Table 1). The corre-
lations between heritability estimates and realised accuracy
of genomic prediction in LL were 0.61 and 0.39 for
Bayesian and GBLUP methods, respectively. However,
in SQ such correlations were only 0.10 for GBLUP and
0.23 for the Bayesian method, which is likely due to
many overestimations of realised accuracy for traits
with low and inaccurate heritability estimates. Genomic
prediction from the Bayesian method performed simi-
larly as GBLUP for most of the traits, but substantially
better for several traits in LL muscle such as 10:0 (0.37
for GBLUP vs 0.53 for BayesCπ), 12:0 (0.31 vs 0.53),
14:0 (0.45 vs 0.73), 15:0 (0.57 vs 0.69), 16:0 (0.36 vs
0.50), 9c-14:1 (0.34 vs 0.55), 9c-16:1 (0.37 vs 0.49), 12c-
16:1 (0.32 vs 0.55), 9c-18:1 (0.27 vs 0.37), 13c-18:1 (0.36

vs 0.51), and HI (0.41 vs 0.59), and for traits in SQ in-
cluding 12:0 (0.42 vs 0.58), 14:0 (0.39 vs 0.61), and 9c-
14:1 (0.31 vs 0.43). These traits have been shown to
have SNPs with larger effects from GWAS results
(Figs. 1 and 2). The Bayesian method adopted in this
study allows a fraction of SNPs to take relatively large ef-
fects, which may better characterize the genetic architec-
ture of traits that have QTL of larger effects than the
GBLUP method [65], which assumes all SNPs have the
same genetic variance.
Fatty acid composition is a complex trait and it is diffi-

cult and expensive to measure, making it a good candidate
trait for genomic selection. To date, genomic prediction
for fatty acid composition in beef cattle has only been
reported by Saatchi et al. [16] for 24 individual and
grouped/ratio of fatty acids in steaks of American
Angus beef cattle, and by Onogi et al. [39] for 8 fatty
acid traits in musculus trapezius of Japanese Black cattle.
Relatively higher prediction accuracies were found for
14:0 (0.57), 16:0 (0.53), total long chain saturated fatty
acids (0.57), total medium chain saturated fatty acids
(0.57), 9c-18:1 (0.35), 12c-18:1 (0.35), total MUFA (0.38),
(14:0 + 16:0)/all (0.55), and AI (0.56) in Saatchi’s study,
compared to other fatty acid traits. In this study, relatively
higher accuracies were also obtained for SFAs 12:0, 14:0,
and 15:0 in both the LL and SQ tissues, and for 10:0, 16:0,
9c-14:1, 12c-16:1, 13c-18:1, and HI in LL (Table 2), sug-
gesting strong host genetic controls on synthesis of these
SFAs and MUFAs. Saatchi et al. [16] reported genomic
prediction accuracies for 12 PUFAs and all were very low
(<0.30). In this study, we analyzed 32 and 34 PUFAs and
PUFA-BHI (including CLAs and 11 t-18:1) in the adipose
and muscle tissues, respectively, and found moderate
accuracies (between 0.30 and 0.45) for 11 t-18:1,
9c,13 t + 8 t,12c-18:2, 9c,15c-18:2, 8 t,13c-18:2,
11 t,15c-18:2, 18:2n-6, 18:3n-3, n-3, n-6, and total
PUFA in both the adipose and muscle tissues, moder-
ate accuracies for 20:3n-6, 20:3n-9, 22:4n-6, 22:6n-3 in
the muscle, and relatively high accuracies (>0.50) for
12 t,14c + 12c,14 t-18:2, and 11 t,13c + 11c,13 t-18:2 in the
adipose tissue, suggesting considerable host genetic influ-
ence on these fatty acids. Different beef cattle populations,
environments where the animals were raised, sample
sizes and statistical models may also contribute to the
differences of genomic prediction accuracy observed
between different studies. Although most dietary
PUFAs are biohydrogenated by rumen bacteria [66], a
portion of PUFAs and PUFA-BHI may escape and deposit
into body fat of beef. In addition, some PUFAs can be en-
dogenously synthesized, for example CLAs can be syn-
thesized from one of the PUFA-BHI, vaccenic acid (11 t-
18:1) by the host [67]. Therefore, contents of both PUFAs
and PUFA-BHI are potentially influenced by host genetics
and thus predictable by genomic prediction. Onogi et al.
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[39] also reported a relatively high accuracy (0.56) for
PUFA C18:2 in Japanese Black cattle. Although it would
be worthwhile to further verify the genomic prediction
accuracy in other beef cattle populations, the moderate
to relatively high genomic prediction accuracies achieved
in this study for the HI, several individual SFAs, MUFAs,
PUFAs and PUFA-BHI suggest that genomic selection is a
promising tool for genetic improvement of fatty acid pro-
files in beef cattle to produce healthier meat. Therefore, as
consumers’ demand for healthier meat continues to
grow, beef producers may get more premiums by pro-
ducing meat with enhanced fatty acid profiles, which
can be achieved by incorporating fatty acid composition
traits into a multi-trait selection index for selection and/or
by genetic based diet management.

Conclusions
Fatty acid composition in beef tissues is a polygenic trait
that is controlled by a few major host genes and many
genes of small effects. Several genes, including FASN,
SCD, and THRSP, are major candidate genes for variations
of fatty acid contents in beef cattle. Accuracy of genomic
prediction was low for most of the fatty acid traits investi-
gated. Moderate accuracy was obtained for SFAs 10:0,
12:0, 13:0, 14:0, 15:0, 16:0, MUFAs 9c-14:1, 12c-16:1, 13c-
18:1, and HI in LL, and for SFAs 12:0, 14:0, 15:0, and
CLA isomers 10 t,12c-18:2, and 11 t,13c + 11c,13 t-18:2
in SQ. The Bayesian method performed similarly as
GBLUP for most of the traits, but substantially better
for fatty acid traits that are influenced by QTL of larger
effects. The moderate genomic prediction accuracy
achieved in this study for HI in LL and several individ-
ual fatty acids in LL and SQ tissue suggest that it is
possible to genetically improve fatty acid profiles in
beef cattle to produce healthier meat through genomic
selection. Further investigations on the identification of
causal mutations for variations of fatty acid contents in
beef tissues and on improvement of genomic prediction
accuracy are required.

Methods
Animal populations, tissue collection and fatty acid
analyses
A total of 1366 steers and heifers born between 2008
and 2011 were used in this study. The animals were from
four different herds including three commercial herds and
one experimental herd located in Alberta of Canada. All
dietary treatments and experimental procedures were ap-
proved by the AAFC Lacombe Research Centre Animal
Care Committee and animals were cared for as outlined
under the guidelines established by the Canadian Council
on Animal Care [68]. Breed compositions of the 1366
steers and heifers were represented by purebred Angus
(ANAN, n = 6), Hereford-Angus crossbreds (HEAN, n =

120), Charolais-Red Angus crossbreds (CHAR, n = 93),
crossbreds produced by mating Hereford-Angus to
Gelbvieh-Angus crossbreds (HEANGV, n = 209), and
calves produced from crosses between a composite ter-
minal bull strain which was derived from Hereford, Black
Angus, Red Angus, and Limousin, and crossbred cows
with a mixed background of Angus, Red Angus, Hereford,
Simmental, Charolais, Limousin and Gelbvieh (TXX, n =
938). A more detailed description of breeding and man-
agement of the herds have been described previously
[69–71]. A written consent from the owner of the com-
mercial herds was obtained for the use of cattle data in
this study. After weaning, animals were raised under
one of four production systems: (1) calf-fed, growth im-
plant; (2) calf-fed; no growth implant; (3) yearling-fed,
growth implant; (4) yearling-fed, no growth implant
[70, 72]. All animals were fed high concentration diets
for finishing and were targeted to be slaughtered at a
constant back fat thickness of 9 to 10 mm measured
between the 12th and 13th ribs.
After slaughter, the longissimus luborum muscle (LL)

of each animal was taken from the left striploin at 48 h
post-mortem, vacuum packed and then chilled at 2 °C.
The striploin samples were then transported by a refrig-
erated truck to a meat lab of the AAFC Lacombe Research
Centre where a sub-sample of approximately 10 grams of
LL muscle and 5 grams of subcutaneous adipose (SQ)
tissue from the side of the striploin of each animal was
taken, vacuum packed and frozen at −80 °C for subse-
quent fatty acid analyses. The two tissues have distinct
metabolism roles involving fat usage: muscle is mainly
for energy expenditure to produce force and motion while
adipose including intramuscular fat within muscle is the
main tissue for fat storage [73]. The two tissues were se-
lected mainly because they are major parts of carcass that
are consumed as beef products by humans. Fatty acid ana-
lyses of LL and SQ tissues were based on the protocols de-
scribed previously with some modifications [10]. Briefly,
lipid was extracted from the LL muscle tissue using Folch’s
method [74] as outlined by Cruz-Hernandez et al. [75]
and from the SQ tissue based on the procedures described
in [75] and [76]. Fatty acid methyl esters (FAME) were
then derivatized using sodium methoxide from the lipid
extracts for quantification of fatty acid composition. Gas
chromatography (GC) and silver-ion high performance
liquid chromatography (Ag + HPLC) analyses were con-
ducted to separate and quantify individual fatty acids as
outlined in [77] using a two-step GC procedure and in
[75] using Ag + HPLC. Individual fatty acids were
expressed as a percentage of the total FAME. Concentra-
tions of groups of fatty acids, including total saturated
fatty acids (SFA), branched fatty acids (BFA), sum of SFA
and BFA (SFA + BFA), mono-unsaturated fatty acids
(MUFA), poly-unsaturated fatty acids (PUFA), sum of
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trans 18:1 fatty acids (sumtrans18:1), total conjugated
linoleic acid (Total CLA), n-3, and n-6, were measured
by summing up the percentages of individual fatty acids
within the fatty acid group. Ratios between PUFA and
SFA (P/S), PUFA and sum of SFA and BFA (P/(S + B)),
and between n-6 and n-3 (n-6/n-3) were also calcu-
lated. A health index (HI), proposed in [35], was com-
puted as HI = (MUFA + PUFA) / (4 × 14:0 + 16:0). A total
of 83 individual and grouped/ratio fatty acid traits in the
LL muscle and 81 in the SQ tissue were quantified. Two
fatty acids, 20:5n3 and 22:6n3 were not detected in SQ in
this study due to their extremely low concentrations in
the tissue.

Single nucleotide polymorphism genotyping
All animals were genotyped on the Illumina BovineSNP50
Beadchip comprised of 54,609 SNP markers. Markers with
minor allele frequency less than 0.05, missing rate greater
than 0.20, extremely deviated from Hardy-Weinberg equi-
librium test (P < 10−6), or in high correlation with another
SNP (r ≥ 0.95) were removed. After filtering, 35,446 SNPs
were kept for analyses. Sporadically missing genotypes
represented 0.14 % of the total genotypes and were im-
puted via Beagle 3.3.2 [78].

Genome-wide association study
Phenotypic values were adjusted for fixed effects and
random contemporary group effects using a linear mixed
model which included fixed effects of breed type, gender,
production system, linear covariates of animal’s age at
slaughter, days between slaughter and fatty acid extraction,
and metabolic energy of diet, and random effects of con-
temporary groups defined as combinations of feedlot loca-
tion and year, additive genetic effects and residual errors.
Fatty acid traits in LL muscle were also adjusted for intra-
muscular fat content by including the marbling score as
an additional fixed linear covariate. A genomic relation-
ship matrix for additive genetic effects was constructed
from SNP marker genotypes using the first method of
VanRaden [79]. Variance components and heritability
were estimated using the above model and average-in-
formation REML algorithm implemented via ASReml v3.0
software package [80].
The adjusted phenotypes were subsequently analysed

using the BayesCπ method [81] for genome-wide associ-
ation studies. The model can be described as follows:

yi ¼ μþ
XM

j¼1

xijaj þ ei;

where yi is the adjusted phenotypic value of the ith animal,
μ is the general mean, xij is the j

th SNP genotype of animal
i and was coded as 0, 1 or 2 depending on copies of an ar-
bitrarily specified allele, M is the total number of SNP

markers, aj is the allele substitution effect of SNP j, and ei
is the random residual effect.
A mixture distribution was assumed for aj so that

(aj|π, σa
2) ~ (1 − π)N(0, σa

2) + πδ0(aj), where N(0, σa
2) is a

normal distribution with mean 0 and variance σa
2, and

δ0(aj) denotes a distribution concentrated at zero, and
(1 − π) and π are the weights for the two distributions. A
latent indicator variable γj was introduced for each SNP
so that when γj = 1, aj ~ N(0, σa

2), and when γj = 0, aj =
0. Prior distribution for γj follows a Bernoulli distribution
with probability (1 − π), and the joint prior density for γ

is f γjπð Þ ¼ Q
jπ

1−γ jð Þ 1−πð Þγ j : Residual error ei was as-

sumed from a normal distribution N(0, σe
2). The prior

distribution for σa
2 (or σe

2) is a scaled inverse Chi-square
distribution with degree of freedom va (or ve) and a scale
parameter Sa

2 (or Se
2). The hyper-parameter va (or ve) was

arbitrarily set to 4 (or 10), and Sa
2 (or Se

2) was set to σu 2ðva
−2Þ=½vað1−πÞ

P
2pjð1−pjÞ� (or σ̂ 2

0 ve−2ð Þ=ve), where pj is al-
lele frequency for marker j, σ̂ 2

u and σ̂ 2
0 were total additive

genetic and residual variances obtained from the ana-
lyses described previously. A Gibbs sampling algorithm
was used for generating samples for unknown parame-
ters from their joint posterior distribution. The com-
puter program was self-written in C language using the
computing algorithm as described by Chen et al. [82].
The Gibbs chain length was 45,000 with the first 5000
discarded as burn-in. Posterior inclusion probability for
each SNP was estimated as sample mean of the latent in-
dicator variable for that SNP, and was used as a signal of
association. To declare the significance of a SNP effect,
empirical genome-wise significance threshold at α = 0.05
was determined by 1000 permutation analyses according
to the procedure of Churchill and Doerge [83]. Briefly, the
adjusted phenotype values of each fatty acid were ran-
domly shuffled and assigned back to the animals for the
BayesCπ analyses while the genotype data remained in-
tact. The process was repeated 1000 times and the lar-
gest SNP posterior inclusion probability from each
permutation analysis was kept and ordered in ascending
order, and the 950th value was defined as the genome-wise
significance threshold. Candidate genes in the window of
1 Mb centering the significant SNPs were obtained by
querying the Ensemble gene database using SNP locations
from the bovine UMD3.1 genome assembly via the SNP
annotation tool in the NGS-SNP suite [84].

Genomic prediction
Genomic best linear unbiased prediction (GBLUP) and
BayesCπ methods were used for genomic prediction. A
ten-fold cross validation was used to evaluate the accur-
acy of genomic prediction. The data was first split into
10 approximately equal-sized groups according to sires
of the animals so that no sire families overlapped between
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any two groups. For each breed type, the number of an-
imals in each cross-validation group was kept approxi-
mately the same so that each breed in the validation
group was also represented in the training population.
For each cross validation, nine groups were used for train-
ing and the remaining one was used as the validation
population. For GBLUP, animals in the validation popula-
tion were assumed with no phenotypic values, and the an-
imals in the training and validation populations were then
combined to estimate the breeding values for animals in
the validation population using a linear animal model,
which can be written as:

y� ¼ 1μþ Zaþ e;

Where y* is the vector of adjusted fatty acid pheno-
typic values from animals in the training population, μ is
the overall mean, a is the vector of breeding values for
all animals, e is the vector of random residuals and Z is
the incidence matrix relating a to y*. The additive gen-
omic relationship matrix for all animals was derived
from the SNP markers using the first method of VanRa-
den [79], and ASReml 3.0 [80] was used to estimate the
breeding values. For the BayesCπ method, SNP effects
were estimated based on the training population using the
statistical model as described in the GWAS analyses.
The GEBV for animal i in the validation population was
predicted by summing up SNP effects over all loci as

follows:GEBVi ¼
PM

j¼1xijaj, where aj is the estimated ef-

fect for SNP j. For comparisons, a pedigree based BLUP
method (PBLUP) was also used to estimate the breeding
values, assuming no phenotypic values for validation ani-
mals. However, only one generation of the pedigree was
available for construction of the additive genetic relation-
ship matrix. Realized accuracy of genomic prediction
was measured as the correlation between estimated breed-
ing values and the adjusted phenotype in the validation
groups divided by square root of heritability and was aver-
aged across the ten cross-validations.
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