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Does dietary folic acid supplementation in mouse
NTD models affect neural tube development or
gamete preference at fertilization?
Ghunwa A Nakouzi1,2 and Joseph H Nadeau1,3*
Abstract

Background: Neural tube defects (NTDs) are the second most common birth defect in humans. Dietary folic acid
(FA) supplementation effectively and safely reduces the incidence of these often debilitating congenital anomalies.
FA plays an established role in folate and homocysteine metabolism, but the means by which it suppresses
occurrence of NTDs is not understood. In addition, many cases remain resistant to the beneficial effects of folic acid
supplementation. To better understand the molecular, biochemical and developmental mechanisms by which FA
exerts its effect on NTDs, characterized mouse models are needed that have a defined genetic basis and known
response to dietary supplementation.

Results: We examined the effect of FA supplementation, at 5-fold the level in the control diet, on the NTD and
vertebral phenotypes in Apobtm1Unc and Vangl2Lp mice, hereafter referred to as Apob and Lp respectively. The FA
supplemented diet did not reduce the incidence or severity of NTDs in Apob or Lp mutant homozygotes or the
loop-tail phenotype in Lp mutant heterozygotes, suggesting that mice with these mutant alleles are resistant to FA
supplementation. Folic acid supplementation also did not affect the rate of resorptions or the size of litters, but instead
skewed the embryonic genotype distribution in favor of wild-type alleles.

Conclusion: Similar genotypic biases have been reported for several NTD models, but were interpreted as diet-
induced increases in the incidence and severity of NTDs that led to increased embryonic lethality. Absence of
differences in resorption rates and litter sizes argue against induced embryonic lethality. We suggest an alternative
interpretation, namely that FA supplementation led to strongly skewed allelic inheritance, perhaps from disturbances
in polyamine metabolism that biases fertilization in favor of wild-type gametes.

Keywords: Neural tube defects, Mouse models, Folic acid, Apob, Vangl2, Embryonic lethality, Polyamines, Fertilization,
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Background
Neural tube closure is an early developmental process
that gives rise to the central nervous system, including
the spinal cord and brain [1,2]. Failure of the neural tube
to close properly leads to different clinical types of
NTDs depending on the site and timing of closure fail-
ure [1-6]. Neural tube defects (NTDs) are serious and
common birth defects resulting from both genetic and
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environmental factors [1-6]. In humans, FA supplemen-
tation of maternal diet before and during pregnancy sig-
nificantly reduces NTD incidence [1-8].
FA plays a role in both the folate cycle for the produc-

tion of thymidylate and purines mediating cell division,
and in the methylation cycle of homocysteine metabol-
ism resulting in epigenetic regulation of gene expression
[9-11]. Although the efficacy of FA supplementation is
widely accepted, the mechanism by which FA reduces
the incidence of NTDs is not understood and whether
FA-resistant cases respond to alternative dietary nutri-
ents is not generally known. Several studies have impli-
cated FA in reproduction and fertility in humans [12-17]
as well as with developmental delay and increased rates
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of cardiac defects and other fetal anomalies in mouse
models [18-20], suggesting that the effects of folate me-
tabolism and FA supplementation on pregnancy and
gamete biology may be more diverse than generally
appreciated.
Mouse NTD models with specific responses to differ-

ent nutritional supplements can be used to study mecha-
nisms of FA responsiveness in humans and mice, and to
identify alternative approaches to prevent FA-resistant
NTDs [21-23]. In particular, mouse models involving
known genes, characterized mechanisms, and estab-
lished responses to FA supplementation are needed.
However, among more than 240 NTD mouse mutants
and strains, only 19 have been tested for response to FA
supplementation on the outcome of NTDs, with supple-
mentation effective in some mutants but not others
[2,23-26]. Our lab sought to expand this body of know-
ledge by studying the effect of FA on selected NTD
mouse models.
We examined the FA response of two NTD mouse mu-

tants. Apolipoprotein B (apoB) is a key structural compo-
nent of several lipoproteins that transport circulating
cholesterol, lipids, and vitamin E [27]. The Apobtm1Unc

mutant is the result of a genetically engineered loss-of-
function (LOF) mutation in the Apob gene [27]. Apob
homozygous embryos show a 30% penetrance of exen-
cephaly alone or accompanied with hydrocephalus
[27], see also [28] (Figure 1A vs B). By 8 weeks of age,
mutants that have a closed neural tube show hydro-
cephalus in 32% of homozygotes and in 1% of heterozy-
gotes. VANGL2 protein is one of two highly conserved
membrane proteins involved in establishing planar cell
polarity (PCP) and in regulating convergent extension
movements during embryogenesis [29]. The Vangl2Lp

mutant results from a spontaneous LOF mutation in the
Vangl2 gene [29], see also [28]. Lp homozygous embryos
have a 100% penetrance of craniorachischisis due to fail-
ure to initiate neural tube closure at embryonic day E8.5
[30] (Figure 1A vs C). This mutation is inherited in a
co-dominant manner and the heterozygous phenotype
is characterized by a looped tail resulting from vertebral
Figure 1 Examples of congenital defects in Apob and Lp mutant mice
and D. Lp – loop-tail.
anomalies [29] (Figure 1A vs D). Neither mutant has
been previously tested for response to dietary FA
supplementation.
During our work on the effects of dietary FA supple-

mentation on mouse models of NTDs, we made an ob-
servation that others had made with other NTD models,
but were led to an alternative interpretation that seems
more consistent with the entire body of data. In particu-
lar, we found that parental FA supplementation did not
reduce the incidence or severity of NTDs in these two
mouse models, but instead caused a substantial defi-
ciency in the numbers of homozygous and heterozygous
mutant embryos, without a corresponding increase in
resorptions or a reduction in litter size. We suggest that
FA supplementation led to preferential fertilization and
biased segregation in heterozygous mutant mice. Obvi-
ously more work is needed to characterize molecular
mechanisms, but we thought an initial report was appro-
priate to highlight this issue.

Results
We began by testing whether parental FA supplementa-
tion reduced the incidence or severity of NTDs in
homozygous mutant embryos or the loop-tail phenotype
in Lp heterozygous mutant mice. Timed-pregnancies
were generated with females that were either supple-
mented with FA (10 ppm) or maintained on a baseline
FA diet (2 ppm) before mating and during pregnancy.
Homozygous Apob and Lp embryos were examined for
NTDs [27-29], see also [31-33] and Lp mutant heterozy-
gotes for the loop-tail phenotype (Figure 1). In particu-
lar, the proportion of affected embryos did not differ
between the two test and control groups (Table 1), sug-
gesting that these NTD mutants are resistant to the
beneficial effects of dietary FA supplementation.
Unexpectedly, both supplemented lines showed a sub-

stantial deficiency of homozygous and heterozygous mu-
tant embryos at the higher FA concentration. Because
these single gene mutations are inherited in a Mendelian
manner [27-29], 25% of the embryos are expected to
have a wild-type genotype (+/+), 50% a heterozygous
. A. Normal embryo, B. Apob – exencephaly, C. Lp – craniorachischosis,



Table 1 Association between parental FA
supplementation and incidence of NTDs

Mutant, diet % Affected (n) Sample size

Apobtm1Unc/tm1Unc - exencephaly

2 ppm 96 (26) 27

10 ppm 96 (26) 27

Vangl2Lp/Lp - craniorachischisis

2 ppm 100 (15) 15

10 ppm 100 (11) 11

Vangl2Lp/Lp – looped tail

2 ppm 98 (40) 41

10 ppm 97 (31) 32

Fisher’s exact test was used to determine whether FA-supplementation
affected the incidence of NTDs in mutant homozygotes or heterozygotes.
The number of affected embryos is shown in parentheses. No significant
differences were detected.
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genotype (+/mutant), and 25% a homozygous mutant
genotype (mutant/mutant) (Figure 2). The genotype dis-
tribution on the control diet was consistent with Men-
delian expectations for both mutants, showing that
segregation was normal at 2 ppm FA. By contrast, a clear
deficiency was found for homozygous and heterozygous
embryos conceived and maintained on 10 ppm FA
(Table 2). For the supplemented Lp mutant, although
the deviation from Mendelian ratios was not statistically
Figure 2 Gamete bias at fertilization and conceptus genotype freque
mutant allele, respectively. Gamete frequencies are shown on the sides of t
of the matrix represents one of sexes in each mating. A. General case, whe
to illustrate the consequences of gametic bias. Note that all eggs are fertili
genotypic ratio changes.
significant, the observed numbers of homozygous and
heterozygous mutant embryos was strongly reduced
relative to expectations, with the percent difference
comparable to results for the Apob mutant, but with a
slightly smaller sample size (Table 2).
Finally, we sought to estimate the number of missing em-

bryos. Because FA supplementation is not expected to
affect the number of wild-type embryos, we accepted the
number of +/+embryos as indicative of Mendelian expecta-
tions. By extrapolation, we then estimated the expected
number of heterozygous and homozygous mutants cf.
[24,25]. This analysis assumed that fertilization was random
with respect to the genetic constitution of gametes in both
parents. We found that on the 10 ppm diet, 52.5% and
32.5% of the expected numbers of Apob mutant heterozy-
gotes and homozygotes were missing, respectively (Table 2).
Similarly, 30.4% and 52.2% of the expected numbers
Lp mutant heterozygote and homozygote embryos were
missing on the 10 ppm diet. Interestingly, we found
no evidence for increased rates of congenital anomalies
among heterozygous mutant embryos on the supplemented
diet, implying that a substantial number of phenotypically
normal heterozygous mutant embryos were missing
(Table 2). Finally, we noted that average litter size did not
differ between test and control crosses. We also counted
the number of resorptions as a measure of fetal loss, but
these counts did not differ. Thus a substantial number of
ncies. ‘+’ and ‘m’ designate gametes that carry the wild-type or the
he matrix, and conceptus genotype in the cells of the matrix. Each side
re p and q denote alternative alleles. B. Arbitrary numbers were used
zed and litter size remains unchanged in each scenario; only the



Table 2 Embryo loss among progeny of NTD heterozygous mutant intercrosses

Mutant, Diet Obs. no. embryos P-value (χ2) % Lost heterozygous,
homozygous

% Lost
(combined)

% resorbed
(n)

Ave. litter size
(n)+/+ +/− −/−

Apobtm1Unc

2 ppm 24 48 27 ns – – 12.3 (14) 6.2 (16)

10 ppm 40 38 27 0.004 (11.2) 52.5, 32.5 45.8 7.8 (9) 5.8 (18)

Vangl2Lp

2 ppm 13 41 15 ns – – 9.2 (7) 4.3 (16)

10 ppm 23 32 11 0.11 (4.4) (30.4, 52.2) 37.7 9.6 (7) 4.4 (15)

All embryos were genotyped. Only genotyped embryos were included in litter size metrics. Resorptions were not genotyped. Chi-square goodness-of-fit tests were
used to determine whether the observed genotypic distribution of embryos deviated significantly from Mendelian expectations (1:2:1) for the two NTD models
and for the two FA diets. The P-value for this test is provided. To calculate the percentage of “embryo loss”, we assumed that the observed number of wild-type
embryos was the correct number for the 1:2:1 Mendelian distribution. From this, we estimated expected numbers of heterozygous and mutant homozygous
embryos, and then calculated the difference between the expected and observed numbers. The percent embryo loss was calculated for Apob (10 ppm) where
genotyping results differed significantly from Mendelian expectations (bold numbers). The percent embryo loss is also provided in parentheses for Vangl2 where a
strong but non-significant trend was found. Note that differences in resorptions and litter size did not account for percent embryo loss. Bold numbers highlight
results of particular interest. ns, not significant; na, not applicable.
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embryos appeared to be missing, with no evidence for em-
bryonic lethality.

Discussion
Understanding the molecular and developmental mecha-
nisms by which dietary supplementation affects neural
tube development is critical to reducing the impact of one
of the most common birth defects, especially since some
NTDs appear to be resistant to the beneficial effects of FA
[1-6,21-23]. Animal models are essential for studying ex-
perimentally the ways that these dietary factors modulate
protein functions, biochemical pathways, and developmen-
tal processes during neural tube formation [21-26,28,34]. In
the present study, we found that parental FA supplementa-
tion did not protect embryos either from exencephaly in
Apob−/− embryos or from craniorachischisis and looped-tail
phenotypes in Lp−/− and Lp+/− embryos (Table 1). Embryos
exposed to the test diet that had 5-fold more FA than the
control diet did not show significant changes in the inci-
dence or severity of defects. Thus FA supplementation did
Table 3 Embryo loss among progeny of NTD mutant intercro

Mutant, Diet Obs. no. embryos P-value (χ2) % Lost heterozy
homozygous+/+ +/− −/−

Lrp6ko

2 ppm 37 73 20 0.04 (6.4) 1.4, 45.9

10 ppm 55 86 16 0.0001 (20.8) 21.8, 70.1

Zic2

2 ppm 56 84 32 0.03 (6.8) 25.0, 42.9

10 ppm 38 98 36 ns na

L3P

2 ppm 28 40 11 0.03 (7.3) 28.6, 60.7

10 ppm 14 28 16 ns na

See Table 2 for details. ns – not significant, na – not applicable. (Revised from Gray
numbers highlight results of particular interest.
*References: (1) Gray et al. [24], (2) Marean et al. [25]. ** Based on genotyped embr
not beneficially impact aspects of lipid transport (Apob)
and planar cell polarity (Vangl2) in these two mutant mice.
Unexpectedly, we found strongly biased genotype distri-

butions with folate supplementation in both mutants, but
without reduced litter size, increased resorption rates, or
other evidence for differences in embryonic viability. We
reviewed the literature to determine whether similar geno-
typic deviations without embryo loss had been reported in
other NTD diet-supplementation studies. Responses of sev-
eral NTD models to various nutrients have been tested,
with some showing responsiveness and others resistance
to supplementation or to deprivation [21-26,28,34]. Data
in some reports are consistent with normal Mendelian seg-
regation in both test and control groups [18-20,23,25,34].
Remarkably, at least two studies involving three NTDs
models also report non-Mendelian segregation (Table 3).
The proportion of missing embryos was similar among
models and studies, with the observed genotypic deviations
corresponding to a ~20% - ~70% reduction in the number
of both heterozygous and homozygous mutant embryos
sses

gous, % Lost
(combined)

% Resorbed
(n)

Ave. litter size**
(n)

Reference*

na 18 (29) 7.9 (20; 4, 12) 1

38.2 16 (30) 8.5 (22; 2–12) 1

31.0 7.5 (14) 6.1 (28) 2

na 11.8 (23) 5.7 (30) 2

39.3 15.9 (15) 7.2 (13) 2

na 18.3 (13) 4.2 (10) 2

et al. [24] and Marean et al. [25], with permission of the publishers) Bold

yos only.
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(Table 3). In particular, embryo loss as a function of Men-
delian expectations for homozygous mutants ranged from
43% for Zic2 to 70% for Lrp6, and for heterozygous mutants
from 22% for Lrp6 to 29% for L3P. Interestingly, corre-
sponding changes in resorptions rates and litter sizes were
not found.
Significant departures from Mendelian expectations

without embryo loss may be a regular but overlooked
finding in NTD diet supplementation studies. Previously
19 models were tested for response to supplementation.
The present study brings the total to 21. Of these five
(Lrp6, Zic3, L3P, Apob and Vangl2) show non-Mendelian
segregation (Tables 2 and 3), suggesting that skewed geno-
type ratios without embryonic lethality may be common.
Treatment protocols differ among studies with supple-
mentation in some cases introduced before conception
e.g. [18-20,23-25] and in other cases during gestation e.g.
[23,33,34]. Only the former protocol tests for effects of
supplementation on Mendelian segregation.
Deficiency of particular genotypic classes is usually

interpreted as diet-induced lethality among genetically
predisposed embryos [24,25]. Various evidence argues
against this interpretation. For example, fertilization of
“reserve” wild-type oocytes might compensate for miss-
ing conceptuses. But with few exceptions, all ovulated
oocytes are fertilized and litter size is closely related to
the number of ovulated eggs. Results for heterozygotes
are also particularly interesting because these mice usu-
ally show full viability, with Vangl2Lp/+ only showing a
looped tail and Apobtm1Unc/+ heterozygotes appearing
phenotypically normal [27,29]. We found no evidence
for FA-induced congenital anomalies among surviving
heterozygous embryos. Diet-induced anomalies are occa-
sionally reported, e.g. an NTD in a single Pax3Sp2H/+

heterozygote that had been exposed to thymidine
Figure 3 Folate, homocysteine and polyamine pathways. Gray cells h
supplementation during gestation [23]. But these cases
are exceptional and loss of substantial numbers of
phenotypically normal mutant heterozygotes with diet-
ary supplementation is therefore perplexing.
The epidemiological evidence for folate effects is largely

based on differences in NTD occurrence in supplemented
versus unsupplemented pregnancies [1-8]. Genetic tests
are rarely included in these population studies because the
genetic basis is not known for most NTD cases [1,6].
Hence the inference is made that a change in NTD occur-
rence results from beneficial effects of folate action on de-
velopment of the neural tube, rather than a change in the
occurrence of NTD-susceptible genotypes in FA supple-
mented populations.
We propose an alternative interpretation, namely that

FA supplementation biases the combination of gametes
that join to form a conceptus. Preferential fertilization
would change the genotype distribution among concep-
tuses without reducing litter size or inducing embryonic
lethality (Figure 2). We note that biased segregation was
found only in intercrosses, and not in backcrosses to
wild-type (GAN and JHN, unpubl.), suggesting a prefer-
ence for specific combinations of sperm and oocyte at
fertilization, rather than intrinsic gametic defects.
FA affects many aspects of reproduction and fertility as

well as imprinting and related parent-of-origin effects.
Anomalies in FA metabolism can affect fertility, placental
function and pregnancy in humans [12-17] and in mice
[35]. FA acid metabolism is actively involved in DNA
methylation, a major class of epigenetic modification (see
Figure 3 for a schematic of the relevant pathways). The
one-carbon (folate) pathway involves acquisition of a me-
thyl group from diet or metabolic salvage, and then its
transfer to S-adenosylmethionine (SAM) in the methyla-
tion (homocysteine) pathway. SAM is the one-carbon
ighlight molecules of special interest.
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donor for methylation of nucleic acids, proteins, lipids and
other molecules [9-11]. Methylation changes are the mo-
lecular basis for many imprinting [36] and some parent-
of-origin effects [37]. FA deficiency affects expression of
many genes in mouse sperm [16]. Some FA-induced epi-
genetic changes can also be transmitted through the
germline to affect phenotypic variation in subsequent gen-
erations [38-41]. Recently, the egg receptor (Juno) for the
sperm cell-surface protein (Izumo1) was identified [42],
see also [43]. These two proteins mediate egg-sperm rec-
ognition and activate a block to polyspermy. Interestingly,
Juno is a member of a folate receptor family, but does not
bind folate. Whether FA affects interactions between Juno
and Izumo1 has not been tested. Anomalies in FA metab-
olism could therefore bias allelic inheritance through im-
printing and related parent-of-origin effects, but direct
evidence for effects on gametes and fertilization is lacking.
An alternative hypothesis involves polyamine metabol-

ism. This pathway plays a central role in cell prolifera-
tion, cellular reprogramming, autophagy, transcription
and translation, apoptosis and necrosis not only in som-
atic cells but also in haploid gametes [44,45]. Polyamines
such as spermine, spermidine, putrescine and cadaverine
are short chain organic molecules that possess several
amines. Polyamines are highly charged molecules, with
more than 90% of intracellular molecules bound to DNA
and RNA. Their biosynthesis is one of the most highly
regulated pathways in part because excess or deficiency
can disrupt essential biological functions and because
several end-products can be toxic [44,45]. SAM is both
the methyl donor for all methylation reactions as well as
the substrate for spermine and spermidine biosynthesis
(Figure 3). When FA and SAM are limiting, cells pre-
serve polyamine synthesis at the expense of methylation
[46,47]. Acetyl-CoA is a co-factor in polyamine degrad-
ation. Acetyl-CoA is also used to produce choline and
betaine, which serve as an alternative methyl donor
(Figure 3). Thus anomalies in polyamine metabolism
could affect methylation by limiting access to alternative
methyl donors and by preferentially using SAM for poly-
amine biosynthesis rather than for methylation.
Polyamines play a prominent role in fertility and gamete

function. Anomalies in polyamine levels are associated
with infertility [47,48] and dietary supplementation with
SAM at least partially restores fertility [49]. Mice with
transgenic over-expression of ornithine decarboxylase
(ODC) are infertile [50,51]. ODC catalyzes the first reac-
tion in synthesis of putrescine from arginine and proline;
putrescine in turn is converted to spermidine and then
spermine. Polyamine activity in spermatids and spermato-
zoa is tightly regulated [44]. OAZ3 (ornithine decarboxyl-
ase antizyme 3 – an ODC inhibitor) is a testis-specific
inhibitor of ODC1 – the rate limiting step in polyamine
synthesis. OAZ3 deficient mice produce aberrant sperm
that are incapable of fertilization because of defects in
sperm motility [52]; OAZ3 is a potent inhibitor of ODC
in spermiogenesis [53,54]. Moreover, AZIN2, which
blocks the inhibitory effects of OAZ3 on ODC, is abun-
dant in haploid cells [55,56]. Gene expression profiles of
Lrp6-deficient versus wild-type mice on control versus
FA-supplemented diets show differences for several
genes involved in polyamine synthesis, namely Odc1,
Sat1 – spermine/spermidine N-acetyl N1-transferase 1,
and Oaz1 - ornithine decarboxylase antizyme 1 – an-
other ODC inhibitor [24]. A recent study identified
Oaz1 as a differentially expressed mRNA in sperm from
folate deficient mice [16]. Thus folate supplementation
in certain NTD mutant mice could compromise gamete
function through either methylation metabolism, poly-
amine biology, or both.
In summary, FA exposure led to a strong departure

from Mendelian segregation, with greatly reduced num-
bers of mutant heterozygotes and homozygotes without
changes in embryonic viability. We propose that FA sup-
plementation in these NTD models disrupted the folate,
methylation and polyamine pathways, leading to preferen-
tial fertilization and biased segregation. Surveys are
needed to test for similar results among dietary responses
to FA supplementation with other NTD models to deter-
mine whether similar functions and pathways are in-
volved. Effects of FA and polyamine supplementation on
gamete function and fertilization should be tested in vivo
and in vitro. Finally, studies are needed to test hypotheses
about the developmental and biochemical mechanisms by
which dietary supplements affect NTDs, embryonic viabil-
ity, gamete biology, and fertilization.
Conclusions
In both humans and mouse models, dietary folate sup-
plementation reduces the incidence and severity of
neural tube defects, presumably by correcting develop-
mental defects in the neural tube during embryogenesis.
Tests for folate responsiveness in two NTD mouse
models (in Apobtm1Unc and Vangl2Lp) did not show a
change in incidence or severity of NTDs, suggesting
that these mutant mice are examples of NTD resistance
to folate supplementation. Unexpectedly however we
noted a biased Mendelian genotype distribution that
strongly favored wild-type heterozygotes and homozy-
gotes over mutant homozygotes. A review of the litera-
ture revealed other examples with similar biases, but
these were interpreted as evidence for folate-induced
embryonic lethality. Reanalysis of our results and
published evidence revealed no evidence for reduced
litter sizes or increased fetal resorptions in these cases.
We propose that folic acid supplementation biases
fertilization in favor of wild-type gametes, perhaps
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through folate-induced disturbances in polyamine
metabolism.

Methods
Mice
Apob (B6.129P2-Apobtm1Unc/J; JR002053) and Lp
(LPT/Le; JR000220) mutants were purchased from the
Jackson Laboratory. All mice were raised on the PMI
Nutrition Laboratory Autoclavable Rodent Diet #5010
and maintained with trio matings. Test and control stud-
ies were contemporaneous.

Study design
Heterozygous males and females from both mutants were
weaned at 3 weeks of age and thereafter maintained on ei-
ther a control diet containing 2 ppm FA (D05072702, Re-
search Diets) or a supplemented diet containing 10 ppm
FA (D05072701, Research Diets) for at least 3 weeks prior
to mating (Figure 4). Timed pregnancies were then gener-
ated by mating 6–10 week old females with males over-
night. Upon discovery of a plug, females were kept on the
same diet until they were sacrificed. Between E12.5-14.5
pregnant females were sacrificed and embryos examined
(Figure 4). Tissues were obtained from all embryos for
DNA extraction and genotyping. All mice shared the same
animal room with controlled temperature, humidity, and
12 hour light–dark cycle. Mice were provided food and
water ad libitum. The CWRU Institutional Animal Care
and Use Committee approved all procedures.

Special diets
The only difference between the two diets used for the
supplementation study was the amount of FA, which
was 5 times higher in the supplemented diet (10 ppm;
D05072701, Research Diets) than the control diet
(2 ppm; D05072702, Research Diets). We used 2 ppm
FA because FA is required for proper breeding and fetal
development based on many factors [57]. The estimated
minimal FA requirement in mice is 0.5 ppm. However
this concentration does not include a margin of safety
[57]. Any concentration added to the diet should be
Figure 4 Dietary supplementation protocol. Three-week old female and
2 ppm or 10 ppm FA diet, mated at 6 weeks of age, and then maintained
at E12.5 – E14.5.
higher than this minimum to account for nutrient losses
during preparation and storage of the diet. In addition,
a study similar to ours showed that 0 ppm FA caused
embryonic lethality of crooked-tail mutant embryos,
but a shift to the expected exencephalic phenotype at
4 ppm [33]. The percentage of affected Cd/Cd embryos
decreased with higher concentrations of FA (7 ppm or
10 ppm), indicating that 4 ppm could serve as the con-
trol diet, thereby enabling the expected penetrance of
NTDs, which was not possible with 0 ppm. At least two
other studies have used this 2 ppm versus 10 ppm diet
protocol [24,25].

Phenotype assessment
Between E12.5-14.5, pregnant females were sacrificed
and the embryos examined for NTDs, looped tail and re-
sorptions. Resorptions were counted as dead embryos,
including those that appeared only as ‘dark spots’ (ne-
crosis) in the uterus. Resorptions were not genotyped.
Litter size was counted as the number of live embryos at
autopsy. The number of corpora lutea was not counted.

Genotyping
Genotyping for Apob was done according to the proto-
col provided by the Jackson Laboratory. The Lp genotyp-
ing protocol was previously described [58].

Statistical analysis
Statistical comparisons using the chi-square and Fisher’s
exact tests, as appropriate, were performed using GraphPad
QuickCalcs Web site: http://graphpad.com/quickcalcs/
chisquared1.cfm and http://graphpad.com/quickcalcs/
contingency1.cfm.
Fisher’s exact test was used to evaluate differences in

the incidence of NTDs in mutant homozygotes between
the 2 ppm versus 10 ppm diets (Table 1). Chi-square
goodness-of-fit tests (2 df) were used to test for depar-
tures from Mendelian expectations for the two NTD
models on the 2 ppm or 10 ppm diets (Tables 2 and 3).
We used both the statistical P value as well as the mag-
nitude of the phenotype effect to assess results.
male heterozygous mice ( or Lp mutants) were weaned on either the
on these diets through the remainder of the study. Embryos examined

http://graphpad.com/quickcalcs/chisquared1.cfm
http://graphpad.com/quickcalcs/chisquared1.cfm
http://graphpad.com/quickcalcs/contingency1.cfm
http://graphpad.com/quickcalcs/contingency1.cfm
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