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Abstract
Background: A typical genetical genomics experiment results in four separate data sets; genotype,
gene expression, higher-order phenotypic data and metadata that describe the protocols,
processing and the array platform. Used in concert, these data sets provide the opportunity to
perform genetic analysis at a systems level. Their predictive power is largely determined by the
gene expression dataset where tens of millions of data points can be generated using currently
available mRNA profiling technologies. Such large, multidimensional data sets often have value
beyond that extracted during their initial analysis and interpretation, particularly if conducted on
widely distributed reference genetic materials. Besides quality and scale, access to the data is of
primary importance as accessibility potentially allows the extraction of considerable added value
from the same primary dataset by the wider research community. Although the number of genetical
genomics experiments in different plant species is rapidly increasing, none to date has been
presented in a form that allows quick and efficient on-line testing for possible associations between
genes, loci and traits of interest by an entire research community.
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Description: Using a reference population of 150 recombinant doubled haploid barley lines we
generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them
to a considerable volume of legacy trait data and entered them into the GeneNetwork http://
www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the
user to test genetic hypotheses about how component traits, such as mRNA abundance, may
interact to condition more complex biological phenotypes (higher-order traits). Here we describe
these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an
easily accessible and integrated analytical environment for exploring them.

Conclusion: By integrating barley genotypic, phenotypic and mRNA abundance data sets directly
within GeneNetwork's analytical environment we provide simple web access to the data for the
research community. In this environment, a combination of correlation analysis and linkage mapping
provides the potential to identify and substantiate gene targets for saturation mapping and
positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database
that has been designed for an animal model species (mouse) with a well established genome
sequence, we prove the importance of the concept and practice of modular development and
interoperability of software engineering for biological data sets.

Background
The systems genetics approach coined 'genetical genom-
ics' aims to decompose phenotypic variation into a series
of individual components by simultaneously analysing
both 'trait' and 'molecular phenotype' data across geneti-
cally defined populations. The approach was originally
tested by Damerval et al. in 1994 who applied protein
profiling to an F2 population of maize [1]. More recently,
genetical genomics has been applied to a range of species
using microarray derived mRNA abundance phenotypes
[2,3]. In mouse, such analyses have been used to under-
stand how regulatory networks controlling transcription
relate to higher-order phenotypic traits at the genome-
wide scale [4,5]. Analogous genetical genomics experi-
ments in plants have been reported for maize [3,6], Arabi-
dopsis [7,8], eucalyptus [9,10], poplar [11], wheat [12]
and barley [13]. These experiments demonstrate that the
control of gene expression is complex. However, they also
can provide insight into the relationships between gene
expression and phenotypic traits.

Genetical genomics experiments typically incorporate
four separate data sets for each individual in a segregating
population; genotype, mRNA abundance, phenotype and
associated metadata. When the genetic materials are 'ref-
erence strains' that have been analysed by a broad com-
munity, there is an opportunity to incorporate legacy
phenotypic and genotypic information. While the scale of
the mRNA abundance datasets largely determine the pre-
dictive power of the approach, a key point is that these
large, multidimensional datasets have considerable value
beyond that extracted during their initial analysis. This
was recognized early by the scientific community and is
formally reflected in regulations specifying raw data qual-
ity and availability (archiving) by many funding agencies

and journals [14]. However, easy access to the data, either
raw or processed, is an equally important criterion that
may significantly extend its potential usefulness and value
[15,16]. The sheer volume of the genetical genomics data
components, if deposited in an open access but unproc-
essed and in a format designed for archiving, is likely to be
of limited value, particularly if only a subset of the data is
required for a specific analytical query.

We conducted a genetical genomics experiment in barley
using a population of 150 doubled haploid lines [17]. The
outcomes of this experiment included two mRNA profil-
ing data sets, a Transcript Derived Marker (TDM)-based
barley genetic linkage map and a set of new trait data
obtained from over 4 years of field and glasshouse exper-
iments. We also compiled publicly available trait segrega-
tion data that has been collected on this reference
population by the barley genetics community over the last
15 years. Here we provide open access and availability to
these data by integrating them into the GeneNetwork, a
web-based analytical tool that has been designed for mul-
tiscale integration of networks of genes, transcripts and
traits and optimized for on-line analysis of traits control-
led by a combination of allelic variants and environmen-
tal factors. GeneNetwork with its central module WebQTL
facilitates the exploitation of permanent genetic reference
populations that are accompanied by genotypic, pheno-
typic and mRNA abundance datasets. Algorithms for both
quantitative trait locus (QTL) mapping and genetic corre-
lation analysis, supported by highly efficient graphical
displays facilitate the identification of QTL controlling
mRNA transcript abundance (expression-QTL or eQTL)
and higher-order phenotypes. Consequently, GeneNet-
work is an unique on-line environment for 'trait analysis'
at the systems biology level [18,19].
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One of our long term goals is to construct integrated reg-
ulatory and structural gene association networks that
explain relationships between component gene expres-
sion measures and traditional phenotypic traits. We have
started this by constructing a trait association network to
establish connections and to provide a framework for the
identification and mapping of key regulatory genes. Here
we describe these barley data sets and demonstrate how
GeneNetwork's integrated analytical environment can be
exploited to infer map positions of the barley genes and to
construct barley trait association networks.

Methods
Database schema
Construction of the database underlying GeneNetwork
for mouse data sets has been described previously [18,19].
Database schema and description is available from [20].

The current barley data set in GeneNetwork
A population of 150 doubled haploid lines (DHLs)
derived from a cross between cultivars (cvs.) Steptoe and
Morex (St/Mx) was used to generate the mRNA transcript
abundance, trait and genotypic data sets. These parents
were selected because of their diversity for agronomic
traits [21]. Steptoe is a high yielding, broadly adapted six-
rowed feed-type barley from the Western United States
(US), whereas Morex is a six-rowed malting cultivar from
the Midwestern US.

Phenotypic traits
We have compiled and integrated into GeneNetwork data
corresponding to 23 phenotypic traits, fifteen of them not
published previously (Table 1). For the phenotypic data
obtained from plants grown in the east of Scotland from
2002–2005, we maintained individual field trial data
scores as separate entries. Similarly, for the published set
of 8 traits [22], measured in 9–16 locations across the US
and Canada, we kept the data from each location as a sep-
arate entry. For the rest of the traits that have replicate
measurements, arithmetic mean, standard deviation and
the number of replications were entered into GeneNet-
work, thus enabling the use of variance for weighted
regression analyses. The total count of individual higher-
order phenotypic barley trait entries in GeneNetwork is
211.

mRNA transcript abundance data
There are two barley transcript abundance data sets avail-
able for analysis in GeneNetwork – a set of 139 lines of
embryo-derived tissues, and a set of 30 seedling leaf sam-
ples. The raw data (Affymetrix' CEL files) and all 22,840
Barley1 GeneChip signal values calculated using either
RMA or MAS5.0 algorithms [23] using Genespring 7.3
(Agilent Technologies, Inc.) were incorporated into
GeneNetwork (Table 2). Originally, profiling of embryo-

derived tissues was done using 150 lines and seedling leaf
using 35 lines. However, 11 lines had ambiguous geno-
types, suggesting mishandling at some stage, and there-
fore were removed from the dataset [17].

Genotypes
The linkage map presented here was generated as part of
two barley association mapping projects in the United
Kingdom (UK) [24] and US [25] (also [26,27]). To create
the genotype file, we used data from a pilot barley Illu-
mina Oligo Pool Assay (POPA1) that employs Golden-
Gate BeadArray technology (Illumina, SanDiego CA) and
tested 1,536 barley SNP markers in each of the 150 St/Mx
DHLs. 471 high quality polymorphic SNPs were inte-
grated into the existing St/Mx RFLP map [21] using Map
Manager QTX (ver. 0.27) software [28]. A final map was
generated by removing co-segregating markers (leaving a
single marker per locus) and manually checking and cor-
recting the relatively rare single marker double recombi-
nation events visible in graphical genotypes of the
individuals in the population.

Discussion
Using GeneNetwork for barley
The framework for analysis using GeneNetwork for barley
is shown in Figure 1A. Associations between transcript
abundance, phenotypic traits and genotype can be estab-
lished either using correlation or genetic linkage mapping
functions [29,30]. The main page of GeneNetwork at
http://www.genenetwork.org provides access to subsets of
data through pull-down menus that allow specific data
sets to be queried. The datasets can be further restricted
using a single text box for specific database entries to
query probe set or trait ID, or annotations associated with
the database entries. Once the resulting record set of the
query is returned, it can be further restricted by selecting
relevant records based on attached annotations before for-
warding it for further analysis.

To map genetic loci associated with mRNA abundance or
trait phenotypes, any one of the three QTL mapping func-
tions currently employed by GeneNetwork's WebQTL
module can be used. These are 1. interval mapping, 2. sin-
gle-marker regression, or 3. composite mapping [29,30].
A thousand permutations are used to calculate upper and
lower Likelihood Ratio Statistic (LRS) thresholds for each
trait [31], and 1000 bootstrap tests [32,33] can be
employed to determine the confidence intervals (Figure
1B).

The correlation analysis module performs either Pearson
product-moment correlation or Spearman rank correla-
tion. Different trait and transcript abundance values
(either as integrated or individual probe signals) as well as
genotypes can be used to correlate against other data sets
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of choice. Results of the correlation analyses can be dis-
played as a table showing correlation coefficients and p-
values. The covariates can then be visualized pair-wise as
scatter plots (Figure 1C), mapped using the QTL Cluster
function (Figure 1D) or combined into association net-
works [34,35] (Figure 1E).

Predicting gene position
One of the basic, but arguably most relevant applications
of GeneNetwork for barley is to predict the map location
of a gene. Until its genome is sequenced or all known bar-

ley genes are mapped as genetic markers (e.g. SNPs), the
ability to infer a gene's chromosomal position (with a
given degree of certainty) by mapping the genetic interval
that controls the abundance of its mRNA (as an eQTL)
provides valuable information about location of the gene
itself. This is easily achieved in the GeneNetwork using its
integrated QTL mapping functions.

When an eQTL is described by a single peak that coincides
with the gene's location, then variation in cis-regulatory
elements that control the expression of the associated

Table 1: Condensed list of barley traits that have been measured using the Steptoe × Morex DHL population and are available for 
analysis through GeneNetwork.

DEVELOPMENTAL TRAITS

Trait ID Method/equipment Location Reference

Germination Frequency of the germinating grains 10 cp
Emergence of the second leaf (ESL) Single-leaf frequency (ESL-f) and length ratio of the second and the 

first leaf (ESL-r)
3 cp

Heading date Time interval to heading or anthesis 1–16, 17–20 cp, [22]
Height Distance from ground to collar at maturity 1–16, 17–20 cp, [22]
Lodging Stems < 45 degree angle to ground (1–9) 1–16, 17–20 cp, [22]
Maturity Maturity of the plot (1–9) 17–20 cp
Normalized difference vegetation index (NDVI) GREENSEEKER http://www.ntechindustries.com 17–20 cp
Head length Distance from peduncle to the awn tip 17–20 cp
Post harvest sprouting Frequency of the germinating grains 10 cp
Head loss Frequency of the tillers with no heads 3 cp
Grain loss Frequency of the heads with no spikelets. 3 cp
Thousand grain weight (TGW). TGW = 1000 × weight/seed number. 17–20, 25 cp
Grain morphometrics. MARVIN and ImageJ 17–20, 25 cp

QUALITY TRAITS

Endosperm cell wall modification. Calcuflor staining, ImageJ analysis 20 cp
Nitrogen content or grain protein Micromalting 1–20 cp, [22]
Malt extract Micromalting 1–22 cp,[22]
Fementability Micromalting 1–3 cp
Hot water extract Micromalting 1–3 cp
Milling energy (J) COMPARAMILL 1–3 cp
Predicted spirit yield Micromalting 1–3 cp
Grain moisture content Moisture content of sample % 1–3 cp
Diastatic power Micromalting 7–22 [22]
Alpha amylase Micromalting 7–22 [22]

INTERACTION WITH PATHOGENS

Leaf rust (Puccinia hordeii) Relative Latency Period 24 [60]
Net bloch (Pyrenophora teres) Frequency of the infection types 6 [61]
Scald (Rhyncosporium secalis) Disease severity 25 cp
Spot bloch (Cochliobolus sativus) Frequency of the infection types 6 [62]
Stem rust (Puccinia graminis) Frequency of the infection types 6 [13]

Detailed descriptions of the traits are here: http://genenetwork.org/dbdoc/SXMPublish.html
Environments/years/source:
1 – SCRI, 2002; 2 – SCRI, 2003; 3 – SCRI, 2004; 4 – SCRI, 2005; 5 – SCRI; 2006; 6 – Minnesota; 7 – Crookston, Minnesota; 8 – Ithaca, New York; 
9 – Guelph, Ontario; 10 – Pullman, Washington; 11 – Brandon, Manitoba; 12 – Outlook, Saskatchewan; 13 – Goodale, Saskatchewan; 14 – 
Saskatoon, Saskatchewan; 15 – Tetonia, Idaho; 16 – Bozeman, Montana (irrigated); 17 – Bozeman, Montana (dryland); 18 – Aberdeen, Idaho; 19 -
Klamath Falls, Oregon; 20 – Pullman, Washington; 21 – Bozeman, Montana (irrigated); 22 – Bozeman, Montana (dryland); 23 – Japan (Kazuhiro Sato, 
seeds for morphometrics); 24 – Wageningen; 25 – Giessen. cp – current paper.
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gene is the most likely explanation. Alternatively, if the
structural gene is located distantly from its eQTL peak,
then the eQTL may represent the location of a regulatory
factor, which affects the abundance of the monitored
mRNA (i.e. a trans-regulator). One possible approach to
inferring cis- vs. trans- regulation, and hence the gene's
approximate position is based on the experimentally
tested observation that strong eQTL (LRS > 30–40) are
typically cis- regulated [3]. The scattergram in Figure 2A
partitions 345 previously mapped genes into cis- and
trans- eQTLs according to co-location of their structural
genes and eQTLs (see also additional file 1). It shows that
most eQTLs with an LRS>30 (~20% on the scattergram)
are likely to be regulated as cis- (Figure 2B). It also shows
that the prediction of trans-regulated genes can not be
made using this approach because many cis-regulated
genes are in the same LRS value range as trans-regulated
genes.

Support for this simple designation of a gene's map loca-
tion comes from an analysis of conserved synteny
between the rice genome sequence and the barley gene
map. The rationale is that an eQTL will more likely reflect
the true position of its underlying gene if its rice ortholog
is located in the conserved syntenic position. We sub-
divided all the probe sets that reported significant eQTLs
into the high (LRS > 30) and low (LRS < 30) LRS groups
and plotted their barley eQTL peak positions against the
physical positions of their putative rice orthologs (Addi-
tional file 2). For 9 out of 12 rice chromosomes, clear
blocks of conserved synteny were revealed with eQTLs
with high LRS values, whereas many low LRS value eQTLs
were homogenously distributed across the rice genome
(for example rice chromosome 1 in Figure 2B). Conserva-

tion of synteny provides additional support for the princi-
ple of mapping a barley gene based on QTL mapping of
mRNA abundance values.

Constructing trait association networks
An association network for a given set of traits is a graph-
ical display of all pair-wise correlations that are above an
arbitrarily assigned correlation threshold value [36].
GeneNetwork has a function that constructs such associa-
tion networks using either phenotype or transcript abun-
dance, or indeed both simultaneously. It provides a
visualization of the relative positions and numbers of pos-
sible interacting partners, how they interact (positive or
negative correlation) and in some situations, based on
prior knowledge, it may suggest the directionality of the
interaction.

An association network using principal component scores
calculated using a selected set of malting quality and
yield-related trait data as variables provides an overview of
the key barley traits that segregate in the St/Mx population
(Figure 3, Additional File 3). The cumulative variation
explained by the first four principle components ranged
from around 90% for heading date to 40% for grain size
(Figure 3A), suggesting a strong genetic component for
the former, and a more complex situation for the latter.
The derived association network (Figure 3B) revealed
some known and obvious relationships. For example, the
main yield component 'yield-c1' (c1 = principle compo-
nent 1) is negatively correlated with 'plant height-c1' and
'lodging-c1' and 'lodging-c2'. In contrast, there is a posi-
tive correlation between 'lodging-c1' and -c2 with 'height-
c1'. This is entirely consistent with taller plants lodging
more which results in grain loss during harvest. The St/Mx

Table 2: Barley expression data sets available for analysis in GeneNetwork.

Types of the expression data sets Data processing description

Barley1 Embryo
gcRMA SCRI
(Dec 06)
Barley1 Leaf
gcRMA SCRI
(Dec 06)

The Affymetrix' CEL files that were generated using MAS 5.0 Suite (Affymetrix, Santa Clara, CA) were 
imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA 
algorithm.

Barley1 Embryo
MAS 5.0 SCRI
(Dec 06)
Barley1 Leaf
MAS 5.0 SCRI
(Dec 06)

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite (Affymetrix, Santa 
Clara, CA).

Barley1 Embryo0
gcRMA SCRI
(Apr 06)
Barley1 Leaf
gcRMAn SCRI
(Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, 
CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done 
following the standard GeneSpring procedure which includes setting the values below 0.01 to 0.01 and 
then dividing each measurement by the 50th percentile of all measurements in that sample. Additionally 
each gene was divided by the median of its measurements in all samples.
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A – Generalized schematic representation of the functions and their relationships in GeneNetwork related to three types of data; gene expression, phenotype and genotypeFigure 1
A – Generalized schematic representation of the functions and their relationships in GeneNetwork related to 
three types of data; gene expression, phenotype and genotype. B-E examples of typical graphical outputs generated by 
the GeneNetwork. B – Profile of a QTL scan using the interval mapping function. The blue line graph – Likelihood Ratio Statis-
tic (LRS) profile, green and red line graphs – allelic effects (in our case green = Morex, red = Steptoe), yellow bars – confidence 
intervals determined using 1000 bootstrap tests, red and grey horizontal lines – upper and lower significance LRS thresholds 
determined by 1000 permutation tests; C – Any pairwise correlation can be visualized as a scatter plot allowing the correlation 
structure to be determined. In this case, mRNA abundance values (reported by the GeneChip probe set Contig8601_s_at) 
were plotted against grain yield values from one of the trials. 'N of cases' – number of segregating lines. Pearson's and Spear-
man's correlation coefficients and associated p-values (P) are shown on the top right corner. Linear regression line is shown in 
green.; D – Selected correlates can also be visualized as a QTL Cluster map, which is a genetically ordered heat-map represen-
tation of the QTLs from multiple traits that were calculated using single marker linkage analysis. Significant QTLs are shown in 
a different colour from loci that have no association, and allelic effects are shown in contrasting colours (red and blue in key). 
E – Association network of 10 correlated genes. As a 'seed', mRNA abundance of the HLH DNA-binding protein gene 
(Contig20506_at), was used. Pearson's correlation coefficient threshold in this case was |0.8|. Line colours show correlation 
strength (more intense – higher correlation) and whether it is positive (orange – red) or negative (green – blue).
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population was originally designed to dissect two con-
trasting barley traits, yield and malting quality [21]. The
trait association network in Figure 3B shows links only
between the minor components of these traits (malting-
c1 to yield-c3 and malting-c2 to yield-c2) suggesting com-
plex underlying genetics.

Since association networks are based on correlation, they
differentiate neither causal from reactive traits, nor genetic

from environmental factors. Genetic linkage mapping, of
course, can provide this distinction if a mapping popula-
tion with sufficiently high resolution is used and sufficient
replication is incorporated in the experimental design.
Furthermore, in the case of transcript abundance traits,
the integration of data from 'classical' or 'treatment-
response' type profiling experiments as well as fine scale
haplotype map information may clarify the difference
between causal and reactive traits [5]. However we note

Prediction of barley gene position based on linkage analysis of mRNA abundanceFigure 2
Prediction of barley gene position based on linkage analysis of mRNA abundance. A – Scattergram of the LRS value 
distributions of 324 eQTLs with genetic positions of the underlying genes determined using SNP- or RFLP-based linkage map-
ping. B – Cumulative (%) distribution of the LRS values for cis- (blue line graph) and trans- (red line graph) eQTLs. C – Scatter-
plots showing the distribution of high (> 30) and low (< 30) LRS class eQTLs across the barley genetic map (x-axes) relative to 
the position of their putative rice orthologs. Each diagram shows only the comparison to rice chromosome 1 which exhibits 
considerable conservation of synteny with barley 3H (y-axes). On the x-axis the eQTL positions of barley orthologs of genes 
on rice chromosome 1 are ordered according to their location on the barley genetic map (tip of barley 1HS to bottom of 
7HL), but barley map distances are not taken into account. As expected, barley 3H exhibits strong synteny with rice 1. This is 
particularly obvious when considering the eQTLs with LRS > 30, suggesting that this class of eQTLs is generally cis-acting. The 
eQTLs with LRS < 30 show a less obvious (but still apparent) association between rice 1 and barley 3H. In these comparisons 
all genes reported by 22,840 Barley1 GeneChip probe sets were analysed.
Page 7 of 11
(page number not for citation purposes)



BMC Genetics 2008, 9:73 http://www.biomedcentral.com/1471-2156/9/73

Page 8 of 11
(page number not for citation purposes)

Results of principal component analysis (A) and association network (B) show the relationships between the major barley phe-notypic traits integrated into the GeneNetworkFigure 3
Results of principal component analysis (A) and association network (B) show the relationships between the 
major barley phenotypic traits integrated into the GeneNetwork. The network was built using scores of the first four 
principal components (c1–c4) calculated by combining data from a single trait measured in different locations and years, or 
related (component) traits underlying a higher order trait (e.g. malt quality data). Concerning the latter, principal component 
scores for malting quality traits were calculated from combined alpha amylase, diastatic power, grain protein and malt extract 
trait values. Principal component node colouring; c1-black background, c2-grey, c3 and c4 – white). Double-lined links – posi-
tive correlations; Bold, thick links – negative. For clarity, the network was re-drawn using GeneNetwork's output.
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that there is an extra layer of complexity when dealing
with an unsequenced genome. Without knowing the reg-
ulatory genes underlying key phenotypic traits, and with-
out having precise map positions for the majority of the
genes, it is critical that any mRNA abundance based asso-
ciation network analysis is conducted with caution and
stringent validation strategies deployed to support any
putative links.

Future developments
The GeneNetwork is an acknowledged and widely used
integrated platform designed primarily for analysis of data
from mouse genetical genomics experiments [18,19,36].
In the future we intend to integrate mRNA profiling, phe-
notypic and genotypic data from alternative populations
that have a different genetic architecture along with
molecular profiling data, such as proteins or metabolites,
together with access to gene and pathway models and
annotations from model plant genomes.

Incorporating algorithms and data handling functions for
mapping dynamic traits, also known as functional map-
ping [38,39] is also a priority. The approach has been
applied to diverse range of species, including humans,
animals and plants, to uncover novel information [38,40-
46]. However, to our knowledge, there are no available
barley data sets that are suitable for dynamic trait map-
ping. Preliminary experiments on grain development [47]
and interactions with pathogens [48-51] provide exam-
ples and methodologies for obtaining trait values that
could be easily applied to an expanded sample popula-
tion, however, this hasn't been done yet. Functional map-
ping of data relating to classical traits such as height,
flowering time and malting quality could also reveal
novel QTL or relationships between existing QTL. How-
ever, this knowledge will only improve our understanding
of the causal biological process if the genes underlying the
QTL are cloned.

The collection of precise phenotypic data across a popula-
tion and over time would reveal more significant QTL and
provide a better link to 'surrogates' such as mRNA abun-
dance, especially if the latter was derived from specific and
relevant cell types. As an example, endosperm modifica-
tion is a key barley quality trait central to both malting
and distilling. We mapped endosperm modification as
the area ratio of endosperm stained with calcuflor to the
unstained area. Calcuflor stains polymeric 1,3–1,4 -beta
glucans which are important barley cell wall constituents
and their amount decreases when the cell walls are broken
down by cellulytic enzymes. The collection of calcuflor
staining data on a population of plants over time is an
eminently feasible experiment and would allow
endosperm modification to be considered as a dynamic
trait with the obvious potential of revealing novel QTL

controlling biochemical processes activated during germi-
nation.

The object models underlying GeneNetwork have been
designed for handling data linked to a well established,
stable sequencing data that for the mouse have been avail-
able for years. For barley and other less thoroughly
researched species this is still in a distant future. This is
viewed as a major hindrance for high level genetical
genomics analysis by many researchers. However, we were
able to integrate barley data in the software designed for
mouse without any changes to the software itself and just
minor adjustments to the existing barley data. This sug-
gests that software that is designed according to the nature
of the biological object can be easily adopted to work with
objects of the same kind but lacking some essential prop-
erty values. Therefore the lack of sequence shouldn't be an
obstacle for genetical genomics analysis. By integrating
datasets from an unsequenced crop plant (barley) in a
database that has been designed for an animal model spe-
cies (mouse) with well established genome sequence, we
prove the importance of the concept and practice of mod-
ular development and interoperability of software engi-
neering for biological data sets.

Linking barley data in the GeneNetwork to other relevant
genomic resources, such as the Barley SNP Database
(SNPDb) [52], Harvest [53], BarleyBase (within PLEXdb)
[54], GrainGenes [55] and Gramene [56] will significantly
enhance the interpretation of the molecular basis of
higher order phenotypes in barley. The success of this
implementation largely depends on the development of
flexible and streamlined data processing and submission
procedures that can handle heterogeneous data types and
provide efficient cross-referencing. XML-based technolo-
gies seem well suited to handle this [57].

Conclusion
By integrating barley genotypic, phenotypic and mRNA
abundance data sets directly within GeneNetwork's ana-
lytical environment we provide simple web access to the
data for the research community. In this environment, a
combination of correlation analysis and linkage mapping
provides the potential to identify and substantiate gene
targets for saturation mapping and positional cloning. By
integrating datasets from an unsequenced crop plant (bar-
ley) in a database that has been designed for an animal
model species (mouse) with well established genome
sequence, we prove the importance of the concept and
practice of modular development and interoperability of
software engineering for biological data sets.

Availability and requirements
GeneNetwork usage conditions and limitations are avail-
able from here [58]. Online tutorial accompanying this
Page 9 of 11
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manuscript can be either viewed or downloaded from the
[59].
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Additional file 1
Table S1. Inference of mRNA abundance regulation by cis-elements or 
trans-factors. This is a tab delimited table, the first row contains column 
headings. 'Cosegregating marker' – DNA marker ID that co-segregates 
with the gene underlying the 'Probe set'. 'Probe Set' – Affymetrix' Barley1 
GeneChip probe set ID. 'DNA marker chromosome' and 'DNA marker 
position' – 'Cosegregating marker' locus parameters. 'mRNA abundance 
QTL chromosome', 'mRNA abundance QTL position' and 'LRS' – mRNA 
abundance QTL parameters of the gene underlying 'Probe set'. LRS – 
Likelihood Ratio Statistic. 'cis/trans' – c – cis, t – trans, inference on cis- 
or trans regulation of the gene underlying 'Probe set'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-73-S1.txt]

Additional file 2
Table S2. The Barley1 GeneChip probe sets that report significant mRNA 
abundance QTL and have rice homologs for the underlying genes. This is 
a tab delimited table, the first row represents column headings. 'ProbeSet' 
– Affymetrix' Barley1 GeneChip probe set IDs. 'LRS' – LRS (Likelihood 
Ratio Statistic) of the mRNA abundance QTL reported by the 'ProbeSet'. 
'LRS_range' – subdivision of the LRS into 'low' and 'high' groups. 'Locus' 
and 'barley chromosome/marker' – location parameters of the mRNA 
abundance QTL. 'Rice Chr' and 'Rice 5" – location parameters of the rice 
homologs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-73-S2.txt]

Additional file 3
Table S3. Principal Components scores of the key traits that segregate in 
the SM population. This is a tab delimited file, first row represents column 
headings. F1–F4 represent factors of individual traits.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-73-S3.txt]
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