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Abstract
Background: Researchers wanting to study the association of genetic factors with disease may
encounter variability in the laboratory methods used to establish genotypes or other traits. Such
variability leads to uncertainty in determining the strength of a genotype as a risk factor. This
problem is illustrated using data from a case-control study of cervical cancer in which some subjects
were independently assessed by different laboratories for the presence of a genetic polymorphism.
Inter-laboratory agreement was only moderate, which led to a very wide range of empirical odds
ratios (ORs) with the disease, depending on how disagreements were treated.

This paper illustrates the use of latent class models (LCMs) and to estimate OR while taking
laboratory accuracy into account. Possible LCMs are characterised in terms of the number of
laboratory measurements available, and if their error rates are assumed to be differential or non-
differential by disease status and/or laboratory.

Results: The LCM results give maximum likelihood estimates of laboratory accuracy rates and the
OR of the genetic variable and disease, and avoid the ambiguities of the empirical results. Having
allowed for possible measurement error in the expure, the LCM estimates of exposure – disease
associations are typically stronger than their empirical equivalents. Also the LCM estimates exploit
all the available data, and hence have relatively low standard errors.

Conclusion: Our approach provides a way to evaluate the association of a polymorphism with
disease, while taking laboratory measurement error into account. Ambiguities in the empirical data
arising from disagreements between laboratories are avoided, and the estimated polymorphism-
disease association is typically enhanced.

Background
This paper was motivated by a study in which a putative
genetic risk marker for disease could not be measured
with certainty. The study used a case-control design to
assess the association of cervical cancer with a polymor-

phism in codon 72 of the p53 tumour suppressor gene.
DNA specimens from study participants were processed
independently and blindly to disease status by three labo-
ratories in different countries. Preliminary analyses
showed that inter-laboratory agreement on the genotype
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was only moderate, which led to considerable ambiguity
about its odds ratio (OR) with cervical cancer [1]. The
empirical estimates of OR varied widely, depending on
how disagreements between laboratory results were
treated.

Statistical latent class models (LCM) have been applied to
a wide variety of diagnostic or disease screening data
where disease status cannot be established with certainty.
Typical scenarios are where a gold standard classification
of disease either does not exist or is infeasible to observe
[2-17]. The goal of LCM is typically to estimate measure-
ment properties (such as test sensitivities and specificities)
of the imperfect methods that are used to assess disease
status. These ideas have been applied to meta-analyses as
well as to individual studies [18]. In contrast, the motivat-
ing case-control study on cervical cancer involved uncer-
tainty about the genetic risk factor, rather than about
disease status.

Our illustrative example was a hospital-based case-control
study of cervical cancer and the p53 codon 72 polymor-
phism, carried out in Brazil [1], where the cases had histo-
logically confirmed invasive squamous cell carcinoma of
the cervix. Controls were sampled from women who
attended a cervical cancer screening program in the same
hospital where the cases were seen. Absence of malig-
nancy in the controls was based on cytological examina-
tion of Pap smear samples. p53 codon 72 genotyping was
performed blindly by 3 independent laboratories in Mon-
treal, Canada, Sao Paulo, Brazil, and London, UK, ran-
domly labelled here as laboratories A, B and C.

Misclassification of disease status for the cases was
unlikely because histological confirmation of squamous
carcinoma was required. Although cervical abnormalities
may have existed in previous Pap smears from control
women, it is unlikely that any controls would have unde-
tected cervical cancers at the time of study enrolment,
because these invasive lesions would have been detected
upon examination. To guard against false negatives on
cytology, Pap smears from control women were read twice
by independent expert cytopathologists [1].

In order to investigate inter-laboratory variation in test
results, a random sample of participants was drawn by an
epidemiology team in Montreal and submitted to the Sao
Paulo centre, where the DNA specimens were stored.
Specimens for selected women were divided into three
aliquots, with two being shipped on dry ice to Montreal
and London. The laboratories independently reported
their classifications of the polymorphism to the epidemi-
ologists in Montreal. Technical details of the laboratory
methods varied, as previously described [1].

The study was not originally designed to assess the associ-
ation between polymorphism and disease risk, because
the index publication on the potential utility of this risk
marker appeared several years after it was conducted [19].
However, given the availability of stored specimens for
many of the subjects, the authors decided to test the
hypothesis on a post-hoc basis. The original report of this
study included 54 cases and 91 controls. Pairwise compar-
isons between laboratories indicated crude agreement
ranging from 71% to 78%, and chance-corrected kappa
statistics of 0.49 to 0.63, implying moderate to substantial
inter-laboratory reliability [20]. The fact that pairs of
results disagree quite frequently (about 25% of the time)
underscores the problem of not having a clear-cut defini-
tion of how a given woman should be classified if disa-
greements arise. Table 1 shows crude and age- and race-
adjusted ORs, associated with the homozygous Arg/Arg
genotype, vs. a reference category of heterozygous Arg/Pro
and homozygous Pro/Pro genotypes combined.

Faced with the apparent unreliability of the laboratory
results, the study investigators adopted alternative defini-
tions of the reference and index categories. For the refer-
ence category, the non-stringent definition permitted
disagreements for the Arg/Pro and the Pro/Pro genotypes,
while the stringent definition included only genotypes
with complete agreement among the laboratories. The
index category was defined as: disagreed when it included
only those subjects with an Arg/Arg genotype result from
at least one laboratory but with different results from the
other laboratories; agreed when it included only Arg/Arg
subjects with complete agreement among laboratories; or
all-inclusive when it allowed any reported Arg/Arg geno-
type, with or without agreement. Table 2 shows the OR
estimates associated with all 6 combinations of reference
and index category definitions, obtained using uncondi-
tional logistic regression [1]. The results varied widely,
leading the investigators to conclude that "When disagree-
ment between laboratories was allowed,...OR was as low as
1.5. In contrast, OR increased to 8.0 after exclusion of discord-
ant genotypes ...Exposure misclassification ... may affect ability
to detect the association..." [1] The lowest of these OR values
(1.5) would represent a relatively weak association

Table 1: Association of invasive cervical cancer with p53 arg/arg 
genotype1 using individual laboratory results

OR1 (95% CI)
Crude Adjusted2

Laboratory A 2.5 (1.1–5.6) 3.2 (1.3–7.9)
Laboratory B 2.2 (1.0–5.1) 2.4 (1.0–5.9)
Laboratory C 1.8 (0.7–4.8) 2.8 (0.9–8.4)

1 Odds ratio (OR) relative to reference category combining Arg/Pro 
and Pro/Pro genotypes.
2 OR adjusted for age and race.
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between the polymorphism and cervical cancer, while the
largest (8.0) would represent a rather strong association,
and there is considerable ambiguity about which of any of
the empirical OR values is most "correct". It should be
noted that all these OR estimates, including even the esti-
mates based on excluding the discordant observations, are
biased [21], possibly quite seriously. Estimates using the
data from only one laboratory are also biased in the pres-
ence of measurement error.

The uncertainty engendered by the wide range of these
empirical estimates, and the lack of a preferred estimator
motivated us to develop a LCM analysis that could assess
the association of the polymorphism with disease, while
taking potential inaccuracy of the laboratory results into
account. Such an approach should lead to a de-attenua-
tion of the exposure-disease association, giving a more rig-
orous way to estimate OR. Additionally, investigators can
learn about the likely quality of their data, in terms of the
accuracy rates of their contributing laboratories.

In our Methods section, we determine design require-
ments for the application of LCMs in this situation,
according to alternative assumptions about variation in
test accuracy. In our Results section, we apply several
models to assess the genotype-cervical cancer association,
while taking test inaccuracy into account. Use of LCMs for
the problem yields maximum likelihood estimates of OR,
which have superior statistical properties to the biased
empirical estimates mentioned above. Other issues in the
application of LCMs to this type of problem are covered in
our Discussion.

Methods
We assume that a true exposure status X exists for the gen-
otype of each study subject, but that it cannot be observed
without error – hence X is a latent or unobserved variable.
We are interested in the association of disease D (cervical

cancer) with the true exposure status X, denoted by DX,
but instead we can only observe DE, the association of dis-
ease with the observed laboratory results E.

The accuracy of a laboratory test for a risk factor can be
characterised by two measures. First, sensitivity is the
probability that an individual whose true exposure X is
positive receives a correct positive negative result. Second,
specificity is the probability that an individual whose true
exposure X is negative receives a correct positive result.
The complements (1-sensitivity) and (1-specificity) of
these quantities are the false-negative and false-positive
rates, these being the probabilities of incorrect results for
true positive and true negative individuals, respectively
[22]. Our proposed LCM estimates the joint probabilities
of the set of results for a study participant, conditional on
an assumed true state for that individual. The conditional
probabilities are then summed over the marginal proba-
bility distribution of X, which is also estimated from the
data. By suitable specification of alternative models (see
below), one can evaluate if accuracy varies significantly
between laboratories or by disease status. Additionally we
can assess the association of the latent variable with dis-
ease, under various assumptions about test accuracy.

3.1: Required parameters and available degrees of 
freedom
In our analytic framework, we are primarily concerned
with two types of LCMs. First, we wish to evaluate the
measurement accuracy of the exposure data, i.e. the asso-
ciation of the observed genotype test results with respect
to the true (but latent) genotype. Here we can either
assume test accuracy to be differential or constant
between laboratories, between cases and non-cases, or
jointly differential by both laboratory and disease status.
Second, we wish to estimate the association of disease
with the true genotype, and here again we may or may not
assume test accuracy to be differential by laboratory and/

Table 2: Association of invasive cervical cancer with p53 arg/arg genotype1, with various approaches to inter-laboratory 
disagreements

Referent category definition1 Index category (Arg/Arg genotype) definition2 OR (95% CI)
Crude Adjusted3

Non-stringent Disagreed 1.6 (0.6–4.2) 1.5 (0.5–3.9)
All-inclusive 2.4 (1.2–5.0) 2.4 (1.1–5.3)

Agreed 2.6 (1.0–6.9) 3.4 (1.2–9.9)
Stringent Disagreed 2.7 (0.9–8.1) 2.8 (0.9–8.9)

All-inclusive 4.1 (1.7–10.0) 5.0 (1.9–13.3)
Agreed 4.5 (1.5–13.4) 8.0 (2.3–28.5)

1 Non-stringent definition allows inter-laboratory disagreement for the Arg/Pro and the Pro/Pro genotypes; stringent definition includes only 
genotypes with complete agreement among the three laboratories (adapted from reference 1).
2 Disagreed: includes only subjects with an Arg/Arg genotype determined by at least one laboratory but with different results from the other 
laboratories; Agreed: includes only Arg/Arg subjects with complete agreement among laboratories; All-inclusive: includes any reported Arg/Arg 
genotype with or without agreement among laboratories or in isolation
3 OR adjusted for age and race.
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or disease. Finally, we can compare the LCM results with
empirical (non-latent) models which examine the associ-
ation of disease with the observed genotypes, but which
do not admit the possibility of measurement error.

Table 3 shows the number of parameters involved in each
of these three types of model. This is done for a general
specification of the number of laboratories (R), and also
for either 1, 2 or 3 laboratories in particular. In the first
group of models (models 1–4), the focus is on evaluating
test accuracy, and to examine if accuracy is the same or dif-
ferent between laboratories and/or between cases and
controls. We examine the association of the set of labora-
tory results E and X, either conditionally or uncondition-
ally on disease status (D) and laboratory. If the tests are
highly accurate, there will be a strong EX association.

In model 1, we allow the values of test sensitivity and spe-
cificity to be different for each laboratory, but accuracy is
otherwise assumed to be the same for both cases and con-
trols. Hence if there are R laboratories, there are 2R param-
eters representing test accuracy. We require two additional
parameters, first to fit the marginal distributions of X (the
latent exposure variable) and second for D (to constrain
the case and control frequencies to agree with their
observed values), making 2R + 2 parameters in total. In
model 2, accuracy is now additionally permitted to be dif-
ferential by disease status, which increases the number of
model parameters by 2 for each laboratory, giving 4R + 2
parameters in total. In models 3 and 4, accuracy is
assumed to be constant (non-differential) across labora-
tories, and so the number of parameters is independent of
the number of laboratories. For model 3, where accuracy
is non-differential by disease status, there are two accuracy
parameters (sensitivity and specificity, constant across
laboratories), and one each for the marginal distributions
of X and D as before. For model 4, the two accuracy

parameters are potentially different in the case and con-
trol groups.

In the second group of models (5 and 6), we evaluate the
relationship between disease and (true) exposure X, or the
DX association. In the more general case (model 5), where
test accuracy varies by laboratory (but is the same for cases
and controls), the parameters are the same as in model 2,
except that we now include a term for the conditional
probability of D given X, or D|X.

In the third group (models 7 and 8), we examine the
empirical association between D and E, which involves 2R
parameters in the more general situation when accuracy is
allowed to vary between laboratories. Additionally, we
again include a D term to constrain the fitted and
observed numbers of cases and controls to agree, making
2R + 1 parameters in total. If accuracy is assumed non-dif-
ferential between laboratories, there are only 3 parameters
– the proportion of study subjects who are cases, and the
proportions of cases and controls that are exposed. Empir-
ical models ignore the possibility of measurement error.
The empirical approach is often used in practice, but the
estimated DE association will in general be biased, unless
the exposure assessment is error-free. If the tests are
indeed perfect (an unlikely situation in practice), the
empirical models suffice and the need for modelling the
measurement error process is obviated.

To estimate the parameters of the various LCMs, we need
to verify that there are sufficient degrees of freedom (df)
available from the observational design. For all the mod-
els in Table 3, the cross-classification of the R laboratory
results by disease status involves 2R+1 data cells, implying
that there are 2R+1 - 1 df available for parameter estimation
after conditioning on the total sample size. For R = 1, 2
and 3 specifically, the available df are 3, 7 and 15 respec-
tively. Therefore, among the models assessing the EX asso-

Table 3: Number of parameters in latent class model, by number of laboratories (R)

Model number Association of interest Accuracy differential by 
laboratory

General number of labs (R) R = 1 R = 2 R = 3

1 Observed vs. true exposure 
status: EX

Yes 2R + 2 4 6 8

2 Yes* 4R + 2 6 10 14
3 No 4 4 4 4
4 No* 6 6 6 6
5 Disease vs. true exposure status: 

DX
Yes 2R + 3 5 7 9

6 No 5 5 5 5
7 Disease with observed exposure 

status: DE
Yes 2R + 1 3 5 7

8 No 3 3 3 3

* error rates are (additionally) differential by disease status
D- disease; X-true genotype status; E-genotype status measured by laboratory test.
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ciation, model 2 (which allows for the most general
pattern of test accuracy) requires that there be at least 3
laboratory tests. However, the other models in this group,
which assume non-differential test accuracy by disease
status and/or by laboratory, can be fitted if R ≥ 2.

Models 5 and 6 examining the DX association can be fit-
ted if there are at least 2 laboratories. Finally, the empirical
evaluation of the {ED association (models 7 and 8) is
possible in one or more laboratories.

Note that having sufficient df for parameter estimation
does not avoid the issue of parameter identifiability.
Because, by definition, the true latent state X is unobserv-
able, there are usually two sets of parameter estimates
with the same likelihood and model fit, these being essen-
tially "mirror images" of one another [16,23]. Thus, for
instance the laboratory sensitivity in one solution can be
exchanged with a corresponding value of (1-specificity)
specificity in the other. In practice, choosing the "right"
solution is typically straightforward, because it will have
inherently far greater plausibility in terms of agreeing with
external information on the parameter values. For exam-
ple, an estimated sensitivity of (say) 90% would almost
certainly be more plausible than a 90% false-positive rate.

Table 4 summarises the associations that are estimated in
each of the models described in Table 3, for the specific
case of R = 3 laboratories (as we have in our example). For
instance, in model 1 the focus is on the test accuracy,
through the associations of test results from laboratories
A, B and C with the true genotype status X; these associa-
tions are represented by the probabilities A|X, B|X, C|X of
a positive test result from each laboratory, conditional on
the true value of X. We must additionally estimate the
prevalence of the latent exposure variable X.

Model 2 examines test accuracy in more detail, specific to
both laboratory and disease status, by fitting the condi-
tional probabilities A|DX, B|DX, C|DX. Models 3 and 4
impose equality constraints on the terms, to force the test
accuracy estimates to be the same across laboratories.

In models 5 and 6, the focus is on the fitted term X|D that
defines the association of the genotype with disease, while
the models also allow for test accuracy. Finally, models 7
and 8 examine the empirical test positivity rates, condi-
tional on disease state, through terms such as A|D; no
allowance is made for the possibility of test errors.

The LCM models are actually fitted by calculating
expected frequencies in the cells of the contingency table
formed by a cross-tabulation of the observed variables.
These expectations can be represented in a standard log-
linear form. [24] For instance, for model 5, the log-linear
formulation of the expected frequency for the data fre-
quency mabcdx, corresponding to levels a, b, c, d, and x of
the observed laboratory test variables (A, B, C), the disease
status D and the latent variable X respectively, is given by

where u represents the overall mean frequency across all

cells, a main effect term such as  represents a marginal

constraint on the frequencies at each level of A, and the

interaction terms such as  indicates that the associa-

tions such as DX are to be estimated.

We used the freeware program lem [25], which provides a
flexible framework for latent class analysis. Latent class
software, such as lem, more easily accommodates the type
of data and modelling required for this type of analysis.
Programs for the general analysis of log-linear models can
also be adopted, if the user is able to specify the requisite
latent class models appropriately in a corresponding log-
linear format.

Comparisons between the fits of appropriate pairs of
models permits evaluation of the various assumptions,
such as those of differential test accuracy between labora-
tories and disease groups. Statistical significance of the
differences in fit between alternative models can be
assessed using likelihood ratio statistics.

�n m u u u u u u u u u uabcdx a
A

b
B

c
C

d
D

x
X

ax
AX

bx
BX

cx
CX

dx
DX( ) = + + + + + + + + +

ua
A

udx
DX

Table 4: Terms involved in latent class models, for R = 3 laboratories

Model Terms of interest Other terms fitted

1 Test accuracy (A|X, B|X, C|X) True exposure prevalence (X)
2 Test accuracy, differential by disease (A|DX, B|DX, C|DX) True exposure prevalence (X)
3 Test accuracy, constant across labs (A|X = B|X = C|X) True exposure prevalence (X)
4 Test accuracy, constant across labs, differential by disease 

(A|DX = B|DX = C|DX)
True exposure prevalence (X)

5 True exposure by disease (X|D) Test accuracy (A|X, B|X, C|X)
6 True exposure by disease (X|D) Test accuracy, constant across labs (A|X = B|X = C|X)
7 Empirical exposure by disease (A|D, B|D, C|D)
8 Empirical exposure by disease constant across labs (A|D = B|D = C|D)

= : indicates terms constrained to be equal
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The lem program allows conditioning on the observed
pattern of available data, so that data from women with
results available from only one or two laboratories can be
used. We assume that data missingness is unrelated to the
model parameters of interest, because the chance of an
uninformative test result depends primarily on the degree
of depletion of the DNA specimen, and not on p53 status.
Model fitting is based on the EM algorithm, and iterative
proportional fitting, with parameter starting values
defined via a random number seed. This method of fitting
yields maximum likelihood estimates of the model
parameters, which are therefore unbiased in large sam-
ples, and have the smallest possible variance. These statis-
tical properties imply strong advantages of the LCM
parameter estimates, compared to the ad hoc estimates
described earlier.

Results
Our analysis is based on a larger sample of participants
obtained subsequent to the original report [1], with 142
cases and 162 controls identified using the same methods
as previously. Table 5 shows the numbers of participants
with polymorphism classifications available from the var-
ious combinations of laboratories. Laboratory B did more
tests because they were able to salvage additional DNA
samples from the frozen cervical specimens. Laboratories
varied in their diligence in obtaining informative test
results, and their potential to do so also varied by the
amount of fractionated sample material available to
them.

Assessment of laboratory accuracy
Table 6 shows results from the first group of models in
Table 3, examining the accuracy of the laboratory classifi-
cations of the polymorphism. Model 1 estimates the prev-
alence of the latent genotype X, and the probability of
each laboratory result (A, B, or C) conditional on X, while
conditioning on the observed number of cases and con-
trols through inclusion of the variable D. Model 2 is sim-
ilar, but it conditions the probability of laboratory results

to depend on D as well as X. A likelihood ratio test
between models 1 and 2 gives χ2 = 9.2 on 6 df (p = 0.16),
indicating no strong evidence of differential test accuracy
between cancer cases and controls, while still allowing dif-
ferential accuracy by laboratory. This is reassuring, given
that DNA samples from cases tend to be more plentiful
than from controls. (Case biopsy samples contain more
cells than cervical cell swabs from controls). Specimens
with a greater quantity of DNA permit replication of
results whenever the interpretation of the first assay was
uninformative.

A similar comparison of models 3 and 4 also addresses the
issue of possibly differential accuracy by disease status,
but now assuming that the laboratories have equal accu-
racy; the likelihood ratio test is χ2 = 4.8 on 2 df (p = 0.09),
suggesting that accuracy is not significantly related to dis-
ease status. This seems reasonable, because it is unlikely
on biological grounds that errors in classifying this poly-
morphism would be related to disease [1].

Other comparisons between the models of Table 6 can
address variation in accuracy across laboratories. For
instance, a comparison of models 1 and 3 tests for equal-
ity between laboratories while assuming independence of
accuracy and disease status, while a similar comparison of
models 2 and 4 allows for a dependence of accuracy on
disease. These tests give χ2 = 8.6 on 4 df (p = 0.07) and χ2

= 13.0 on 8 df (p = 0.11), assuming non-differential or dif-
ferential test accuracy by disease status, respectively, thus
giving weak evidence of inter-laboratory differences in
accuracy. There is a suggestion that laboratory A has lower
specificity, while laboratory C has lower sensitivity. How-
ever, these differences were not strongly supported by the
likelihood ratio tests, which gave only borderline signifi-
cance.

Association of polymorphism with disease
Table 7 shows the results of models focussed on the asso-
ciation of the true genotype variable X with disease. The

Table 5: Number of cases and controls with p53 classifications available, by laboratory

Lab C
Cases Controls

Lab A Lab B Arg/Arg Other NA Arg/Arg Other NA

Arg/Arg Arg/Arg 5 2 4 7 5 1
Other 0 4 0 1 2 0
NA 1 0 3 3 1 1

Other Arg/Arg 1 0 1 0 4 0
Other 1 12 0 1 33 2
NA 0 1 3 1 7 4

NA Arg/Arg 2 1 26 0 0 10
Other 0 0 65 0 1 44
NA 0 1 9 1 1 32
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(page number not for citation purposes)



BMC Genetics 2008, 9:51 http://www.biomedcentral.com/1471-2156/9/51
likelihood ratio test comparing models 5 and 6 (χ2 = 8.0
on 4 df, p = 0.09) again weakly suggests that laboratory
accuracy varies, and the pattern of parameter estimates is
similar to those in Table 6. These models additionally esti-
mate the conditional probabilities of X for given values of
D (cases or controls), which in turn lead to their ORs.
Model 5 gives estimates P(X = +|case) = 0.340 (SE = 0.066)
and P(X = +|control) = 0.220 (SE = 0.048), where + and -
indicate presence or absence of the Arg/Arg genotype
respectively. This implies an OR of 1.83 (95%CI = 0.97,
3.46). The corresponding conditional probabilities in
model 6 (with laboratories constrained to have equal
accuracy) are 0.378 (SE = 0.072) and 0.237 (SE = 0.054),
and an associated OR of 1.96. (95%CI = 1.02, 3.75).
Given that there is no strong evidence of inter-laboratory
differences in accuracy, the model 6 estimate of OR would
be the preferred value.

Comparison with empirical results
Table 8 shows the empirical associations of laboratory
results with disease. A comparison of models 7 and 8
assesses the possibility of different strength of association

with disease by laboratory. Their likelihood ratio test (χ2

= 4.78 on 4 df, p = 0.31) indicates no strong evidence for
different associations by laboratory. The empirical esti-
mates of OR are 2.48 (95%CI 1.10 – 5.60), 1.59 (95%CI
0.90 – 2.80), and 1.84 (95%CI 1.10 – 5.60), for laborato-
ries A, B, C respectively.

Discussion
Variation in measuring p53 expression has been recog-
nized before, in the context of bladder cancer studies [26].
In this paper, we have illustrated the use of LCMs to eval-
uate the association of a genotype with cancer, while tak-
ing measurement error in the genotype into account. This
approach is attractive for the rapidly increasing number of
studies relating genetic traits to various diseases, but the
models are also potentially applicable to a wide variety of
other epidemiological investigations. The data discussed
here came from several laboratories, but the same
approach could be applied to studies where different
methods are used to assess exposure or putative suscepti-
bility to a risk factor, for instance questionnaires vs. med-
ical records concerning risk determinants, self-report vs.

Table 6: Results for latent class models focussing on laboratory error rates

Model Log- likelihood Disease Groups Lab Sensitivity (SE) Specificity (SE)

1 -441.64 All A 0.94 (0.07) 0.90 (0.04)
B 0.94 (0.08) 0.94 (0.03)
C 0.70 (0.10) 0.95 (0.05)

2 -437.06 Cases A 0.89 (0.10) 0.76 (0.10)
B 1.00 (0.00) 0.97 (0.07)
C 0.77 (0.15) 0.94 (0.06)

Controls A 1.00 (0.00) 1.00 (0.00)
B 0.73 (0.11) 0.93 (0.03)
C 0.59 (0.11) 0.95 (0.03)

3 -445.94 All A 0.83 (0.06) 0.93 (0.02)
B 0.83 (0.06) 0.93 (0.02)
C 0.83 (0.06) 0.93 (0.02)

4 -443.56 Cases A 0.90 (0.08) 0.88 (0.05)
B 0.90 (0.08) 0.88 (0.05)
C 0.90 (0.08) 0.88 (0.05)

Controls A 0.77 (0.10) 0.96 (0.03)
B 0.77 (0.10) 0.96 (0.03)
C 0.77 (0.10) 0.96 (0.03)

Table 7: Results for latent class models focussing on association of latent exposure variable and disease

Model Log-
likelihood

Lab Sensitivity (SE) Specificity (SE) Estimated 
prevalence in cases 

(SE)

Estimated prevalence 
in controls (SE)

Odds ratio (CI)

5 -439.87 A 0.94 (0.07) 0.90 (0.05) 0.34 (0.07) 0.22 (0.05) 1.83 (0.97–3.46)
B 0.91 (0.11) 0.94 (0.06)
C 0.69 (0.10) 0.95 (0.03)

6 -443.85 A 0.82 (0.07) 0.94 (0.03) 0.38 (0.07) 0.24 (0.05) 1.96 (1.02–3.75)
B 0.82 (0.07) 0.94 (0.03)
C 0.82 (0.07) 0.94 (0.03)
Page 7 of 10
(page number not for citation purposes)



BMC Genetics 2008, 9:51 http://www.biomedcentral.com/1471-2156/9/51
proxy reports for dietary consumption, or different meth-
ods within the same laboratory.

We used several models to investigate the possibility of
differential test accuracy by laboratory. These models can
be fitted whenever the number of tests per subject is at
least 2. For data with exactly 2 measurements, one can
permit accuracy to be differential by disease status, but
one cannot allow for differences between laboratories (or
between methods in general). When there are 3 or more
measurements per subject, one can examine the possibil-
ity of accuracy being differential by both disease and labo-
ratory.

Use of LCMs when there is uncertainty about risk status is
somewhat more feasible than when it is the disease status
that may be misclassified. For the latter, one requires at
least three measurements in order to estimate test accuracy
and disease prevalence in a single population, or two
measurements with data from two or more populations,
assuming one can ignore the possibility of population by
test interactions [7,27]. The particular case of two inde-
pendent measurements in two populations was discussed
in detail by Hui and Walter [28], this scenario being one
of very few that admit a closed-form solution for the
parameter estimates.

In analyses concerned with uncertainty about disease sta-
tus, conditional independence of test errors is often
assumed, but this assumption may not always be valid in
practice. However, conditionally dependent errors can be
included in the model if there are additional measure-
ments available [29-32], but this presents an additional
burden on the investigators, and it may not be feasible to
include such additional measurements.

In contrast, when it is the risk factor that involves meas-
urement error (as in the present example), the conditional
independence assumption can be examined more easily,
because of the more limited data requirements. In our
data, we found no strong evidence of test accuracy being
dependent on disease status, a reasonable finding given
the underlying biology and the laboratory testing meth-
ods. We also tested the conditional independence
assumption by adding terms such as AB|X to model 1.

None of these terms was statistically significant, so there
was no evidence of a departure from the conditional inde-
pendence assumption. Drews et al. [33] describe an alter-
native latent class approach to situations with two
measurements having non-differential and conditionally
dependent errors, but the error correlations must either be
known (somewhat unrealistic in practice) or at least taken
to have given, fixed values.

We also found only weak evidence of differential accuracy
by laboratory. However, with the given data (having only
one result per woman for each laboratory), we were
obliged to assume no subject-by-laboratory interaction, or
in other words conditionally independent error rates by
laboratories. This last interaction could be examined if
there were replicated observations in the same laborato-
ries.

The main objective of genetic studies of the type we have
discussed is to obtain the best possible estimate of the OR
between a polymorphism and disease. The LCMs we have
used include all the available data, and yield maximum
likelihood estimates of OR. While the test accuracy of lab-
oratories is not a main focus, the latent class method does
give estimates of accuracy as a useful by-product. Also, the
evaluation of the fit of alternative LCMs that examine test
accuracy provides guidance on the preferred way to allow
for test inaccuracy when the polymorphism-disease asso-
ciation is addressed in later models. In our example, we
found no convincing evidence of differential test accuracy
by laboratory or disease status, which implied that the
preferred model for the polymorphism OR should be the
one (here, model 6) where accuracy is constrained to be
equal in all laboratory-disease groups of data.

In our example, we exploited the existence of data from
women whose samples had been analysed by more than
one laboratory. Practicalities limited the number of sam-
ples where sufficient material was available for replicated
testing, especially given the wide geographical spread of
the participating laboratories. If there is primary interest
in assessing test accuracy (as opposed to primary interest
in the polymorphism OR), then an appropriate study
should imply a sample design having more replicated

Table 8: Results for empirical models focussing on association of laboratory values and disease

Model Log-likelihood Lab Observed prevalence in cases (SE) Observed prevalence in controls (SE)

7 -475.23 A 0.50 (0.08) 0.29 (0.05)
B 0.34 (0.04) 0.24 (0.04)
C 0.32 (0.08) 0.21 (0.05)

8 -477.62 A 0.37 (0.03) 0.24 (0.03)
B 0.37 (0.03) 0.24 (0.03)
C 0.37 (0.03) 0.24 (0.03)
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observations with the analytic focus being on test varia-
tion between, and possibly within, laboratories.

Conclusion
Our analysis provided an estimate of OR for the genotype-
cancer association. Subject to the validity of the assumed
model, this estimate enjoys the general properties of max-
imum likelihood estimates, including asymptotic unbias-
edness and minimum variance. The model-based estimate
also avoids the ambiguous and arbitrary choices that must
be made between the various empirical estimates availa-
ble when the genotype classifications disagree for some
study subjects, as exemplified by the wide range of empir-
ical ORs in Table 2, and as seen in the laboratory-specific
estimates from model 7. Also, if the reliability of the data
is low, the latent class OR estimate will tend to have a
lower standard error and narrower confidence limits than
the various empirical estimates. In our example, in which
reliability was moderate or substantial, the latent class OR
estimate was still somewhat more precise than the esti-
mates for laboratories A and C. It was also statistically sig-
nificant, whereas the empirical results for laboratories B
and C were not.

An additional benefit of the LCM approach is that it yields
estimates of the accuracy of the test method. In the
absence of a definitive (i.e. an error-free gold standard)
classification of exposure, the accuracy values can be used
to calculate the predictive values associated with given test
results, an attractive feature for clinical applications. The
accuracy results may also help to identify deficiencies in
data quality, e.g. from certain laboratories or observa-
tional methods.

The methods used here involved a binary risk factor, but
they could easily be extended to cover multinomial expo-
sures. [33,34] Extensions to the basic LCMs of Hui and
Walter [28] have been proposed to allow for differential
misclassification between cases and controls [33-35];
these approaches require specification of a covariate that
defines two subgroups of cases and controls, across which
the error rates of each observational method are assumed
constant. Further extensions to allow for additional or
continuous covariates can be envisaged. Potential difficul-
ties with such extensions are the number of extra parame-
ters required and the sparser distribution of the
observations over a larger number of data cells when suit-
able covariates exist, or the unavailability of suitable cov-
ariates in other cases. The validity of the maximum
likelihood parameter estimates and likelihood ratio tests
to compare models might then be a concern. Others have
commented [36,37] that likelihood methods may not
perform well in distinguishing competing models in this
context.

On the basis of the present re-assessment, we believe that
previous attempts to compensate for the measurement
error in the original study [1] may have led to over-esti-
mates of the OR. A recent meta-analysis of all case-control
studies on the association between p53 codon 72 poly-
morphism and cervical cancer risk indicated an average
effect that was consistent with the LCM estimates pre-
sented here [38]. Likewise, the ORs we obtained in a
recent case-control study specifically designed to verify the
association, and which used improved methods to assess
the polymorphism (involving less measurement error)
[39], were consistent with the present latent class-based
estimates.
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