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Abstract
Background: The goal of linkage analysis is to determine the chromosomal location of the gene(s)
for a trait of interest such as a common disease. Three-locus linkage analysis is an important case
of multi-locus problems. Solutions can be found analytically for the case of triple backcross mating.
However, in the present study of linkage analysis and gene mapping some natural inequality
restrictions on parameters have not been considered sufficiently, when the maximum likelihood
estimates (MLEs) of the two-locus recombination fractions are calculated.

Results: In this paper, we present a study of estimating the two-locus recombination fractions for
the phase-unknown triple backcross with two offspring in each family in the framework of some
natural and necessary parameter restrictions. A restricted expectation-maximization (EM)
algorithm, called REM is developed. We also consider some extensions in which the proposed REM
can be taken as a unified method.

Conclusion: Our simulation work suggests that the REM performs well in the estimation of
recombination fractions and outperforms current method. We apply the proposed method to a
published data set of mouse backcross families.

Background
Molecular genetics has made much progress in recent
years, among which linkage analysis fulfills an important
role. Genetic linkage refers to the ordering of genetic loci
on a chromosome and to estimating genetic distances
among them, where these distances are determined on the
basis of a statistical phenomenon. Statistical machinery
has been used to analyze family data and to detect linkage
[1-4]. The degree of linkage can be measured by recombi-
nation fraction. The proportion of recombinant haplo-
types (or offspring) potentially produced by a doubly
heterozygous parent is called recombination fraction,

which is also the probability of occurrence of a recombi-
nation. Many map functions under different assumptions
have been derived [5-7], from which the genetic distance
and the recombination fraction can be mutually trans-
formed. Human gene mapping is now an important field
of science. A critical first step in finding gene loci that con-
tribute to a genetic trait is to demonstrate linkage with a
gene of known location (marker). So estimating the
recombination fractions is important in linkage analysis.

In several respects, three-locus analysis yields more infor-
mation than does two-locus analysis [8-11]. Three-locus
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linkage analysis is also an important case of multi-locus
problems. Methods for detecting multilocus linkage in
humans and estimation of recombination have been pro-
posed by Lathrop et al. [12], and Lathrop [13]. More
recently, Ott [3] has considered the estimation of two-
locus recombination fractions for phase-unknown triple
backcross families with two offspring in each family. The
author gave the presentations of the estimates of the two-
locus recombination fractions. Wu et al. [9] considered
simultaneous estimation of linkage and linkage phases in
outcrossing species. However, as mentioned in Ott [3],
the estimates suggested by the author may not satisfy
some natural restrictions which two-locus recombination
fractions should satisfy in fact. One may not obtain a rea-
sonable interpretation on the recombination phenome-
non among loci based on the estimates. Furthermore,
illegimate estimates of recombination fractions may also
reduce the power to detect linkage which can provide irre-
sponsible evidence to the researchers. In addition, the
restrictions on recombination fractions given in the con-
text are necessary in linkage analysis. For example, they
can be applied to determine the locus order on the chro-
mosome [9-11].

This estimation problem of two-locus recombination frac-
tions in three-locus linkage analysis belongs to the con-
strained parameter problems which are not only
important but also appear in many areas. The reader is
referred to [14-17]. However, the methods provided in the
literatures cannot be directly applied to the above genetics
problem.

Motivated by this unsolved problem that the restrictions
on recombination fractions have not been considered suf-
ficiently, in this paper, we consider the estimation of the
two-locus recombination fractions under some natural
and necessary restrictions. We develop a restricted EM
algorithm, called REM, which gives estimating results

through taking account of the natural inequality restric-
tions on the two-locus recombination fractions, and the
algorithm has been implemented by computer. Moreover,
this algorithm can be easily generalized to other cases, and
the REM performs well as a unified approach. Simulation
studies show that our new method works well in each sce-
nario and has advantages over current method, in other
words, the major advantages of our method is its robust-
ness and efficiency. An example is used to validate the
application of our method to linkage analysis.

Methods
Consider three biallele marker loci, where alleles are
designed as A, a; B, b; C, c at loci A, B, C, respectively, with
the order of loci being A-B-C. Assume a triply
homozygous parent abc/abc, and a triply heterozygous
parent (A/a, B/b, C/c). For the latter, there are four possi-
ble phases: (I) ABC/abc, (II) ABc/abC, (III) AbC/aBc, (IV)
Abc/aBC. As Ott [3] pointed out, under regular conditions
(linkage equilibrium), each of these phases occurs with
probability 1/4. When it is not the case, we let the prior
probability be hi (i = 1, 2, 3, 4) in a later section, and give
corresponding feasible approach.

Each offspring only receives haplotype abc from the triply
homozygous parent, but receives one of the eight possible
kinds of haplotypes from the heterozygous parent, which
can be seen at the second column of Table 1. The last four
columns of Table 1 give the conditional probabilities with
which the offspring phenotypes occur given the parental
phase, and the first column presents the code for each
haplotype that we will use. For the phase-unknown triple
backcross, each haplotype symbol listed in Table 1 just
corresponds to one offspring phenotype of the markers.

Let θAB, θBC and θAC, respectively denote two-locus recom-
bination fractions between loci A and B, between loci B
and C, and between loci A and C; g00, g01, g10 and g11

Table 1: Conditional haplotype probabilities given phase produced by a triply heterozygous parent

Phase

i Haplotype I II III IV

1 ABC g00/2 g01/2 g11/2 g10/2
2 ABc g01/2 g00/2 g10/2 g11/2
3 AbC g11/2 g10/2 g00/2 g01/2
4 Abc g10/2 g11/2 g01/2 g00/2
5 aBC g10/2 g11/2 g01/2 g00/2
6 aBc g11/2 g10/2 g00/2 g01/2
7 abC g01/2 g00/2 g10/2 g11/2
8 abc g00/2 g01/2 g11/2 g10/2

Total 1 1 1 1

g00, g01, g10 and g11 denote joint recombination fractions, where the subscript 1 represents recombination, and 0 represents nonrecombination.
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denote joint recombination fractions, where the subscript
1 represents recombination, and 0 represents non-recom-
bination, e.g., g10 is the probability of single recombinant
with a recombination for loci A and B but none for loci B
and C. So it is clear that the following equations hold:

θAB = g11 + g10, θBC = g11 + g01, θAC = g10 + g01. (1)

Ott [3] groups all possible two-offspring haplotype pairs
into four phenotype classes with probability pk (k = 1, 2, 3,
4) according to linkage analysis regulation. These classes
are reproduced in Table 2, in which the second column
represents two-offspring haplotype pairs, corresponding
to two phenotypes. Taking (i, j) = (5, 6) as an example, we
say one of the sib pair expresses phenotype aa/Bb/Cc, and
the other expresses phenotype aa/Bb/cc. There is no order
relationship between i and j. The probabilities of occur-
rence for all 8 × 9/2 = 36 possible pairs of offspring's phe-
notypes can be calculated easily, e.g., the joint probability
of occurrence of phenotypes aa/Bb/Cc and aa/Bb/cc
(diplotypes aBC/abc and aBc/abc) is (g11g10 + g01g00)/4. It
then turns out that, among the 36 probabilities, only four
different values occur so that phenotypes with the same
probabilities may be combined a single class and four
classes are obtained.

Let the total number of families (or sib pairs) observed be
n, and the number of families which are grouped into
class k be nk (k = 1, 2, 3, 4). Then (n1, n2, n3, n4) is multi-

nomial distributed with probability (p1, p2, p3, p4), and

. The MLEs of pk's are  (k = 1, 2, 3, 4).

Using the function relationships given in equations (1)
and Table 2, as well as the property of MLE, the MLEs of

θAB, θBC and θAC can be obtained as Ott [3]. We call this

method the unrestricted method that gives unrestricted

estimates, and let  denote the unre-

stricted MLE, where

Natural inequality restrictions on parameters
In parameter estimation, not only the data structure but
also the restrictions on the parameters should be consid-
ered, otherwise the MLEs obtained may be unreasonable.
For two-locus recombination fractions, the following ine-
quality restrictions: θAB ≤ θBC + θAC, θBC ≤ θAB + θAC, θAC ≤
θAB + θBC, and 0 ≤ θAB, θBC, θAC ≤ 1/2 must be considered.
For the given order of loci A-B-C, additional restrictions:
θAB ≤ θAC and θBC ≤ θAC are required. Combining all these
inequalities, the following equivalent restrictions are
obtained:

These restrictions are natural and necessary.

Proposed algorithm
In this section, we propose an approach to calculate MLEs
of two-locus recombination fractions under restriction
(2), which works well in application. From equations (1)
and Table 2, pk's are functions of independent parameters
g10, g01 and g11, and also functions of θAB, θBC and θAC, so
the log-likelihood function can be written as the follow-
ing form

where θ = (θAB, θBC, θAC). Our goal is to find

, such that

 under restriction (2), where

 denotes the restricted MLE of θ.
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Table 2: Phenotype classes for phase-unknown triple backcross 
families with two offspring

k (i, j)a pk

1 (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) 
(7,7), (8,8), (4,5), (3,6), (2,7), (1,8)

2 (1,2), (3,4), (3,5), (1,7), (4,6), (2,8), 
(5,6), (7,8)

2(g11g10 + g01g00)

3 (2,3), (1,4), (1,5), (2,6), (3,7), (4,8), 
(6,7), (5,8)

2(g11g01 + g10g00)

4 (1,3), (2,4), (2,5), (1,6), (4,7), (3,8), 
(5,7), (6,8)

2(g11g00 + g10g01)

Total 1

a(i, j): i and j refer to the code of haplotype in Table 1, corresponding 
to a phenotype each.

g g g g11
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We propose our restricted EM algorithm (REM) on the
basis of the EM algorithm of Dempster et al. [18] as fol-
lows:

Augment the observed data {nk, k = 1, 2, 3, 4} by latent

variables {nkl, k, l = 1, 2, 3, 4} to obtain a complete data

set, where , and {nkl, k, l = 1, 2, 3, 4} is multi-

nomial distributed with probability {pkl, k, l = 1, 2, 3, 4}.

Here, pkl are components of pk in Table 2 with

; p21 = g00g01, p22 =

g00g01, p23 = g10g11, p24 = g10g11; p31 = g00g10, p32 = g00g10, p33

= g01g11, p34 = g01g11; p41 = g00g11, p42 = g00g11, p43 = g01g10,

p44 = g01g10. nkl have its interpretation, for example, n11 can

be interpreted as the number of the families: (phase I →
(1,1) or (8,8) or (1,8)), or (phase II → (2,2) or (7,7) or

(2,7)), or (phase III → (4,4) or (5,5) or (4,5)), or (phase

IV → (3,3) or (6,6) or (3,6)), where (phase I → (1,1))
denotes the event that the families have phase I, and the
haplotype pairs of their offspring are (1,1), and other
notations are analogous to interpret.

Because parameters θAB, θBC, and θAC are equivalent to
independent parameters g10, g01 and g11, we still consider
parameters g10, g01 and g11 here, and restriction (2) is
equivalent to the following restriction (3):

Thus, finding MLE  (the restricted MLE of g = (g10, g01,

g11), such that ) under restric-

tion (3) implies finding MLE  of θ under (2). The com-
plete data log-likelihood function can be written as

where pkl's are functions of g as given above. The condi-
tional expectation of l(g|{nkl}) when the sth step parame-
ter values g(s) are given is

where

Then the restricted estimating problem may be written as

Max Q(g|g(s), {nk}), subject to g satisfies restriction (3).
(5)

The Hessian matrix of Q(g|g(s), {nk}) for g10, g01 and g11 is

negative definite, so Q(g|g(s), {nk}) is strictly concave for

g10, g01 and g11. This implies that there exists one unique

point  satisfying

. Following

some calculation, it is easy to obtain that

 and . If

 satisfies restriction (3), then  in the (s

+ 1)th iteration for EM algorithm, otherwise, we use the
Kuhn-Tucker conditions [19,20] to deal with problem
(5). Thus, we can still find a unique point

, such that

 under restric-

tion (3), because Q(g|g(s), {nk}) is a strictly concave func-

tion for g10, g01 and g11 and the restriction region is a

convex set. See Appendix for the Kuhn-Tucker conditions

and the solving process of .

We give the complete REM algorithm as follows:

Let  be the starting point (the start-

ing value of g(0) may be taken as  which

can make the REM converge faster, where 

can be obtained from  by equations (1));
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E-step: At step s, compute the expected number of recom-

bination events  from

g(s);

M-step: Compute g(s+1) using a(s+1). Firstly, compute

.

If  satisfies restriction (3), then g(s+1) = ; other-

wise, then g(s+1) must belong to one of the following cases
(i.e. only one case holds):

case 1. , if the follow-

ing inequalities hold simultaneously

case 2. ,
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, if
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case 7. , ,
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The above procedure is iteratively carried out until conver-

gence. Then the restricted MLE  of θ in terms of the

restricted MLE  can be obtained correspondingly by

equations (1).

Compared to the general EM algorithm, the M-step of the
REM is a little more complex. It needs some necessary dis-
crimination, then g(s+1) can be obtained based on a(s+1).
Note that g(s+1) has the closed-form solution, so it will
largely improve the computational efficiency of the
parameters. The restricted EM algorithm is convergent,

and the restricted MLE  from the proposed restricted

EM algorithm is a consistent estimator of the parameter θ.
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Case for more offspring
It is an important fact that more offspring in each family
will provide more information in linkage analysis, there-
fore, and we need to extend the REM algorithm to cases of
multiple offspring (sibship) in each family.

We develop a strategy for estimating the two-locus recom-
bination fractions for this case, and the proposed REM
algorithm works as a unified method. Taking three-off-
spring case as an example, we group the observed families
into 5 classes according to linkage analysis regulation,
with the observed data {nk, k = 1,�, 5}. After data aug-
mentation, we obtain complete data {nkl, k = 1, 2, 3, 4, 5,
l = 1, 2, 3, 4}. Furthermore, the conditional expectation of
the complete-data log-likelihood is

where 's have similar expressions with 's given

previously. Then the other steps of the REM are the same
as those for the case of two offspring, except replacing

's by 's. More offspring's cases are analogous

completely. It is helpful to construct and analyze a linkage
map using this kind of family data.

Case for unequal prior probabilities of linkage phases

Affected by many factors (e.g., linkage disequilibrium),
each phase of a triply heterozygous parent's genotype may
in fact not occur with equal prior probability, but the pro-
posed REM can also be applied to the case of unequal

phase probability as a unified method. Let each phase
occur with probability hi (i = 1, 2, 3, 4), where hi is any

fixed number that satisfying 0 ≤ hi ≤ 1, and . In

this case, two-offspring family data needs to be grouped
into 10 different phenotype classes according to linkage
analysis regulation (see Table 3), and we can obtain the
observed data {nk, k = 1, 2,�, 10}. Then we augment the

observed data {nk, k = 1, 2,�, 10} by latent variables {nkl,

k = 1, 2,�, 10, l = 1, 2, 3, 4} with corresponding probabil-
ities {pkl, k = 1, 2,�, 10, l = 1, 2, 3, 4}. The major difference

from the procedure of the REM for hi = 1/4 (i = 1, 2, 3, 4)

lies in the expression of conditional expectation for each
nkl (k = 1, 2,�, 10, l = 1, 2, 3, 4). Take n11 as an example,

, where h1 is the assigned

prior probability of phase I. Repeating the similar proce-
dure given in the REM for hi = 1/4 (i = 1, 2, 3, 4), we find

that the conditional expectation of the log-likelihood of
the complete data still has the form of (4), and only the
expressions of the components of a(s+1) are more complex
than those given previously. Using the REM algorithm, we
can obtain the restricted MLEs of the two-locus recombi-
nation fractions easily.

Q n b ln g g g b ln g bs
k
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01 33
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Table 3: Phenotype classification when each linkage phase occur with probability hi

k (i, j)a pk

1 (1,1), (8,8), (1,8)

2 (2,2), (7,7), (2,7)

3 (3,3), (6,6), (3,6)

4 (4,4), (5,5), (4,5)

5 (1,2), (1,7), (2,8), (7,8) 2((h1 + h2)g00g01 + (h3 + h4)g10g11)
6 (3,4), (3,5), (4,6), (5,6) 2((h1 + h2)g10g11 + (h3 + h4)g00g01)
7 (2,3), (2,6), (3,7), (6,7) 2((h1 + h4)g01g11 + (h2 + h3)g00g10)
8 (1,4), (1,5), (4,8), (5,8) 2((h1 + h4)g00g10 + (h2 + h3)g01g11)
9 (1,3), (1,6), (3,8), (6,8) 2((h1 + h3)g00g11 + (h2 + h4)g01g10)
10 (2,4), (2,5), (4,7), (5,7) 2((h1 + h3)g01g10 + (h2 + h4)g00g11)

Total 1

a(i, j): see Table 2 for the explanation.
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Simulation methods
We conduct two simulation studies to evaluate the per-
formance and robustness of the proposed REM. In the
simulations, we simulate two-offspring family data.

Comparing the REM and the unrestricted method
Let θ0 = (θAB, θBC, θAC) denote the true value of the recom-
bination fraction. In genetics, loci A and B are said to be
closely linked when 0 ≤ θAB ≤ 0.1, moderately linked when
0.1 ≤ θAB ≤ 0.2, and loosely linked when 0.2 ≤ θAB ≤ 0.5. To
show the advantage of the REM algorithm, we consider six
scenarios according to the different combinations of link-
age states of loci AB and loci BC: CC, CM, CL, MM, ML,
and LL, where C, M, and L denotes close, moderate, and
loose linkage, respectively. In each scenario, θAB and θBC
are respectively taken as 0.05, 0.15, and 0.35 for close,
moderate, and loose linkage. θAC is taken as three equally
spaced values which all guarantee that (θAB, θBC, θAC) sat-
isfies the natural restriction (2), and the smaller value and
the larger one are near the boundary of the region com-
posed by restriction (2), and the moderate one is inside
the region. Since the triply homozygous parent only pro-
duces haplotype abc in triple backcross family, we can
only consider the sampling from the heterozygous parent.
For demonstrate purpose, we give the process of generat-
ing data for each θ0 in detail:

1. According to equal probability 1/4, We randomly
assign a linkage phase of the heterozygous parent in one
family.

2. Generate two haplotypes of two offspring from the het-
erozygous parent in the family according to the condi-
tional probabilities given in Table 1. The haplotype pair
(or the family) is easily classified into one of the four
classes in Table 2.

3. Repeat step 1 and 2 for n = 300 times, then data {nk}
for n simulated families can be obtained.

In each scenario of our simulations, for each θ0, we calcu-

late  and  by the unrestricted method and the REM,
respectively. Repeating the whole process for M = 1000

times, we obtain the averages of  and  over 1000
replicates by the two methods (see Table 4). As expected,

the averages of  over 1000 replicates agree better with

θ0 than the averages of .

To better show the performance of the REM, we mainly
use the following three measures of accuracy to compare

 and :

1. The number, denoted by KK, for which the unrestricted
methods give unreasonable estimates based on 1000 rep-
licates.

2. The standard derivations (SDs) of the estimate ; the

ratio of SDs of two kinds of estimates being

, i = AB, BC, AC.

3. The mean absolute error (MAE) of the estimate ,
where

; the ratio of MAEs being rMAE = MAE( )/MAE( ).

The comparisons of estimations of two-locus recombina-
tion fraction by the unrestricted method and the REM are
listed in Table 5. In each scenario, the unrestricted method
gives lots of unreasonable results, i.e., the estimates do not
satisfy the natural restriction (2), whereas the estimates
obtained by the proposed REM all satisfy the restriction.
The number KK of unreasonable estimates is larger when

the true value θ0 is near the boundary of the restriction

region (2), which corresponds to the larger or smaller true

values of θAC, and KK is somewhat smaller when θ0 is

inside the region, which corresponds to the moderate val-

ues of θAC. In the former situation the resulting  could

be obtained in the whole parameter space but not in the

restriction region (2). When θ0 is near the boundary of the

restriction region (2),  is liable to be near the boundary
of the region and hence likely to lie outside the boundary.

However the proposed method can guarantee that 
must be inside the restriction region at any time.

It is clear to see that our REM outperforms the unrestricted
method for estimating two-locus recombination fractions
in each simulated scenario. The estimates obtained by the
REM have smaller SDs than the unrestricted method,
which is more obvious especially at least one of the inter-
vals of AB and BC is loosely linked. This suggests that the
accuracy of estimates by the REM is more higher than by
the unrestricted method, and that the natural restriction
(2) should be taken into account in estimating, otherwise
it would have significant impact on the accuracy on prac-

tical inference. Compared to ,  is closer to the true

value θ0 (rMAE > 1 for all groups in Table 5).

θ̂ U θ̂ R

θ̂ U θ̂ R

θ̂ R

θ̂ U

θ̂ U θ̂ R

θ̂ i
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rSD SD SD= ( )/ ( )θ θi
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=
∑ (| | | | | |)/θ θ θ θ θ θABl
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It also can be seen that the proposed REM is a robust algo-
rithm. The REM can still give better results than the unre-
stricted method in each scenario even when KK is small
(e.g., 1).

Evaluating the effect of interference to estimates

Interference refers to the phenomenon that crossovers in
nearby intervals along a chromosome do not occur inde-
pendently. Let I denote the value of interference. Accord-
ing the definition of interference in Strickberger [21], we

have . To better evaluate the effect of inter-

ference to the two kinds of estimations, we consider three
scenarios: positive, null and negative interferences. In

each scenario, we choose equal θAC and different θAB and

θBC corresponding to different interference values (see

Table 6). For each scenario, we also simulate 300-family
data, and the REM and the unrestricted method are
applied to the simulated data, respectively. The whole
process is repeated for 1000 times to compute the meas-
ures of accuracy given previously. The simulation results
listed in Table 6 firstly show that the values of KK are very
large when there exists positive (or negative) interference,

and the values are small when there is no interference,
while the REM gives reasonable estimates at any time.
That is to say the estimating results by the unrestricted
method are much affected by the interference, but the
results by our REM is less affected. Secondly, the less fluc-

tuations of SD( ) in scenario 1 (or 3) also validate that

the REM is less affected by interference. Finally, the REM
outperforms the unrestricted method in each scenario
(rSD > 1, rMAE > 1), especially, when negative interfer-
ence is present.

In addition, we find that the restricted EM estimate is little
changed when different starting values are taken. These
above results indicate that the use of the REM can yield
better performance than the current unrestricted method.

A worked example

We applied our proposed method to a real data set from
published literature [22]. The data set comprised of 134
individuals from a backcross of mice. Here we consider
the three ordinal marker loci D2Mit365, D2Mit272 and
D2Mit456 on the linkage map of chromosome 2, and we
still use A, B and C to denote the three loci. According to 

I g

AB BC
= −1 11

θ θ

θ̂ AC
R

Table 4: The averages of estimates over 1000 replicates for 300 two-offspring families by unrestricted method and the REM

Parameters REM Unrestricted Method

Scenarioa θAB θBC θAC

CC 0.05 0.05 0.06 0.0495 0.0497 0.0604 0.0499 0.0501 0.0597
0.075 0.0498 0.0500 0.0751 0.0499 0.0500 0.0752
0.09 0.0500 0.0500 0.0903 0.0496 0.0499 0.0903

CM 0.05 0.15 0.16 0.0502 0.1486 0.1607 0.0502 0.1494 0.1602
0.175 0.0502 0.1495 0.1742 0.0502 0.1495 0.1745
0.19 0.0497 0.1508 0.1898 0.0497 0.1509 0.1906

CL 0.05 0.35 0.36 0.0496 0.3531 0.3685 0.0496 0.3300 0.3711
0.375 0.0502 0.3532 0.3777 0.0502 0.3287 0.3837
0.39 0.0498 0.3534 0.3939 0.0499 0.3344 0.3990

MM 0.15 0.15 0.16 0.1487 0.1489 0.1643 0.1504 0.1507 0.1611
0.225 0.1503 0.1500 0.2248 0.1503 0.1501 0.2252
0.29 0.1497 0.1508 0.2887 0.1498 0.1509 0.2923

ML 0.15 0.35 0.36 0.1505 0.3494 0.3745 0.1505 0.3247 0.3737
0.425 0.1505 0.3533 0.4274 0.1507 0.3254 0.4310
0.49 0.1498 0.3481 0.4499 0.1503 0.3331 0.4535

LL 0.35 0.35 0.36 0.3443 0.3470 0.3601 0.3573 0.3312 0.3675
0.425 0.3525 0.3517 0.4305 0.3582 0.3315 0.4272
0.49 0.3531 0.3524 0.4554 0.3582 0.3255 0.4505

aScenario: six combinations of linkage states of loci AB and loci BC (C: close linkage; M: moderate linkage; L: loose linkage).

θ̂ AB
R θ̂ BC

R θ̂ AC
R θ̂ AB

U θ̂ BC
U θ̂ AC

U
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Table 6: Evaluation of the effect of interference to estimates of recombination fractions

Scenario θAB θBC θAC Ia SD( ) rSDb MAEc rMAEd KKe

1 0.031 0.060 0.09 0.7312 0.0124 1.0484 0.0078 1.0128 475
0.035 0.056 0.09 0.7449 0.0124 1.0323 0.0080 1.0125 487
0.039 0.052 0.09 0.7535 0.0120 1.0250 0.0078 1.0128 472

2 0.081 0.1301 0.19 0 0.0205 1.0537 0.0131 1.0229 64
0.085 0.1265 0.19 0 0.0196 1.0765 0.0127 1.0315 72
0.089 0.1229 0.19 0 0.0198 1.0505 0.0127 1.0236 48

3 0.151 0.359 0.39 -0.1068 0.0553 1.1971 0.0327 1.3945 354
0.155 0.355 0.39 -0.0904 0.0549 1.2095 0.0321 1.2928 323
0.159 0.351 0.39 -0.0751 0.0552 1.2156 0.0324 1.3025 300

aI: value of interference;
brSD, c MAE, d rMAE and eKK: see Table 5 for the explanations.

θ̂ AC
R

Table 5: Comparison of estimation of two-locus recombination fraction for 300 two-offspring families by the unrestricted method and 
the REM

Parameters SD rSDb

Scenarioa θAB θBC θAC MAEc rMAEd KKe

CC 0.05 0.05 0.06 0.0089 0.0088 0.0095 1.0606 1.0790 1.1170 0.0072 1.0434 220
0.075 0.0090 0.0092 0.0114 1.0029 1.0033 1.0187 0.0078 1.0043 6
0.09 0.0091 0.0093 0.0127 1.0020 1.0022 1.0274 0.0083 1.0062 84

CM 0.05 0.15 0.16 0.0093 0.0180 0.0177 1.0007 1.0603 1.0560 0.0119 1.0223 183
0.175 0.0091 0.0182 0.0195 1.0007 1.0168 1.0562 0.0124 1.0140 34
0.19 0.0094 0.0183 0.0209 1.0012 1.0122 1.1352 0.0128 1.0299 197

CL 0.05 0.35 0.36 0.0095 0.0463 0.0481 1.0008 4.2411 1.4711 0.0272 1.2941 502
0.375 0.0090 0.0464 0.0482 1.0009 4.2875 1.6143 0.0272 1.3343 487
0.39 0.0093 0.0445 0.0467 1.0006 3.8670 1.7417 0.0267 1.3462 518

MM 0.15 0.15 0.16 0.0156 0.0168 0.0168 1.2658 1.1893 1.2115 0.0131 1.0956 451
0.225 0.0181 0.0176 0.0239 1.0078 1.0080 1.0863 0.0159 1.0174 1
0.29 0.0174 0.0187 0.0261 1.0117 1.0098 1.6503 0.0166 1.1165 343

ML 0.15 0.35 0.36 0.0177 0.0452 0.0514 1.0024 5.1260 1.4805 0.0298 1.3264 419
0.425 0.0179 0.0459 0.0504 1.0071 5.0395 1.5690 0.0311 1.3790 297
0.49 0.0179 0.0410 0.0584 1.0167 4.9795 1.3348 0.0303 1.2595 304

LL 0.35 0.35 0.36 0.0390 0.0373 0.0454 2.0082 6.4504 1.5975 0.0319 1.4403 604
0.425 0.0454 0.0436 0.0498 1.4563 4.3277 1.5612 0.0378 1.2931 278
0.49 0.0460 0.0465 0.0577 1.3683 4.5456 1.4778 0.0375 1.3018 216

aScenario: see Table 4 for the explanation;

b , i = AB, BC, AC;

c : the mean absolute error of ;

drMAE = MAE( )/MAE( );
eKK: number for which the unrestricted method gives unreasonable estimates based on all 1000 replicates.

θ̂ AB
R θ̂ BC

R θ̂ AC
R θ̂ AB
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U θ̂ AC

U

rSD SD SD= ( )/ ( )θ θi
U

i
R
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=
∑ (| | | | | |)/θ θ θ θ θ θABl
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the genotypes given in the data set, we record a haplotype
code of each individual, where the haplotype is from the
heterozygous parent. Two individuals are randomly
grouped into one family, and we consider they are really
from that family, where the treatment will not affect link-
age information, because all offspring's genotypes are
independent conditional on the genotypes of all parents
for the data. Then we obtain n = 67 two-offspring families,
and n1 = 21, n2 = 17, n3 = 14 and n4 = 15 by the classifica-

tion given in Table 2. We used the proposed REM and the
unrestricted method to estimate the recombination frac-
tions based on (n1, n2, n3, n4). The MLEs of the recombi-

nation fractions are  = 0.3166,  = 0.3738 and 

= 0.3738; and  = 0.3167,  = 0.3942 and  =

0.3634, respectively. Obviously, the unrestricted estimates
do not satisfy the second one of the natural restriction (2),
and thus estimates contradict with the true order of the
three markers on the linkage map of chromosome 2 [22].
According to our simulation and practical experience, the
accuracy of estimation by the REM will improve by
increasing sample size or by using the unrestricted esti-
mates as initial values.

Discussion
We developed a restricted EM algorithm to calculate
numerically the MLEs of two-locus recombination frac-
tions that initially studied by Ott [3]. The method in Ott
[3] may not always provide the parameter estimates satis-
fying the natural restriction (2), since the approach does
not take the inequality restrictions into account. Our
method can deal with this problem, and the real data were
handled very well with the proposed method.

The performance of the REM is also illustrated using sim-
ulated data. Our simulation shows that the unrestricted
method gives some unreasonable estimate results in each
scenario, and thus such estimates may not provide correct
interpretation of the recombination phenomenon in
practice. The major advantage of the REM is its robustness
and efficiency. The REM can give better results even when
the number for which the unrestricted method gives
unreasonable estimate results is small (e.g., KK = 1), and
our estimates are more precise than those obtained by the
unrestricted method. Moreover, the REM is less affected
by interference, and the estimate of parameter g in M-step
having the closed-form solution largely improves the
computational efficiency of the parameter.

On the other hand, noticing the important fact that more
offspring in each family can really provide more informa-
tion in linkage analysis, we develops a strategy for estimat-

ing the two-locus recombination fractions when each
observed family has more offspring, and the proposed
REM algorithm works as a unified method. In practice, the
method developed by Lu et al. [10] can be first adopted to
obtain the estimates of probabilities hi's of linkage phases
when considering multiple offspring, then the REM is
used to obtain the restricted MLEs of recombination frac-
tions, which may improve the estimation precision. It is
helpful to construct and analyze a linkage map using this
kind of family data.

Recent research in genetics has shown that statistical infer-
ence about the two-locus recombination fraction offers an
effective approach for constructing and analyzing a link-
age map between the genetic marker and the genetic dis-
orders. Reasonable estimates of the recombination
fractions are important in gene mapping, especially in
interval mapping [23-26]. Only the reasonable estimate
result may identify the actual genes responsible for some
trait, and it is feasible to embed the REM into interval
mapping to improve the efficiency of mapping.

It is noticed that our analysis is focused on three biallelic
loci. The above constrained parameter problem may
become complicated if the number of loci is more than
three, or some markers may have more alleles than others,
for example, in outcrossing plant species. When the
number of loci is more than three, we suggest that every
three adjacent loci are subject to three-point analysis. We
can obtain two different estimates of the recombination
fraction for the same marker interval, and a better way to
combine these estimates is to take a weighted mean. More
alleles for each markers mean more possible linkage
phases [10], which bring some difficulty to linkage analy-
sis, however, the idea of considering the natural restric-
tion (2) on recombination fractions should also be
emphasized. Further investigation in this area is war-
ranted.

Appendix
The Kuhn-Tucker Theorem [19,20]
Suppose that θ* is a solution of

Max f(θ) subject to f1(θ) ≥ 0,�, fm(θ) ≥ 0,

where f, f1,�, fm: RN → R are C1 functions. Then the follow-
ing conditions hold:

(1) , i = 1,�, N;

(2) λjfj(θ*) = 0, j = 1,�, m;

(3) fj(θ*) ≥ 0, j = 1,�, m;
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(4) λj ≥ 0, j = 1,�, m,

where (λ1,�, λm) are Lagrangian multipliers. The four con-
ditions are called Kuhn-Tucker conditions. Specially, if
f(θ) is strictly concave and the set {θ: f1(θ) ≥ 0,�, fm(θ) ≥
0} is convex, the Kuhn-Tucker conditions are also suffi-
cient, and the solution θ* is unique.

Solving equation (5) when  does not satisfy 

restriction (3)
Because Q(g|g(s), {nk}) is a strictly concave function and

the restriction region (3) is a convex set, there must be a

unique solution  to equation (5) by the Kuhn-

Tucker Theorem. The Lagrangian is

L(g, λ) = Q(g|g(s), {nk}) + λ1(g01 - g11) + λ2(g10 - g11) + λ3g11 
+ λ4(1/2 - g01 - g10),

where λ = (λ1, λ2, λ3, λ4), and λi's are Lagrangian multipli-

ers. Then  is a unique solu-

tion to

To solve the above equations, we need to consider all pos-
sible cases for λi = 0 or λi > 0, i = 1, 2, 3, 4. There are totally
seven possible solutions for the above equations which
were just given in the previous REM algorithm.
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