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Abstract

Background: Requirements for successful implementation of multivariate animal threshold models including
phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the
properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data
in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs
sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic
values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated,
resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic
marker information were simulated for one of the liabilities. Different scenarios with respect to recombination
rate between genetic markers and QTL and polymorphism information content of genetic markers were studied.
For each scenario ten replicates were sampled from the simulated population, and within each replicate six
different datasets differing in number and distribution of animals with trait records and availability of genetic
marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-
threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used
for the genetic covariance matrix.

Results: Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias
of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate
heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly
underestimated between the continuous trait and binary traits of low heritability, under- or overestimated
between the continuous trait and binary traits of moderate heritability, and overestimated between two binary
traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of
parameter estimates more than mere increase of the number of informative animals from one generation.
Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic
heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.

Conclusion: Combined use of phenotype and genotype information on parents and offspring will help to identify
agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple
trait selection schemes.
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Background

Use of linear models for the estimation of genetic param-
eters for categorical traits violates basic assumptions of
mixed linear model methodology. Algorithms have been
developed to transform linear model estimates to the
underlying liability scale in order to compensate for the
estimation bias caused by analysis of non-linear traits in
linear models, but transformed genetic parameter esti-
mates might still be significantly biased [e.g., [1-4]]. Use
of threshold models for estimation of genetic parameters
directly accounts for the non-linear nature of categorical
traits, and threshold model estimates should be more reli-
able than linear model estimates or transformed linear
model estimates [e.g., [5-7]].

Markov chain Monte Carlo (MCMC) methods such as
Gibbs sampling (GS) make it feasible to implement mul-
tivariate threshold models or multivariate mixed linear-
threshold models. Animal models fully use the available
pedigree information, but accuracy of genetic variance
and covariance estimates and convergence of GS chains
might be a problem in the case of low trait prevalences
and few observations per individual [e.g., [5,8-10]].
Therefore, in practical situations implementation of mul-
tivariate animal threshold models is not always straight-
forward. The inclusion of continuous traits, i.e. use of a
multivariate linear-threshold model, is expected to
increase the reliability of genetic parameter estimates [e.g.,
[2,11-13]].

In animal breeding, health data are often recorded using
discrete categories, whilst most performance traits are
continuous. In the horse, binary coding has been used for
investigations on radiographic findings in the equine
limbs, and high prevalences of radiologically visible alter-
ations, mostly in the range of 10-25%, have been deter-
mined in the limbs of young horses [e.g. [14-17]]. This
promoted the search for preventive rather than curative
measures. Because strength and soundness of the equine
locomotory system is of great importance in all sectors of
the horse industry, inclusion of radiological health traits
in current breeding schemes of the Warmblood riding
horse has been suggested [18,19]. Reliably estimated
genetic parameters for these categorical traits provide the
basis to do so. For the analyzed radiographic health data,
applicability of transformation factors according to
Dempster and Lerner [20] and Vinson et al. [21] to linear
animal model estimates obtained with residual maximum
likelihood (REML) has been proven via simulation [22].
However, rate of over- or underestimation, which is
caused by analysis of binary traits in linear models and
has to be compensated via transformation, depends on
data structure. Re-evaluation of transformation procedure
will therefore be required for analyses of data of different
structure with respect to distribution and kind of available
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information. Implementation of a Bayesian multivariate
animal threshold or mixed linear-threshold model for
(co)variance component estimation may provide a worth-
while alternative.

Quantitative trait loci (QTL), i.e. genome regions which
include genes that influence the phenotype of an individ-
ual with respect to a particular trait, have been identified
for production and health traits in different species [23].
Increasing knowledge on genetic determination of radio-
logical health traits [24,25] implies further opportunities
for improvement of genetic evaluation and selection
schemes in the horse. Conditions for efficient use of
marker-assisted selection have been described [26], but
the effects of combined use of phenotypic and genotypic
data on the accuracy of genetic parameter estimation for
categorical traits has not been studied yet. Requirements
for successful implementation of multivariate animal
threshold models including phenotypic and genotypic
information are unknown.

The aim of this study was to characterize the properties of
multivariate estimation of genetic parameters for categor-
ical, continuous and molecular genetic data using linear-
threshold animal models and Gibbs sampling. Impact of
data structure and quality of molecular genetic data on the
accuracy of genetic parameter estimates was studied in the
context of important radiological health traits in Warm-
blood horses.

Results

Gibbs chains

The number of rounds of Gibbs sampling that had to be
discarded as burn-in ranged between 5000 and 53000.
Mean lengths of burn-in ranged between 8100 and 13866
rounds in the analyses of the different datasets. Mean,
minimum and maximum length of burn-in were lowest in
the analyses of dataset A2 and highest in the analyses of
dataset B1.

Mean, minimum and maximum ESS of heritabilities and
additive genetic correlations by dataset and quality of gen-
otype information on T2 are given in Tables 1 and 2. For
heritability of the continuous trait (T1) ESS ranged
between 286.9 and 858.4 in the analyses of data on ani-
mals from one generation (datasets A1, B1 and C1) and
between 1222.7 and 1949.0 in the analyses of data on ani-
mals from two subsequent generations (datasets A2, B2
and C2). For heritability of the binary traits ESS ranged
between 23.0 and 139.3 for T2, between 24.1 and 147.5
for T3, between 15.4 and 115.2 for T4, and between 50.6
and 289.6 for T5 in the analyses of all datasets. Mean ESS
was 810.7 to 1325.4 for the additive genetic correlation
between T1 and T5, 175.7 to 500.7 for the additive genetic
correlations of T1 with T2, T3 and T4, and 86.4 to 376.2
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for the additive genetic correlation between traits T2, T3,
T4 and T5. Significant influence on ESS was determined
for the analyzed dataset (P < 0.001), but not for the qual-
ity of genetic marker information. There were no signifi-
cant differences between ESS for all heritabilities and all
additive genetic correlations in analyses of datasets B1 and
C1 and between ESS for all heritabilities and all additive
genetic correlations but r,;, in analyses of datasets B2 and
C2.

Mean MCE was 0.016 to 0.017 for heritability of T1 in
analyses of datasets B1 and C1, and 0.002 to 0.010 for
heritability of T1 in analyses of datasets A1, A2, B2 and C2
and heritabilities of the binary traits (T2 to T5) in analyses
of all datasets. Mean MCE for additive genetic correlations
ranged between 0.001 and 0.004 in all analyses.

Parameter estimates

Genetic parameter estimates differed little between sce-
narios rOp9, r1p9 and rOp7. In the analyses of the six data-
sets ranges of heritability estimates were h2=0.487-0.667
for T1, h2=0.058-0.171 for T2, h2=0.193-0.343 for T3,
h2 = 0.081-0.170 for T4, and h2 = 0.210-0.354 for T5.
Ranges of estimates for the simulated additive genetic cor-
relations were 1,;, = 0.009-0.327, 155 = 0.102-0.316, 1414
=-0.295 to -0.034, and Igy5= -0.506 to 0.150.

Mean, minimum and maximum bias of heritabilities and
additive genetic correlations by dataset and quality of gen-
otype information on T2 are given in Tables 3 and 4. Bias
of heritability estimates for T1 ranged between -0.075 and
0.221 in the analyses of datasets Al, B1 and C1, and
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between -0.089 and -0.021 in the analyses of datasets A2,
B2 and C2. Mean bias of heritability estimates for T2 was
-0.134 to 0.205 in the analyses of datasets A1, A2, B1 and
B2, 0.94 t0 0.99 in analyses of dataset C1, and 0.47 to 0.52
in analyses of dataset C2. Mean bias of heritability esti-
mates was -0.057 to 0.024 for T3, 0.065 to 0.231 for T4,
and -0.018 to 0.095 for T5 in all analyses. Extremes of neg-
ative and positive bias of heritability estimates were -
0.414 and 1.811 for T2, -0.233 and 0.316 for T3, -0.201
and 0.649 for T4, and -0.156 and 0.423 for T5. Additive
genetic correlations between T1 and T2, T1 and T3, and T1
and T4 had a mean bias of -0.503 to 0.177 and a bias
range from -0.958 to 0.637. Additive genetic correlation
between T4 and T5 had a mean bias 0of 0.127 t0 0.376 and
a bias range from -1.748 to 1.532. The analyzed dataset
had a significant influence on the bias of heritability esti-
mates for T1, T2, T4 and T5 (P < 0.01) and of estimated
additive genetic correlations between T1 and T2, T1 and
T3,and T1 and T4 (P < 0.001). Bias of heritability estimate
for T2 was further significantly dependent on the quality
of genetic marker information (P < 0.01), with lower
means in scenario rOp7 than in scenarios rOp9 and r1p9.

Discussion

Mixed linear-threshold model analyses via Gibbs sampling
Simulated categorical, continuous and molecular genetic
data were used for multivariate estimation of genetic
parameters in mixed linear-threshold animal models via
Gibbs sampling. General statements on the properties of
multivariate analyses in mixed linear-threshold models
require validation using independent sample datasets. For
this study, simulation of multiple populations per study

Table I: Mean (minimum, maximum) effective sample size of estimated heritabilities for investigated QTL scenarios.

Dataset

Parameter Al A2 Bl

B2 Cl Cc2

h?, 6417 (533.5, 778.6)
652.5 (504.5, 829.9)
628.1 (371.6, 858.4)

1567.9 (1341.7, 1791.7)
1562.8 (1266.4, 1749.8)
1590.1 (1236.2, 1713.0)

455.6 (297.7, 608.1)
480.7 (366.5, 611.9)
451.5 (286.9, 671.3)

1631.9 (1426.4, 1782.9) 505.3 (402.4, 581.6)
1659.3 (1407.7, 1932.8) 472.7 (301.1, 643.0)
1630.9 (1222.7, 1888.9) 453.5 (347.8, 626.7)

1620.5 (1417.3, 1753.0)
1640.8 (1330.0, 1881.2)
1655.6 (1487.9, 1949.0)

h2, 93.8 (36.4, 117.9) 94.6 (76.5, 122.9) 75.4 (46.5, 113.4)
86.5 (59.6, 119.8) 95.9 (56.5, 119.5) 75.4 (48.3, 124.6)
69.8 (42.7, 100.7) 99.8 (31.3, 133.5) 84.7 (5.4, 114.6)
h2, 79.0 (25.9, 113.0) 103.8 (62.8, 147.5) 60.6 (35.1, 89.4)
68.7 (30.7, 105.5) 92.6 (76.5, 113.9) 65.7 (41.6,92.3)
83.9 (49.6, 113.7) 101.4 (637, 142.0) 44.0 (24.1,59.6)
h2, 53.4 (31.5,77.2) 75.5 (55.3, 95.1) 61.8 (30.7, 79.3)
57.2 (34.3, 108.0) 77.1 (40.3, 99.8) 58.5 (15.4, 84.8)
76.2 (50.8, 102.5) 68.4 (24.6, 105.4) 68.0 (50.0, 98.9)
h2, 131.1 (71.7, 179.7) 195.5 (75.9, 251.2) 108.9 (50.6, 143.0)

121.8 (79.5, 167.8)
129.3 (95.9, 174.1)

204.7 (133.4, 277.6)
206.7 (147.0, 276.6)

106.7 (66.0,131.5)
113.6 (50.8, 146.5)

93.8 (48.3, 139.3)
95.9 (56.5, 119.5)
97.4 (53.1, 124.8)
96.1 (71.0, 123.5)
92.6 (76.5, 113.9)
91.8 (61.8, 128.5)
75.3 (48.6, 98.7)
77.1 (40.3, 99.8)
75.2 (50.2, 102.3)

216.7 (145.1, 259.7)

204.7 (1334, 277.6)
209.9 (74.2, 272.0)

66.6 (36.6, 105.8)
72.9 (23.0, 90.7)
76.4 (46.7, 112.3)
58.5 (29.1, 77.3)
58.7 (37.9, 78.0)
53.4 (35.5, 75.2)
58.9 (34.8, 89.9)
63.3 (35.1, 110.5)
57.1 (47.8,81.1)
117.7 (853, 162.4)
113.5 (88.4, 148.0)
101.4 (62.6, 142.9)

102.2 (62.8, 129.2)
105.2 (83.6, 120.9)
100.1 (75.5, 120.5)
84.8 (58.9, 102.4)
81.2 (423, 117.4)
91.6 (54.1, 141.7)
82.0 (462, 11522)
82.8 (64.6, | 14.6)
70.9 (37.0, 91.5)
207.1 (159.8, 284.2)
198.4 (100.8, 289.6)
227.1 (141.5, 274.9)

QTL: quantitative trait locus;

h2,: heritability of the continuous trait T |; h2,(h2;, hZ,, h%): heritability of binary trait T2 (T3, T4, T5);

QTL scenarios: different scenarios with respect to recombination rate between markers and QTL (r) and polymorphism information content (PIC)
of markers with r = 0.00 and PIC = 0.9 in the first line, r = 0.0] and PIC = 0.9 in the second line, and r = 0.00 and PIC = 0.7 in the third line.
For details on datasets Al to C2 see Table 6.
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Table 2: Mean (minimum, maximum) effective sample size of estimated additive genetic correlations for investigated QTL scenarios.

Dataset
Parameter Al A2 Bl B2 Cl C2
rgi2 435.7 (306.8, 639.8) 475.2 (198.2, 794.3) 367.1 (158.7, 612.5) 444.1 (238.1, 576.8) 281.3(210.9,416.0)  314.6 (240.9, 451.0)
464.0 (191.0,701.5) 485.1 (313.2,710.0) 287.8 (148.9,511.4) 388.9 (209.6, 566.3) 284.6 (202.4, 400.7)  337.0 (172.1, 445.7)
347.2 (222.0, 482.4) 448.2 (326.1, 669.8) 316.2 (196.6, 471.0) 373.2 (242.0, 494.0) 309.1 (124.4,591.1)  346.4 (257.6, 474.2)
rei3 383.8 (221.8,497.4) 500.7 (217.6, 658.0) 236.4 (139.3, 339.3) 436.7 (217.5, 603.2) 207.9 (100.9, 371.0)  430.9 (201.5, 650.8)
384.6 (75.2, 662.9) 498.5 (242.5, 758.7) 278.4 (107.3, 538.6) 453.6 (219.5, 664.0) 2229 (102.9, 346.8)  459.5 (238.8, 652.6)
353.4 (181.9, 523.0) 512.0 (286.6, 814.1) 230.3 (121.0, 435.1) 463.5 (244.3, 693.0) 2139 (111.5,442.5)  449.4 (194.5, 723.8)
Fgi4 257.1 (127.9, 371.0) 293.3 (194.5, 493.1) 175.7 (52.1, 261.0) 282.8 (147.2, 459.2) 198.5 (90.8, 295.2) 281.5 (158.0, 389.1)
291.2 (191.9, 514.9) 336.8 (161.9, 533.1) 213.5 (151.9, 290.1) 274.9 (174.5, 369.1) 182.8 (128.6,228.0) 284.2 (111.2,419.9)
278.3 (170.7, 470.7) 312.3 (139.6, 526.8) 211.2 (126.2, 260.9) 261.7 (123.5, 405.3) 207.9 (108.3,301.0)  245.5 (172.3, 334.4)
Fais 1056.4 (722.0, 1399.0) 1301.3 (1063.7, 1489.8) 836.1 (479.0, 1471.4) 1312.6 (1065.5, 1492.6) 841.7 (482.2, 1299.6) 1237.8
(815.4, 1399.2)
1043.5 (638.6, 1453.7) 1312.0 (1141.2, 1614.4) 810.7 (553.7, 1308.4) 1315.6 (1005.0, 1418.0) 900.0 (658.3, 1460.2) 1325.4
(1061.5, 1547.2)
1049.5 (614.2, 1469.9) 1313.5 (1069.9, 1614.0) 905.2 (739.5, 1245.4) 1287.0 (1108.5, 1368.9) 852.5 (593.2, 1207.6) 1281.6

(1027.8, 1545.3)

ras 149.4 (129.6, 187.4) 159.3 (76.5, 197.8) 121.6 (82.2, 162.2) 155.5 (112.9, 208.3) 104.5 (69.2, 125.8)  130.7 (75.4, 179.4)
168.0 (153.1,201.9)  157.8 (1089, 196.8) 117.3 (54.7, 161.9) 157.2 (80.2, 212.2) 128.6 (89.1, 156.0)  152.1 (94.6, 220.7)
139.2 (87.9, 204.7) 145.9 (90.5, 199.8) 121.6 (71.1, 188.7) 124.7 (81.1, 161.8) 1188 (81.9, 176.5)  148.6 (106.2, 187.6)
Fod 107.1 (74.4, 142.7) 104.5 (42.2, 155.4) 97.9 (41.4, 139.5) 104.7 (74.9, 143.5) 91.4 (453, 112.1) 103.9 (85.9, 129.5)
97.9 32.1, 161.2) 124.8 (94.2, 192.8) 87.1 (30.8, 117.9) 126.8 (71.8, 169.2) 87.5 (60.2, 153.1) 112.4 (753, 155.1)
94.6 (53.9, 146.4) 107.4 (60.5, 132.0) 100.0 (63.1, 121.1) 104.2 (45.4, 140.9) 92.7 (65.0, 126.8) 112.9 (91.3, 158.3)
res 2157 (180.3,292.2)  256.0 (2147,331.0) 1708 (1285,2300) 2588 (176.2, 342.7) 143.9 (65.1, 185.5)  196.9 (158.0, 223.6)

206.7 (93.5, 297.3)
196.0 (105.3, 290.8)

259.1 (151.4,329.2)
216.2 (157.4,299.3)

190.4 (84.7, 288.8)
166.0 (131.6, 215.1)

230.4 (179.1, 335.9)
225.9 (161.6, 281.0)

155.1 (84.1, 257.9)
161.5 (92.6, 251.9)

219.3 (1288, 273.7)
241.7 (196.6, 310.3)

res4 112.9 (83.9, 189.5) 134.9 (81.7, 180.1) 86.4 (33.3, 140.4) 105.0 (52.5, 162.0) 91.2 (57.2, 132.3) 119.2 (89.8, 148.6)
123.8 (78.8, 149.8) 133.1 (81.0, 184.9) 90.6 (58.4, 127.4) 117.8 (89.1, 157.2) 92.8 (80.0, 112.5) 115.6 (71.1, 143.3)

120.7 (63.5, 163.1) 121.4 (60.5, 159.8) 94.4 (53.4, 131.3) 132.5 (80.7, 168.4) 92.3 (45.1, 144.0) 128.8 (52.8, 179.2)

ress 250.0 (174.0, 351.5) 376.2 (281.8,491.5) 218.2(103.7, 317.9) 301.7 (154.3, 445.0) 190.8 (106.4,285.9) 3385 (241.1,418.1)
286.5 (220.8, 336.0) 356.4 (224.6, 473.6) 208.2 (112.5, 332.5) 316.1 (194.6, 443.7) 179.7 (80.9, 310.7) 342.1 (264.2, 420.0)

273.9 (184.2, 387.0) 351.8 (271.0, 443.1) 215.6 (149.6, 336.8) 325.8 (152.3, 398.5) 196.6 (98.8, 269.4) 332.8 (266.5, 399.4)

Feas 164.7 (83.0, 236.4) 190.0 (109.6, 272.5) 120.1 (52.0, 180.9) 184.8 (117.0, 247.4) 122.2 (82.3, 167.6) 145.9 (112.3, 182.1)
159.8 (91.2, 221.1) 181.0 (83.9, 239.5) 1152 (73.3, 167.4) 155.8 (90.9, 259.2) 135.6 (87.0, 192.4) 164.5 (117.2, 223.2)

163.6 (123.8, 241.2) 169.6 (131.3, 264.4)

122.5 (92.8, 187.8)

174.2 (67.9, 248.7) 121.0 (70.1, 176.9) 156.8 (104.1, 205.1)

QTL: quantitative trait locus;

rgi2 (Fgi3: Fgi4 Fgi5): additive genetic correlation between continuous trait T1 and binary trait T2 (T3, T4, T5);

re23 (Mg Fgas Fg3ar Maas: Feas): additive genetic correlations between binary traits T2 and T3 (T2 and T4, T2 and T5, T3 and T4, T3 and T5, T4 and T5);
QTL scenarios: different scenarios with respect to recombination rate between markers and QTL (r) and polymorphism information content (PIC)
of markers with r = 0.00 and PIC = 0.9 in the first line, r = 0.0l and PIC = 0.9 in the second line, and r = 0.00 and PIC = 0.7 in the third line.

For details on datasets Al to C2 see Table 6.

scenario and random sampling of one set of datasets per
population was straightforward, but computationally
expensive. In a preliminary study we therefore tested an
alternative approach, with simulation of one population
per study scenario and repeated random sampling of sets
of datasets from one population. Because results regard-
ing effective sample sizes and biases were not statistically
different under these two approaches (results not shown),
the computationally less expensive approach was chosen
for the main study, i.e. replicate datasets were generated
by repeated random sampling from single multi-genera-
tion populations.

Datasets used for the analyses differed in the number of
animals with trait information, the distribution of ani-
mals with trait information and the availability of marker
genotype information. The simulated pedigree structure

resembled that of the Hanoverian Warmblood horse, and
simulated data resembled the distribution of radiographic
findings in the limbs of young Warmblood riding horses
[18]. The traits of interest were binary, but one continuous
trait was included in the multivariate analyses in order to
improve mixing and convergence of the Gibbs sampler.
Even in the analyses of the smallest datasets burn-in peri-
ods of 5000 to 15000 rounds were mostly sufficient for
the Gibbs chains to converge. However, effective sample
size of heritability of the continuous trait was considera-
bly larger than effective sample sizes of heritabilities and
additive genetic correlations of the binary traits. Effective
sample sizes mentioned in literature for heritabilities of
binary traits and uni- or bivariate animal threshold mod-
els were often in the same order despite larger numbers of
informative animals and longer chain lengths [27-30]. In
a previous simulation study inclusion of a continuous
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Table 3: Mean (minimum, maximum) relative bias of estimated heritabilities for investigated QTL scenarios.

Parameter

Dataset

Al

A2

BI

B2

Cl

C2

h?,

hZ,

hZ;

hz,

hZg

0.061 (-0.013, 0.169)
0.060 (-0.014, 0.165)
0.059 (-0.010, 0.168)
0.068 (-0.321, 0.460)
0.078 (-0.330, 0.490)
-0.134 (-0.414,0.171)
0.013 (-0.218, 0.176)
0.019 (-0.205, 0.167)
0.024 (-0.185, 0.180)
0.160 (-0.143, 0.434)
0.141 (-0.162, 0.390)
0.150 (-0.201, 0.418)
-0.018 (-0.143, 0.088)
-0.010 (-0.156, 0.087)
-0.015 (-0.143, 0.081)

-0.048 (-0.066, -0.021)
-0.048 (-0.065, -0.021)
-0.049 (-0.065, -0.020)
-0.049 (-0.390, 0.101)
-0.031 (-0.365, 0.134)
-0.213 (-0.415, -0.048)
-0.043 (-0.188, 0.106)
-0.039 (-0.180, 0.127)
-0.040 (-0.152, 0.112)
0.073 (-0.164, 0.272)
0.065 (-0.090, 0.273)
0.061 (-0.111,0.273)
0.008 (-0.108, 0.102)
0.007 (-0.099, 0.118)
0.008 (-0.103, 0.113)

0.024 (-0.075, 0.221)
0.025 (-0.071,0.218)
0.026 (-0.063, 0.221)
0.205 (-0.112, 0.733)
0.183 (-0.203, 0.721)
0.070 (-0.288, 0.551)
-0.005 (-0.179, 0.304)
-0.010 (-0.193, 0.326)
-0.006 (-0.193, 0.361)
0.195 (-0.076, 0.566)
0.245 (-0.117, 0.649)
0.235 (-0.099, 0.657)
0.084 (-0.105, 0.358)
0.074 (-0.136, 0.363)
0.090 (-0.108, 0.393)

-0.064 (-0.089, -0.032)
-0.064 (-0.087, -0.033)
-0.064 (-0.089, -0.032)
-0.020 (-0.289, 0.142)
-0.027 (-0.280, 0.118)
-0.161 (-0.336, -0.057)
-0.051 (-0.198, 0.072)
-0.052 (-0.207, 0.070)
-0.041 (-0.179, 0.101)
0.073 (-0.129, 0.243)
0.074 (-0.128, 0.212)
0.090 (-0.151, 0.271)
0.066 (-0.064, 0.156)
0.066 (-0.068, 0.143)
0.067 (-0.059, 0.143)

0.025 (-0.065, 0.210)
0.023 (-0.075, 0.213)
0.024 (-0.071, 0.215)
0.955 (0.599, 1.811)
0.989 (0.511, 1.724)
0.938 (0.361, 1.802)
-0.034 (-0.224, 0.254)
-0.008 (-0.233, 0.348)
-0.013 (-0.224, 0.281)
0.231 (-0.094, 0.558)
0.226 (-0.072, 0.588)
0.241 (-0.124, 0.630)
0.084 (-0.118, 0.392)
0.084 (-0.125, 0.375)
0.095 (-0.097, 0.423)

-0.064 (-0.089, -0.034)
-0.064 (-0.087, -0.034)
-0.064 (-0.089, -0.033)
0.506 (0.233, 0.706)
0.519 (0.208, 0.696)
0.467 (0.219, 0.672)
-0.057 (-0.218, 0.067)
-0.055 (-0.177, 0.049)
-0.045 (-0.178, 0.082)
0.087 (-0.135, 0.238)
0.080 (-0.140, 0.240)
0.078 (-0.131, 0.242)
0.068 (-0.065, 0.147)
0.068 (-0.061, 0.157)
0.066 (-0.071, 0.156)

QTL: quantitative trait locus;

h2,: heritability of the continuous trait T |; h2, (h2;, hZ,, hZ;): heritability of binary trait T2 (T3, T4, T5);

QTL scenarios: different scenarios with respect to recombination rate between markers and QTL (r) and polymorphism information content (PIC)
of markers with r = 0.00 and PIC = 0.9 in the first line, r = 0.01 and PIC = 0.9 in the second line, and r = 0.00 and PIC = 0.7 in the third line.
For details on datasets Al to C2 see Table 6.

Table 4: Mean (minimum, maximum) relative bias of selected additive genetic correlations for investigated QTL scenarios.

Parameter

Dataset

Al

A2

Bl

B2

Cl

Cc2

Fe12

Fe13

rgl4

-0.503
-0.488
-0.331
-0.056

-0.958, 0.040)
-0.925, 0.014)
-0.908, 0.131)
-0.335, 0.360)
-0.060 (-0.320, 0.366)
-0.065 (-0.330, 0.315)
-0.494 (-0.904, 0.026)
-0.484 (-0.916, -0.007)
-0.473 (-0.825, 0.031)
0.127 (-0.598, 0.753)
0.140 (-0.567, 0.760)
0.163 (-0.652, 0.795)

A~~~ e~~~

-0.332 (-0.647, 0.204)
-0.335 (-0.628, 0.215)
-0.198 (-0.575, 0.280)
-0.081 (-0.481, 0.344)
-0.084 (-0.481, 0.328)
-0.081 (-0.488, 0.328)
-0.193 (-0.513, 0.176)
-0.189 (-0.538, 0.153)
-0.187 (-0.533, 0.184)
0.291 (-0.426, 0.657)
0.284 (-0.428, 0.729)
0.286 (-0.412, 0.721)

-0.312 (-0.859, 0.374)
-0.292 (-0.910, 0.304)
-0.261 (-0.954, 0.194)
0.152 (-0.386, 0.543)
0.159 (-0.368, 0.569)
0.158 (-0.398, 0.506)
-0.271 (-0.785, 0.194)
-0.297 (-0.804, 0.122)
-0.284 (-0.814, 0.237)
0.217 (-1.569. 1.366)
0.196 (-1.683, 1.484)
0.232 (-1.616, 1.524)

-0.176 (-0.501, 0.355)
-0.179 (-0.486, 0.356)
-0.120 (-0.479, 0.448)
-0.017 (-0.430, 0.412)
-0.021 (-0.426, 0.432)
-0.028 (-0.442, 0.398)
0.014 (-0.401, 0.462)
0.008 (-0.416, 0.464)
0.006 (-0.413, 0.430)
0.368 (-0.766, 0.881)
0.374 (-0.818, 0.978)
0.365 (-0.858, 0.928)

-0.207 (-0.740, 0.416)
-0.199 (-0.795, 0.336)
-0.247 (-0.936, 0.225)
0.177 (-0.386, 0.581)
0.164 (-0.392, 0.548)
0.159 (-0.382, 0.569)
-0.271 (-0.714, 0.169)
-0.268 (-0.774, 0.210)
-0.289 (-0.831, 0.137)
0.211 (-1.660, 1.532)
0.174 (-1.748, 1.499)
0.154 (-1.624, 1.407)

-0.082 (-0.417, 0.637)
-0.066 (-0.381, 0.624)
-0.101 (-0.447, 0.501)
-0.017 (-0.449, 0.438)
-0.019 (-0.436, 0.404)
-0.021 (-0.440, 0.376)
0.008 (-0.416, 0.410)
0.010 (-0.378, 0.470)
-0.004 (-0.405, 0.456)
0.364 (-0.813, 0.923)
0.369 (-0.834, 1.033)
0.376 (-0.806, 0.960)

QTL: quantitative trait locus;
rgi2 (i3, rz14): additive genetic correlation between continuous trait T1 and binary trait T2 (T3, T4);
rg4s: additive genetic correlations between binary traits T4 and T5;
QTL scenarios: different scenarios with respect to recombination rate between markers and QTL (r) and polymorphism information content (PIC)
of markers with r = 0.00 and PIC = 0.9 in the first line, r = 0.0l and PIC = 0.9 in the second line, and r = 0.00 and PIC = 0.7 in the third line.

For details on datasets Al to C2 see Table 6.
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trait in animal threshold model analyses of binary traits
had a positive effect on convergence, but not on effective
sample size [8]. We found significant dependence of effec-
tive sample sizes on amount and distribution of available
information. Given a certain number of animals with trait
records, effective sample sizes for heritabilities were larger
when animals were from two subsequent generations
instead of one generation. There was no such clear effect
on effective sample sizes for additive genetic correlations.
Despite fixation of residual covariances to zero, effective
sample sizes for additive genetic covariances and correla-
tions were in many cases larger than effective sample sizes
for additive genetic variances and heritabilities of the
binary traits. Results from literature are not consistent in
this respect [31].

Genetic parameter estimates

Bias of genetic parameter estimates is the major argument
against transformation of linear model estimates and in
favor of threshold model analysis of binary traits [e.g.
[1,2]]. Heritabilities of the continuous trait and the mod-
erately heritable binary traits (h2 = 0.25) were over- or
underestimated by maximally 10 percent. If heritability of
the binary trait was lower (h2=0.10) and only phenotype
information was considered, mean bias increased to up to
25 percent over- or underestimation. These values are in
agreement with literature [1,10,32] and clearly smaller
than [2] or similar to [22] reported bias of transformed
linear model estimates. Inclusion of fixed genotype effect
in the model resulted in marked overestimation of herita-
bility of the QTL trait. If trait information was available on
animals in only one generation, upward bias was larger
than 90 percent, indicating failure to reliably estimate her-
itability of the polygenic component. Heritability esti-
mates were close to simulated overall heritabilities. If trait
information was available on animals in two subsequent
generations, i.e. to parents and offspring, upward bias of
polygenic heritability estimates was reduced to about 50
percent.

Bias of additive genetic correlations between continuous
and binary traits was dependent on heritability of the
binary trait, but largely independent of the sign of the sim-
ulated correlation. Low heritability of the binary trait (h?2
= 0.10) resulted in downward bias of continuous-binary
correlation estimates by up to 50 percent, i.e. estimates for
both positive and negative additive genetic correlations
were closer to zero than the simulated values. Estimates
for the positive additive genetic correlation between the
continuous and the moderately heritable binary trait (h?2
= 0.25) were on average less biased, with upward bias of
up to 18 percent in the small datasets and downward bias
of up to 8 percent in the larger datasets. Ranges of biases
were similar for all continuous-binary correlation esti-
mates. Estimates for the positive additive genetic correla-

http://www.biomedcentral.com/1471-2156/8/19

tion between two of the binary traits showed considerable
variation of bias and were on average overestimated by 13
to 38 percent. Variation of bias was larger if information
on animals from only one generation was considered, and
overestimation was larger if information on animals from
two subsequent generations was considered. Underesti-
mation of positive additive genetic correlation between
one continuous trait of moderate heritability (h2 = 0.25)
and binary traits of low heritability (h2=0.05 or 0.10) and
low prevalence (0.05 or 0.15) has been reported previ-
ously [33]. However, in this and a similar study estimates
for positive additive genetic correlation between the two
binary traits were biased downward as well [2,33]. Differ-
ences in simulation parameters and method of analysis
may be responsible for the different results. In contrast
with our study, simulated additive genetic correlations
were all 0.5, residual correlations of 0.3 or 0.2 or -0.2 were
simulated, and analyses were performed in linear animal
model with residual maximum likelihood (REML). Theo-
retically, estimates for additive genetic correlations should
not be affected by violation of assumption of normality
when using linear models for analysis of binary data
[21,34]. However, opposite directions of biases seem to
arise from use of linear and threshold models for estima-
tion of genetic correlations between binary traits.

Amount and structure of data

Amount and structure of available information had little
influence on accuracy of heritability estimates for the con-
tinuous trait and the binary traits of moderate heritability.
Increase of the amount of available information increased
accuracy of heritability estimates for the binary traits of
low heritability and of additive genetic correlation esti-
mates between continuous and binary traits, but also
increased the upward bias of additive genetic correlation
estimates between two binary traits. Influence of quality
of genetic marker information on accuracy of heritability
estimates for the binary QTL trait and additive genetic cor-
relation estimates between the continuous trait and the
binary QTL trait was less distinct. Given high PIC of
genetic markers, estimates were largely unaffected by pres-
ence or absence of recombination between markers and
QTL. Decrease of PIC resulted in lower heritability esti-
mates, i.e. increased negative bias or decreased positive
bias of heritability estimates, and larger range of bias of
heritability estimates for the QTL trait. Estimates of addi-
tive genetic correlations between the continuous trait and
the binary QTL trait were least biased when phenotype
and genotype information was considered, genotype
information included highly informative markers, and
trait information referred to animals from two subsequent
generations. There are no reports of similar investigations
on influences on accuracy of genetic parameter estimates.
Simulated heritabilities and additive genetic correlations
were aligned with results of previous real data analyses
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and kept constant in this study. Furthermore, we simu-
lated only four of the ten additive genetic correlations and
no residual correlations in the multivariate setting of one
continuous and four binary traits. Correlations between
the binary QTL trait and another binary trait were not sim-
ulated. Impact of quality of genetic marker information
on accuracy of additive genetic correlation estimates
between two binary traits, one of which is influenced by
QTL, requires further investigation. Simulation can be
extended by modification of heritability levels, closeness
and sign of genetic correlations and inclusion of more
than one QTL trait. This study documents general feasibil-
ity of combined use of phenotype and genotype data for
estimation of genetic parameters in the horse using multi-
variate mixed linear-threshold animal models and Gibbs
sampling.

Conclusion

It is feasible to perform multivariate estimation of genetic
parameters for categorical, continuous and molecular
genetic data in mixed linear-threshold animal models via
Gibbs sampling using data and pedigree structures similar
to those encountered in the Hanoverian Warmblood
horse. Use of trait information on two subsequent gener-
ations of animals can increase accuracy of parameter esti-
mates more than merely increasing the number of
informative animals from one generation. Impact of dif-
ferent quality of genetic marker information with respect
to recombination rate and PIC was minor in the scenarios
studied. Consideration of marker genotype information
as a fixed effect in the model is likely to result in overesti-
mation of polygenic heritability of a QTL trait, but may be
advantageous for quantification of additive genetic corre-
lations between traits of interest. Improved identification
of agonistic and antagonistic genetic correlations between
traits of interests will facilitate design of effective multiple
trait selection schemes.

Methods

Data simulation

Simulated data, which resembled the situation encoun-
tered in the population of the Hanoverian Warmblood
horse, were used for this study. Characteristics of this pop-
ulation include a high percentage of artificial insemina-
tion and coexistence of many small breeding farms and
few large studs. The number of horses used for breeding is
rather low when compared to the total number of horses,
but data collection for genetic analyses is not limited to
broodmares and sires. We simulated fixed effects, residual
and additive genetic variances for one continuous trait
(T1) and liabilities of four categorical traits (T2 to T5), and
QTL effects for the liability of one of the categorical traits
(T2). Heritabilities were set to 0.50 (T1), 0.25 (T3, T5) and
0.10 (T2, T4). Simulated additive genetic correlations
were positive between T1 and T2 and between T1 and T3

http://www.biomedcentral.com/1471-2156/8/19

(r;=0.20), and negative between T1 and T4 and between
T4 and T5 (1, = -0.20). For T2 two QTL and two flanking
markers per QTL with five randomly distributed and
equally prevalent alleles each were simulated. Linkage
between markers and corresponding QTL was assumed,
with one of the marker alleles being associated with the
unfavorable QTL allele, therewith indicating increased
probability of affection with regard to T2. We assumed
that the closely linked markers and the unfavorable allele
of each of the markers had been identified in previous
association studies, allowing the distinction between indi-
viduals homozygous positive, heterozygous or
homozygous negative for the unfavorable allele of the
respective marker. Only additive effects and no domi-
nance effects were simulated, and total QTL variance was
set equal to the polygenic variance. In order to study the
effects of different quality of QTL information on the esti-
mation of genetic parameters, three scenarios with respect
to recombination rate between markers and QTL (r) and
polymorphism information content (PIC) of markers
were simulated: r = 0.00 and PIC = 0.9 for all markers
(r0p9); r = 0.01 and PIC = 0.9 for all markers (r1p9); r =
0.00 and PIC = 0.7 for all markers (rOp7). In this context,
a recombination rate of 0.01 between a marker and the
QTL will mean that given the unfavorable marker allele,
the QTL allele will be unfavorable with probability p =
0.99. A recombination rate of 0.00 between a marker and
the QTL will mean that given the unfavorable marker
allele, the QTL allele will be unfavorable with probability
p = 1.00. This case is identical with the situation in which
the causal mutation is definitely known. For the categori-
cal traits, simulation of liabilities on the linear scale was
followed by dichotomization in order to obtain trait prev-
alences of 25% (T,, Ts) or 10% (T, T,). Details on the
simulation procedure are summarized in Table 5.

Each of the three simulated populations included 7 gener-
ations and 40000 animals per generation. Samples of
10000 animals were drawn at random from the fourth
generation, and the pedigree of these animals was traced
back over three generations. Within each of ten replicates
which were generated this way, six different datasets were
created for the genetic analyses. Dataset Al included all
10000 animals with records for the continuous trait and
the four binary traits, information on the fixed effects of
sex and contemporary group, and pedigree information
over three generations. Dataset B1 included 5000 animals,
randomly chosen from the animals included in dataset
A1, with respective information on traits, sex, contempo-
rary group and pedigree. Dataset C1 included the same
animals and the same information as dataset B1, and
additional information on the marker genotype of the
animals. Dataset B2 included the same animals as datasets
B1 and C1 plus their parents with information on traits,
sex, contemporary group and pedigree. Dataset C2
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Table 5: Characteristics of the simulated animal populations.

http://www.biomedcentral.com/1471-2156/8/19

Population parameter

Simulated value

Total number of animals

Number of animals per generation

Sex ratio (males : females)

Number of contemporary groups per generation

Number of breeding animals per generation
Number of offspring per dam or sire

Distribution of additive genetic effects

Distribution of residual effects

280000

40000

11

5 (with 2 contemporary groups each represented in 2 subsequent
generations)

9400 (9000 dams/400 sires)

dams: 5

sires: 500 (n = 40) or
150 (n = 160) or

5 (n =200)

a; ~ N(0, 4.8) and a, s~ N(O, 1.0)
with rg, = ry3=0.20 and

Fgi4 = Fgas = -0.20 and

aoffspring =05 (asire + adam) +m
e~ N(0, x)

with x so that h2 = 0.50,
h2,=h%,=0.10, and

h2; = h2; = 0.25
Prevalences of binary traits after dichotomization T,, T 0.25, and
T3 T4 0.10
Number of QTL (T2) 2
Number of genetic marker per QTL 2
Number of alleles per genetic marker 5
Recombination rate between markers and QTL 0.0 or 0.1
PIC of genetic markers 09 o0r0.7
a: random additive genetic effect for trait i (i = |-5); r,;: additive genetic correlation between traits i and j (i = j = 1-5); @ gpring (asirer 2qam): 2dditive
genetic effect of offspring (sire, dam); m: Mendelian sampling term with m ~ N(0, 0.55,,); e: random residual; h%: heritability for traiti (i = 1-5;

overall heritability for trait 2);
QTL: quantitative trait locus; PIC: polymorphism information content.

included the same animals and the same information as
dataset B2, and additional information on the marker
genotype of the animals. Dataset A2 included the same
animals as datasets B2 and C2 plus the additional 5000
animals which were included in dataset A1 with informa-
tion on traits, sex, contemporary group and pedigree. The
average size of paternal halfsib groups ranged between
16.30 and 29.28, and the average size of maternal halfsib
groups ranged between 1.23 and 1.55 among the animals
with trait records in the six datasets. Distribution of trait
and pedigree information in the different datasets used for
the genetic analyses is summarized in Table 6.

Statistical analyses

Genetic parameters were estimated using Gibbs sampling
with the threshold version of the Multiple Trait Gibbs
Sampler for Animal Models (MTGSAM) [35], a software
which supports multivariate genetic analyses of any com-
bination of continuous and categorical traits. Random
and residual effects are assumed to be normally distrib-
uted, and flat priors are used for the fixed effects. The user
can specify starting values and priors for additive genetic
and residual (co)variance matrices. For our analyses, a
starting value of one was chosen for all additive genetic
variances, a starting value of zero was chosen for all addi-
tive genetic covariances, and the residual covariances

between all traits were fixed to zero. In uni- and multivar-
iate binary threshold models identifiability of the model
is ensured by fixing the values for the thresholds and the
residual variances to values of zero and one, respectively
[36]. Methods for effective sampling of the residual covar-
iance matrix subject to the restriction of diagonal ele-
ments fixed at one are still under development. However,
fixation of the residual covariances for this study was jus-
tified by the results of previous real data analyses [14] and
fit our simulated data. Because residual covariances were
negligible in the real data and were accordingly set to zero
in the data simulation, possible gain of further informa-
tion seemed to be disproportionate to the additional costs
of sampling of the residual covariances. Residual covari-
ances were therefore fixed to zero in this study. For the
genetic covariance matrix a proper prior using an inverse
Wishart distribution with minimum shape parameter (i.e.
viw = 7) was adopted in order to ensure posterior propri-
ety. The fixed effects of sex and contemporary group were
considered in all analyses. The fixed effect of marker gen-
otype was considered in the analyses of datasets C1 and
C2 only, distinguishing between individuals homozygous
negative for the unfavorable alleles of all genetic markers,
individuals heterozygous for the unfavorable allele of at
least one of the genetic markers, and individuals
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Table 6: Mean, minimum and maximum of trait and pedigree information in the six datasets generated within each of ten replicates.

Dataset

Population parameter Al A2 Bl, CI B2, C2
Animals, e, 10000 14289 (14236—-14317) 5000 9289 (9236-9317)

Prev, 25.32 (24.78-25.71) 25.62 (25.38-25.87) 25.18 (24.36-25.72) 25.82 (25.24-26.37)

Prevy 9.92 (9.49-10.44) 9.52 (9.18-10.06) 9.87 (9.10-10.44) 9.31 (8.80-9.80)

Prevyy 9.53 (9.09-10.11) 9.81 (9.43-10.06) 9.50 (8.96-10.32) 9.92 (9.55-10.32)

Prevys 26.00 (25.29-26.84) 25.11 (24.37-25.75) 25.91 (24.84-27.08) 24.52 (23.58-25.29)
Animals,, 0 0 BI: 0 B2: 0

C1: 5000 C2: 9289 (9236-9317)

Animals,,, 30642 (30533-30766) 37185 (37028-37292) 19913 (19791-20050) 26457 (26253-26664)
Sires 342 (333-352) 625 (614-634) 287 (273-303) 570 (557-585)
HSG,,. 29.28 (1-352) 22.88 (1-135) 17.43 (1-81) 16.30 (1-81)
Dams 6448 (6403-6489) 10001 (9936—10052) 4002 (3946—4033) 7556 (7483-7619)
HSG, . 1.55 (1-5) 1.43 (1-5) 1.25 (1-5) 1.23 (1-5)

Animals;,.,; number of animals with phenotypic trait records; Prevr, (Prevy;, Prevy,, Prevys): prevalence of binary trait T2 (T3, T4, T5); Animals,,:

number of animals with genetic marker information; Animals,,: total number of animals in the relationship matrix; Sires (Dams): number of sires

(dams) of animals with phenotypic trait records; HSG_,, (HSG,,,,): size of paternal halfsib groups among the animals with phenotypic trait records

pat mat,

homozygous for the unfavorable allele of at least one of  culated for all (co)variance estimates by the times series
the four genetic markers. method implemented in the post-Gibbs analysis program

POSTGIBBSF90 [37] with a thinning rate of ten. Un-
Yijim = # + SEX; + CONT; + a; + ¢;3,,(datasets A1, A2, Bl and  thinned chains were used to calculate posterior means of
B2), and additive genetic (co)variance, heritability and additive

genetic correlation estimates. Posterior means rather than
Yijeim = £ + SEX;+ CONT; + QTLy, + a;+ e;,,(datasets Cl and  modes were chosen as point estimates, because in prelim-
C2), inary analyses the means were in most cases closer to the

true, i.e. simulated, values than the modes, a finding
with ;3 (Vijiam) = observation on trait T1 (continuous) or  which is in agreement with previous studies [8,38]. Bias of

on trait T2, T3, T4 or T5 (binary) for the Ith animal, heritability and additive genetic correlation estimates was
calculated as the mean relative deviation of the estimated

4 = model constant, values (par,,) from the true, i.e. simulated, values (par-
true)'

SEX; = fixed effect of the sex of the animal (i = 1-2),
bias = (parest - parlrue)/ pary.,
CONT; = fixed effect of the contemporary group (j = 1-5
in analyses of datasets A1, B1 and C1; j = 1-8 in analyses =~ The influence of data structure and quality of genetic
of datasets A2, B2 and C2), marker information on ESS and bias was tested via analy-
sis of variance using the procedure GLM of Statistical
QTL, = fixed effect of the QTL marker genotype (n=1-3),  Analysis Systems, (SAS), version 9.1.3 (SAS Institute,
Cary, NC, USA, 2005). Effective sample size or bias were
a,=random additive genetic effect of the Ithanimal (1=1-  considered as dependent variable, and dataset (A1, A2,
30533 to 30766 for dataset A1, 1 = 1-37028 to 37292 for ~ B1, B2, C1, C2) and quality of genetic marker information
dataset A2, 1= 1-19791 to 20050 for datasets Bl and C1,  (r0p9, r1p9, 10p7) were considered as fixed effect.
and | = 1-26253 to 26664 for datasets B2 and C2), and
Authors' contributions
€jim(€ijam) = random residual. KFS designed and carried out the simulation study, and
drafted the manuscript. OD conceived of the study, partic-
The total length of the Gibbs chain was set to 205000 in  ipated in its design, and revised the manuscript. IH partic-
all analyses, and all samples after 5000 rounds of burn-in  ipated in conception and design of the study, coordinated
were saved. Convergence of the Gibbs chain and the need  it, and revised the manuscript. All authors read and
for additional rounds of burn-in to be discarded was  approved the final manuscript.
checked by visual inspection of sample plots. Effective
sample size (ESS) and Monte Carlo error (MCE) was cal-
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