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Abstract
Background: Statistical methods have been proposed recently to analyze longitudinal data in
genetic studies. So far, little attention has been paid to examine the relationship among key factors
in genetic longitudinal studies including power, the number of families or sibships, and the number
of repeated measures per individual subjects.

Results: We proposed a variance component model that extends classic variance component
models for a single quantitative trait to mapping longitudinal traits. Our model includes covariate
effects and allows genetic effects to vary over time. Using our proposed model, we examined the
power, pedigree structures, and sample size through simulation experiments.

Conclusion: Our simulation results provide useful insights into the study design for genetic,
longitudinal studies. For example, collecting a small number of large sibships is much more powerful
than collecting a large number of small sibships or increasing the number of repeated measures,
when the total number of measurements is comparable.

Background
Longitudinal study design has been routinely used to
investigate the etiology and epidemiology of complex dis-
eases, and statistical methods for analyzing longitudinal
data are well established [1]. However, there are limited
applications of longitudinal data in genetic studies.

Province and Rao [2] used path analysis for assessing
familial aggregation in the presence of temporal trends,
although their analysis did not include genetic marker
information. Longitudinal studies have also been used in
a few occasions for twin and adoption studies (e.g., [3-6]).
However, the main purpose of those studies was to assess
the heritability of a trait, instead of mapping candidate
loci.

Using an ad hoc approach, Levy and colleagues [7] con-
ducted a linkage scan of the Framingham Heart Study.
They regress the phenotype against covariates as in a
standard mixed effects model, and then treat the residuals
corresponding to individual measurements as a quantita-
tive trait in standard linkage analysis software such as
SOLAR [8]. More recently, in the Genetic Analysis Work-
shop 13, some participants examined two-step models
and some proposed joint models [9]. The first step in a
two-step model is similar to that of Levy et al. [7] by fitting
an "ordinary" longitudinal model without consideration
for genetic markers or family structures. Then, in the sec-
ond step, linkage analysis is performed on one or more
statistics derived from the first step. While such two-step
methods are practical and simple, they are not ideal. For
example, even if the covariates have additive effects to the
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genetic effects, potential useful information can be lost in
deriving the residuals or some summary statistics. Besides,
the selection among different statistics (e.g., residuals and
averages) to be used in the second stage increases the
number of tests to be performed, which raises the multi-
ple comparison issue. Also importantly, the lack of a well-
defined statistical model directly associating the original
phenotype to the inheritance of the markers makes it
infeasible to conduct formal statistical inference. In fact,
the authors in the Genetic Analysis Workshop 13 [9]
clearly pointed out that a joint approach to simultane-
ously estimating genetic and longitudinal model parame-
ters is appealing, because estimates of genetic and
longitudinal parameters will be mutually adjusted for one
another. Thus, in this report, we consider a joint model
that is related to some of the models described in [9]. Our
main objective is to use our model to examine the rela-
tionship among key factors in genetic longitudinal studies
including power, the number of families or sibships, and
the number of repeated measures per individual subjects.

There is a growing effort to develop mixed effects models
that separate the genetic effect from environmental effects
[10] and that incorporate temporal information [11].
However, those models do not have simple structures to
accommodate genetic and temporal interactions, or to
enable us to assess the longitudinal study design in link-
age analysis. This raises the computational concern and
may limit the analyses that can be performed as pointed
in [9]. Hence, our idea is to use a realistic yet simple vari-
ance component model that can be used to analyze gen-
eral pedigree data such as the Framingham Heart Study
and that allows us to consider age specific genetic effects
and related study design issues. We choose a variance
component model because this type of models is well
established for linkage analysis of quantitative traits (e.g.,
[8,12,13]).

Results
In this section, we report our simulation results to assess
the Type I error rate based on the asymptotic theory, and
the power of our method in detecting linkage. We are par-
ticularly interested in the effectiveness of repeated meas-
ures in improving the power. For example, how do we
determine the most cost-effective number of repeated
measures? The computation was performed by a statistical
software R using our own program, which are available
upon request. We should note that our model and pro-
gram have been used to analyze general pedigree data
such as the Framingham Heart Study (to be reported in a
future report), although our simulation below is focused
on sibships to reduce computational burden. Nuclear
families were simulated, and fully informative markers

with four equally frequent alleles were generated. All
parental alleles were distinguished. For the nuclear fami-
lies, phenotypes were simulated only for the siblings. In
all the simulations, each sib in every nuclear family has 5
measurements taken at different times. The measurement
times were simulated simply as (1, 2, 3, 4, 5). A covariate
was simulated from a uniform distribution between 0 and

1. For clarity, we used f(X, t) = Xβ to generate the data,

where β = (β0, β1, β2)' = (1, 1, 1)' and β0, β1 and β2 are

parameters for the intercept, the time and the simulated
covariate in mean structure. As in related studies [13], we
did not consider dominant effects in the simulation stud-

ies and set ( , ) = (0, 0).

Type I error rates

To evaluate the type 1 error rates of the proposed tests, we
considered two different null models. The first type of null
model assumes that the genetic linkage effect due to the
testing QTL and the polygenic effect are both zero, that is,

( , ) = (0, 0). The second type of null model

assumes there is no genetic linkage effect due to the testing

QTL but there is some polygenic effect and ( , ) =

(0, 1). We also simulated a measurement error from a nor-

mal distribution with the variance σ2 equal to 7 and the
autocorrelation between measurements at two time
points t and u for a sib equals exp(-0.5|t - u|). We consid-
ered in the analysis two choices of s(t): linear [s(t) = s0 +

s1t] and quadratic [s(t) = s0 + s1t + s2t2]. We simulated

5,000 replications of 100 sib pairs.

Likelihood ratio test is used to test the null hypothesis that
the genetic variance due to the testing QTL equals zero (no
linkage).

We use two times the natural logarithm of the likelihood
ratio as the test statistic. Its asymptotic distribution
appears to be a mixture of χ2 distributions [16], but the
degrees of freedom depend on s(t).

When s(t) is constant, the model is equivalent to the tra-
ditional variance-component model since we can con-
sider only one independent parameter, i.e., either s0 or

. In this case, the test statistic asymptotically follows

. For a linear s(t), the asymptotic distribution

of the test statistic appears to be . For a quad-

ratic s(t), the asymptotic distribution of the test statistic
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appears to be . Because we do not have theo-

retical proofs for the asymptotic distributions of the test
statistic, we derived critical values empirically through
simulations.

In practice, we do not know the form of s(t). However, we
can use the backward selection as in regression analysis by
beginning with the quadratic polynomial and testing
whether the coefficients are zero or not. This strategy can
serve as the guide in determining the final form of s(t).

Table 1 presents the empirical type I error rates based on
5,000 simulated replications under two null models. The
rejection rates in the table were obtained by computing
the frequencies at which the null hypotheses were rejected
at the critical values from the stated asymptotic distribu-
tions. Given that we used only 100 sib pairs, the empirical
type I error rates are numerically close to the nominal sig-
nificance levels.

Power comparisons

To compare the power increment from larger sibships, we
considered the scenarios of collecting 200 sib pairs, 400
sib pairs and 200 nuclear families with 4 siblings each so
that we can assess the corresponding effects of the number

of nuclear families, the size of the nuclear families, and
the number of repeated measures on power. We simulated
data from the following three forms of s(t): (a) s(t) = 1 +

0.1t; (b) s(t) = 1; (c) . We also generated

measurement errors from a multivariate normal distribu-

tion with the variance σ2 and the within-subject autocor-

relation exp(-α|t - u|) between measurements at two time
points t and u. To evaluate the power, we conducted a
number of experiments using various genetic models: (a)

( , , σ2, α)' = (2, 1, 7, 0.5)'; (b) ( , , σ2, α)'

= (1, 1, 8, 0.5)'; (c) ( , , σ2, α)' = (0.5, 1, 8.5, 0.5)'.

Note that these four parameters determine the extent of
the overall genetic heritability as well as the heritability
due to a specific locus under consideration.

When presenting our power assessment, we make use of a
generalized heritability measure for longitudinal trait pro-
posed by de Andrade et al. [11]. To incorporate the serial
variance components, we express the polygenic and major
gene heritabilities in our model as

Table 2 displays the polygenic and major gene heritabili-
ties used in our simulation models when different num-
bers of repeated measurements are used.

Regardless of the true form of s(t), in our estimation we
assumed s(t) to be one of the following three forms: s(t) =
s0, s(t)= s0 + s1t, and s(t) = s0 + s1t + s2t2 where s0 is nonneg-
ative, and it may need to be estimated together with s1
and/or s2, depending on the choice. As stated above, one
of the true s(t)'s is the logit function. This is because we
want to know what happens in linkage detection when
s(t) is misspecified.

To understand the gain of power as a result of more
repeated measures, we examined the power using all or
some of the 5 measurements for each sib. We also com-
pared the power from our models with the power of using
traditional variance component (VC) method for a single
measurement. The single measure can be a measurement
at a particular time point or the average of the five meas-
urements for each sib.

1
2

1
22

2
3
2χ χ+

s t
t

t
( )

exp( )

exp( )
=

+1

σa1
2 σa2

2 σa1
2 σa2

2

σa1
2 σa2

2

h

T T

s t
T T

T s t

i i
ai

at
T i i

a i
i

2
2

2

2
1

2
1 2

2 2

1
2

1
2

=

+

+ + + +

∑

∑ =

( )

{ ( )
( )

[ (

σ

σ σ σ )) ( ) exp( | |)]}
,

[ ( )

s t t t

h

s t

a
t t Ti

g

t
T

i

i

′ + − − ′

=

≤ < ′≤

=

∑∑

∑

σ σ α1
2 2

1

2

2
1ii

t t T
a

at
T i i

a

s t s t

s t
T T

i

i

∑ ∑

∑

+ ′

+ +
≤ < ′≤

=

( ) ( )]

{ ( )
( )

1
1

2

2
1

2
1 2

21
2

σ

σ σ ++ + ′ + − − ′
≤ < ′≤
∑∑ T s t s t t ti a

t t Ti i

σ σ σ α2
1

2 2

1

[ ( ) ( ) exp( | |)]}
.

Table 1: Type 1 error rate comparisons based on 5000 
simulations of 100 sib pairs under two different types of null 
models. Null model A is the model simulated under no 
heritability due to the testing QTL and no polygenic heritability. 
Null model B is the model without heritability due to the testing 

QTL but with polygenic heritability h2 and  = 1. The other 

underlying parameters are (β0, β1, β2) = (1, 1, 1), and (σ2, α) = (7, 

0.5). The assumed s(t) is labeled as "i" for s0 + s1t, and "q" for s0 + 

s1t + s2t2.

T h2 Assumed s(t) Significance level

0.05 0.01 0.001

Null model A
5 0.0 l 0.045 0.010 0.0012

q 0.051 0.011 0.0008
4 0.0 l 0.041 0.009 0.0005

q 0.048 0.009 0.0005
2 0.0 l 0.042 0.005 0.0008

q 0.040 0.006 0.0005

Null model B
5 0.190 l 0.040 0.006 0.0006

q 0.053 0.009 0.0014
4 0.174 l 0.041 0.008 0.0004

q 0.052 0.010 0.0006
2 0.141 l 0.040 0.008 0.0008

q 0.038 0.005 0.0006
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Tables 3, 4, and 5 display the power in the experiments as
specified above. To appreciate the incremental gain of
power as the number of repeated measures increases, we
compared the power estimates when we used all or some
of the 5 repeated measurements. As expected, the power
increases as the number of repeated measures and/or the
number of families increase. However, the increment of
power is not uniform, and depends on the significance
level. For example, ascertaining 200 sib pairs with four
repeated measures tends to yield better power than col-
lecting 400 sib pairs with two repeated measures when
there is a gene-time interaction, and vice versa when there
is no gene-time interaction. The information from these
tables underscores the importance to conduct the power
calculation under the specific designs and significance
level in order to choose the most cost effective designs.

Tables 3 and 4 reveal serious loss of power of ignoring a
gene-time interaction. For example, in Table 3 when the
underlying s(t) = 1 + 0.1t, with 5 repeated measures, the
power estimates by ignoring s(t) were 0.77, 0.56, 0.26,
and 0.09, respectively, at significance levels 0.05, 0.01,
0.001, and 0.0001. In contrast, the respective power esti-

mates were increased to 0.90, 0.78, 0.45, and 0.24 when
we estimated s(t) from s0 + s1t. We should also note here
that the fold of increase is more dramatic for a more strin-
gent significance level. On the other hand, is there a loss
of the power if we consider s(t) when there is no time-
dependent genetic effort? Or, broadly, what happens to
the power if the time-dependent effect is misspecified?
Tables 3, 4, and 5 address these questions. As expected,
the power is at its peak when the underlying time trend is
correctly specified. However, even with a misspecified
trend, the test based on our model is more powerful than
the one using a single measure, regardless of whether it
was from a particular age or the average of the same
number of repeated measures. We should note that, from
our experiment, the use of the average of repeated meas-
ures yields more power than the use of a single measure at
a given time point. In other words, without any consider-
ation for the cost and effectiveness, we gain power from
repeated measures even with a simple approach.

Finally, Table 3, 4, and 5 reveal the substantial benefit of
power as a result of ascertaining large pedigrees. Table 5
displays the power of using 200 4-siblings. The power esti-

Table 2: The polygenic and major gene heritabilities (h2 and ) used in our simulation models

( , , σ2, α)

(2, 1, 7, 0.5) (1, 1, 8, 0.5) (0.5, 1, 8.5, 0.5)

T h2 h2 h2

s(t) = 1 + 0.1t
2 0.102 0.272 0.108 0.143 0.111 0.073
3 0.108 0.312 0.117 0.169 0.122 0.088
4 0.113 0.353 0.125 0.196 0.133 0.104
5 0.116 0.392 0.132 0.224 0.143 0.121

s(t) = 1
2 0.110 0.220 0.112 0.112 0.113 0.056
3 0.120 0.240 0.123 0.123 0.125 0.063
4 0.129 0.258 0.135 0.135 0.138 0.069
5 0.138 0.276 0.146 0.146 0.150 0.075

2 0.119 0.155 0.116 0.076 0.115 0.037
3 0.128 0.188 0.128 0.093 0.127 0.047
4 0.137 0.215 0.139 0.109 0.140 0.055
5 0.145 0.239 0.150 0.124 0.152 0.063

traditional VC 0.1 0.2 0.1 0.1 0.1 0.05
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mates using 400 sib pairs is available in Tables 3 and 4.
Clearly, whenever feasible, collecting large sibships are
more effective than collecting more sibships or more
repeats.

Discussion
In this work, we proposed a variance component model to
map candidate genes when the quantitative trait is meas-

ured repeatedly. A notable feature of our model is to
accommodate a potential gene-time interaction. In the
existing literature, longitudinal information on the trait is
sometimes re-processed into a single trait and then the
standard variance component model is applied [7]. Agree-
ing with other authors, we believe it is useful to have a
unified model so that formal statistical inference can be

Table 3: The power comparisons based on 500 replicates. The underlying parameters are (β0, β1, β2) = (1, 1, 1), and ( , , σ2, α) 

= (2, 1, 7, 0.5). The assumed s(t) is labeled as "c" for constant, "l" for s0 + s1t, and "q" for s0 + s1t + s2t2.

200 sib pairs 400 sib pairs

T Assumed 
s(t)

Significance level Significance level

0.05 0.01 0.001 0.0001 0.05 0.01 0.001 0.0001

True s(t) = 1 + 0.1t
5 0.392 c 0.77 0.56 0.26 0.09 0.97 0.84 0.62 0.36

l 0.90 0.78 0.45 0.24 0.99 0.95 0.86 0.74
q 0.86 0.64 0.39 0.19 0.99 0.95 0.84 0.67

4 0.353 c 0.68 0.42 0.16 0.04 0.89 0.72 0.44 0.23
l 0.75 0.52 0.23 0.07 0.95 0.87 0.65 0.47
q 0.66 0.42 0.18 0.04 0.93 0.81 0.59 0.38

2 0.272 c 0.43 0.20 0.04 0.01 0.63 0.40 0.19 0.06
l 0.34 0.16 0.04 0.00 0.59 0.37 0.13 0.04
q 0.20 0.06 0.02 0.00 0.42 0.23 0.07 0.02

5 0.2 * 0.77 0.54 0.2 0.06 0.97 0.83 0.60 0.34
1 0.2 ** 0.33 0.13 0.03 0.01 0.60 0.35 0.06 0.00

True s(t) = 1
5 0.276 c 0.49 0.25 0.07 0.01 0.74 0.48 0.20 0.06

l 0.33 0.15 0.02 0.00 0.60 0.33 0.10 0.03
q 0.19 0.07 0.01 0.00 0.51 0.25 0.09 0.02

4 0.258 c 0.45 0.21 0.05 0.01 0.67 0.42 0.15 0.03
l 0.27 0.11 0.02 0.00 0.60 0.33 0.09 0.01
q 0.16 0.05 0.01 0.00 0.51 0.25 0.05 0.01

2 0.220 c 0.35 0.12 0.02 0.00 0.50 0.24 0.03 0.01
l 0.17 0.03 0.01 0.00 0.32 0.14 0.01 0.01
q 0.08 0.01 0.01 0.00 0.18 0.05 0.01 0.01

5 0.2 * 0.46 0.19 0.04 0.01 0.71 0.46 0.19 0.05
1 0.2 ** 0.25 0.07 0.01 0.00 0.46 0.17 0.03 0.01

True s(t) = exp(t)/(1 + exp(t))
5 0.239 c 0.40 0.15 0.02 0.00 0.59 0.36 0.15 0.03

l 0.42 0.22 0.04 0.00 0.62 0.41 0.14 0.06
q 0.35 0.17 0.03 0.00 0.69 0.48 0.18 0.05

4 0.215 c 0.35 0.15 0.02 0.00 0.51 0.25 0.06 0.01
l 0.37 0.16 0.03 0.01 0.61 0.32 0.11 0.03
q 0.24 0.10 0.02 0.00 0.55 0.31 0.11 0.02

2 0.155 c 0.20 0.04 0.01 0.00 0.33 0.14 0.02 0.00
l 0.22 0.07 0.00 0.00 0.35 0.14 0.03 0.01
q 0.09 0.02 0.00 0.00 0.21 0.06 0.02 0.01

5 0.2 * 0.40 0.14 0.03 0.00 0.52 0.31 0.11 0.03
1 0.2 ** 0.15 0.02 0.01 0.00 0.22 0.10 0.00 0.00

*based on the average measurement; ** based on one measurement.
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performed. This benefit is evident from the simulation
reported here.

We should note that the power is low with the sample
sizes that we considered when the significance level is set
at 0.0001. Since our purpose is to compare the power in
various design settings, the absolute level of power is not
critical. This is purely to reduce the computational time

for our simulation. In practice, if an 80% power is desira-
ble, for example, both the sample size and simulation rep-
lication should be increased. Despite the fact that the
longitudinal study design are very popular in epidemio-
logical and medical research, its use is still limited in link-
age analysis [11]. Here, we only discuss a basic model to
explore the potential of using longitudinal data and to
investigate cost effective designs. Our model is related to,

Table 4: The power comparisons based on 500 replicates. The underlying parameters are (β0, β1, β2) = (1, 1, 1), and ( , , σ2, α) 

= (1, 1, 8, 0.5). The assumed s(t) is labeled as "c" for constant, "l" for s0 + s1t, and "q" for s0 + s1t + s2t2.

200 sib pairs 400 sib pairs

T Assumed s(t) Significance level Significance level

0.05 0.01 0.001 0.0001 0.05 0.01 0.001 0.0001

True s(t) = 1 + 0. 1t
5 0.224 c 0.35 0.12 0.02 0.00 0.59 0.34 0.12 0.02

l 0.41 0.17 0.05 0.01 0.70 0.45 0.19 0.07
q 0.35 0.13 0.03 0.004 0.63 0.38 0.14 0.05

4 0.196 c 0.28 0.09 0.01 0.00 0.47 0.22 0.05 0.01
l 0.30 0.10 0.02 0.00 0.51 0.28 0.06 0.01
q 0.25 0.05 0.02 0.004 0.44 0.24 0.05 0.02

2 0.143 c 0.15 0.02 0.00 0.00 0.30 0.09 0.00 0.00
l 0.12 0.032 0.00 0.00 0.21 0.07 0.01 0.00
q 0.06 0.004 0.00 0.00 0.09 0.02 0.00 0.00

5 0.1 * 0.32 0.11 0.02 0.00 0.53 0.28 0.06 0.01
1 0.1 ** 0.11 0.01 0.00 0.00 0.24 0.07 0.00 0.00

True s(t) = 1
5 0.146 c 0.16 0.04 0.01 0.00 0.28 0.12 0.02 0.00

l 0.11 0.04 0.01 0.00 0.22 0.07 0.01 0.00
q 0.10 0.02 0.00 0.00 0.18 0.06 0.00 0.00

4 0.135 c 0.13 0.03 0.0 0.00 0.28 0.07 0.02 0.00
l 0.09 0.02 0.00 0.00 0.20 0.05 0.00 0.00
q 0.08 0.02 0.00 0.00 0.15 0.03 0.01 0.00

2 0.112 c 0.11 0.02 0.00 0.00 0.19 0.04 0.00 0.00
l 0.09 0.02 0.00 0.00 0.14 0.02 0.00 0.00
q 0.06 0.01 0.00 0.00 0.06 0.00 0.00 0.00

5 0.1 * 0.15 0.03 0.01 0.00 0.26 0.09 0.01 0.01
1 0.1 ** 0.06 0.02 0.00 0.00 0.13 0.01 0.00 0.00

True s(t) = exp(t)/(1 + exp(t))
5 0.124 c 0.15 0.04 0.00 0.00 0.27 0.08 0.014 0.00

l 0.15 0.05 0.01 0.00 0.25 0.10 0.020 0.00
q 0.15 0.03 0.00 0.00 0.20 0.07 0.014 0.00

4 0.109 c 0.13 0.03 0.00 0.00 0.19 0.05 0.00 0.00
l 0.12 0.04 0.01 0.00 0.19 0.08 0.01 0.00
q 0.11 0.02 0.01 0.00 0.18 0.06 0.01 0.00

2 0.076 c 0.08 0.02 0.00 0.00 0.14 0.03 0.00 0.00
l 0.08 0.01 0.01 0.00 0.10 0.02 0.01 0.01
q 0.03 0.01 0.00 0.00 0.06 0.01 0.01 0.00

5 0.1 * 0.14 0.03 0.01 0.00 0.26 0.06 0.01 0.00
1 0.1 ** 0.06 0.01 0.00 0.00 0.10 0.01 0.00 0.00

*based on the average measurement; ** based on one measurement.
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but has a simpler structure than that of de Andrade et al.
[11]. We focus on the time at which the data are collected,
but different study subjects may have data available at dif-
ferent time points from others. We also allow a potentially
general temporal trend to interact with the genetic effect.
In contrast, de Andrade et al. [11] proposed a model that
assumed an individual genetic effect at every time point,
which requires a uniform time schedule for all study sub-
jects. This is a reasonable assumption for some studies
including the Framingham Heart Study, but it may
become restrictive to other studies.

Clearly, many important research issues warrant further
investigation. For example, we need to consider gene-gene
interactions, gene-environment interactions, and more
general forms of gene-time interaction and fixed effects.
Other classic issues including sample selection, ascertain-
ment bias, multiple genes, and imprinting also require
further investigations.

Conclusion
We conducted a number of simulation studies to explore
the increment of power when the number of sibships is
increased, when the number of repeated measures is
increased, and when the size of families is increased.
While we expect that these factors enhance the power,
how they do so is rather intriguing. Our results can pro-
vide useful guidance for designing a genetic, longitudinal
study to balance the cost, feasibility, and power. For exam-
ple, collecting a small number of families with a large sib-
ship is more effective than collecting a comparatively large
number of families with a small sibship. Collecting fewer
families with more repeated measures may or may not
lead to more power than collecting more families with
fewer repeated measures, depending on the underlying
genetic models. In general, however, the relationship
between the power and design is subtle, and depends on
the significance level and obviously the size of genetic
effects. It is wise to conduct appropriate power simula-

Table 5: The power based on 500 replicates of 200 4-sib families. For comparison purpose with the other tables, we consider two 

repeated measures only. The underlying parameters are (β0, β1, β2) = (1, 1, 1) with various settings of ( , , σ2, α). The assumed 

s(t) is labeled as "c" for constant, "l" for s0 + s1t, and "q" for s0 + s1t + s2t2.

( , , σ2, α)
Assumed s(t) Significance level

0.05 0.01 0.001 0.0001

True s(t) = 1 + 0.1t
(2, 1, 7, 0.5) 0.272 c 0.98 0.93 0.77 0.52

l 0.97 0.85 0.71 0.47
q 0.89 0.79 0.56 0.35

(1, 1, 8, 0.5) 0.143 c 0.57 0.35 0.11 0.04
l 0.48 0.26 0.10 0.04
q 0.33 0.16 0.05 0.00

True s(t) = 1
(2, 1, 7, 0.5) 0.220 c 0.91 0.77 0.49 0.25

l 0.84 0.65 0.38 0.13
q 0.72 0.51 0.22 0.08

(1, 1, 8, 0.5) 0.112 c 0.44 0.24 0.06 0.01
l 0.37 0.12 0.03 0.00
q 0.22 0.07 0.01 0.00

True s(t) = exp(t)/(1 + exp(t))
(2, 1, 7, 0.5) 0.155 c 0.66 0.40 0.17 0.06

l 0.65 0.44 0.19 0.07
q 0.53 0.31 0.10 0.05

(1, 1, 8, 0.5) 0.076 c 0.28 0.11 0.02 0.00
l 0.25 0.07 0.01 0.00
q 0.11 0.02 0.01 0.00

σa1
2 σa2

2

σa1
2 σa2

2 hg
2
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tions before a genetic, longitudinal study is carried out so
that the cost, the feasibility, and power can be balanced.
Software can be requested from the authors for such sim-
ulations.

Although our simulations were based on nuclear families,
our model can handle general pedigrees as we have used
it to analyze data from the Framingham Heart Study for
which the pedigree size was, on average, 5 and ranged
from 2 to 29.

Methods
The model and methods
Let y denote a quantitative trait. For convenience, we first
consider one pedigree. By assuming-independence
between pedigrees, it is straightforward to multiply the
likelihood from multiple pedigrees.

Let i refer to the ith member in a pedigree and tij be the
time when the quantitative trait is measured at the jth
occasion, j = 1,...,Ti and i = 1,...,n. Consider the model:

yi(tij) = f(Xi, tij) + s(tij)γi1 + γi2 + ei(tij),  (1)

where f(Xi, tij) is a function of the fixed effect Xi and time
tij, s(tij) a simple parametric function to accommodate
time variant genetic effects, γi1 the random effect for a
major gene, γi2 the random effect for unspecified poly-
genic effects over the genome, and ei(tij) the measurement
error, j = 1,...,Ti and i = 1,...,n. We assume that γi1, γi2, and
ei are independent, although ei(tij), j = 1,...,Ti, has a within-
subject correlation structure that needs to specified on a
case-by-case basis. It follows:

cov(yi(t), yl(u)) = s(t)s(u)cov(γi1, γl1) + cov(γi2, γl2) + δ(i =

l)σ(t, u),

where σ(t, u) is the covariance function for e(t) and e(u)
and δ(i = l) is the identity indicator. In addition, the covari-
ances of γi1 and γi2 can be partitioned into additive and
dominant variances as follows:

and

where k1,il and k2,il represent the k coefficients of [14] for

the probability of members i and l sharing 1 and 2 alleles,
respectively, identity by decent (IBD) at the locus of inter-

est, φ and τ are respectively the expected kinship coeffi-

cient and the expected probability of sharing 2 alleles IBD

over the residual components of the genome,  and

 are respectively the additive and dominant genetic

variances at the locus of interest, and  and  are

respectively the total additive and dominant genetic vari-
ances over the residual components of the genome.

With s(tij) = 1, without f(Xi, tij), and without repeated
measures, model (1) reduces to the standard variance
component model for quantitative traits. Thus, model (1)
is an extension of the standard variance component
model to accommodate the repeated measures with a
structured gene-time interaction. The structured gene-
time interaction distinguishes model (1) from the existing
models (e.g. [11]). Although γi1 does not depend on time,
the manifest of genetic effects over time is accomplished
through s(t). For simplicity, model (1) does not consider
time-varying polygenic effects because there is no interac-
tion term between γi2 and time.

Parameter estimation and hypothesis testing
If we arrange the phenotype in model (1) as

y =

(y1(t11),..., ,...,yi(ti1),..., ,...,yn(tn1),...,

)',  (2)

then its covariance matrix is

Where s(ti) = (s(ti1),..., s(tiTi)', Π = (πil)n × n, K = (k2,il)n × n,

Φ = (φil)n × n, Ω = (τil)n × n,  is a vector of Ti 1's, and E is

a block diagonal matrix,

in which
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For example, if σ(t, u) = σ2e-α|t - u|, we have

In this work, we assume that γi1, γi2, and ei have normal
distributions with mean 0. If the normality is not
assumed, a generalized estimating equation approach can
be adopted. However, we will not explore this approach
here. For clarity, we consider a specific version of model
(1). Namely, let f(Xi, tij) = β0 + tijβ1 + Xi(tij)β2, where β2 is a
p-vector of parameters. In addition, assume that s(t) is a
first-order polynomial function, s(t) = s0 + s1t.

Let

β = (β0, β1, β2)'  (4)

be the vector of fixed effect parameters, and

be the vector of the covariance parameters. We estimate
these parameters through the restricted maximum likeli-
hood (REML) approach introduced by Patterson and
Thompson [15] which takes into account the loss in
degrees of freedom resulting from estimating fixed effects
and avoids the bias in the estimation of covariance param-
eters.

Note that y has a multivariate normal distribution with
mean Aβ and covariance Σ, where

Now, let us consider M independent pedigrees. Let

where y(m), A(m) and Σ(m) are of the forms (2), (6), and (3)
respectively for the mth pedigree, m = 1,...,M.

The REML log likelihood is given by

Maximizing L(β, θ) with respect to β gives

 = (A'Σ-1A)-1 A'Σ-1Y.

Plugging  into the log likelihood, we have

where P = Σ-1(I - A(A'Σ-1A)-1A'Σ-1). The REML estimator for

θ is obtained by maximizing the log-likelihood l(θ). Sub-

stituting the estimator for θ into  gives the REML esti-

mator for β.

Based on the theory on matrix derivatives, we have

,

 and

. Therefore, the first-order partial derivative

of the log likelihood l(θ) with respect to θ gives

and the second-order partial derivative of the log likeli-
hood l(θ) with respect to θ gives
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Denote the matrix of the negative second partial deriva-
tives of l(θ) as

A Newton-Raphson algorithm yields

Iterate until changes in successive estimates of all param-

eters are sufficiently small. Let  be the converged esti-

mate of θ.

If (β*, θ*) is the vector of true parameter values, based on

classical statistical theory, (  - β*,  - θ*) follows asymp-

totically a multivariate normal distribution with mean 0.
And the asymptotical covariance matrix can be estimated

by I-1( , ), where I(β, θ) is the information matrix.

Linkage is tested by a likelihood ratio test by comparing
the likelihood under the alternative hypothesis in which
the genetic variance component due to the testing QTL is
estimated with that under the null hypothesis of the
genetic variance due to the testing QTL being equal to zero
(no linkage). Twice the natural logarithm of the likeli-
hood ratio of these two models may have a complex
asymptotic distribution of a mixture of χ2 distributions
[16] and what kind of asymptotic distribution depends on
how s(t) is defined.
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