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Abstract
Background: The information content of a continuous variable exceeds that of its categorical
counterpart. The parameterization of a model may diminish the benefit of using a continuous
variable. We explored the use of continuous versus discrete environment in variance components
based analyses examining gene × environment interaction in the electrophysiological phenotypes
from the Collaborative Study on the Genetics of Alcoholism.

Results: The parameterization using the continuous environment produced a greater number of
significant gene × environment interactions and lower AICs (Akaike's information criterion). In
these cases, the genetic variance increased with increasing cigarette pack-years, the continuous
environment of interest. This did not, however, result in enhanced LOD scores when linkage
analyses incorporated the gene × continuous environment interaction.

Conclusion: Alternative parameterizations may better represent the functional relationship
between the continuous environment and the genetic variance.

Background
Generally, there is more information when a risk factor is
represented by a continuous variable than a categorical
variable. The resulting gain of analytical power justifies
the increased effort required to collect and use data in
more refined detail, i.e., packs of cigarettes per day versus
smoking status. One exception to this may be the unusual
circumstance in which levels of exposure below the lowest
unit of measurement are sufficient to generate the out-
come of interest. Another instance may be when the
parameterization or constraints of a data analytical tool
offer no benefit from the use of a continuous variable. The
VARCOMP procedure in SAS is an example of the latter

case because it allows only class variables, i.e., variables
that are not continuous [1].

In this article, we examined the 12 continuous traits con-
cerning event-related potentials (ERPs) and the continu-
ous resting potential in the Genetic Analysis Workshop 14
(GAW14) dataset with regard to gene × environment (G ×
E) interaction, with the environmental exposure of inter-
est being cigarette smoking. We considered the dichoto-
mous indicator of habitual smoking (SMOKER), the
continuous cigarette pack-years (CIGSPKY), and smoking
status as a dichotomization of cigarette pack-years.
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We used a variance components model with one parame-
terization that allowed for separate discrete environment-
specific genetic and environmental standard deviations
and a second parameterization that modeled the genetic
standard deviation as a function of the continuous envi-
ronment. The first aim of these analyses was to determine
whether there is G × E interaction. The second aim was,
given G × E interaction, to determine whether incorpora-
tion of the dichotomous or the continuous variable
affected our ability to detect linkage in variance compo-
nents based linkage analyses. Finally, given linkage, we
examined whether this incorporation provided additional
information about the underlying quantitative trait loci
(QTL).

Methods
Data
We obtained data from the Collaborative Study on the
Genetics of Alcoholism (COGA) provided for the
GAW14. Begleiter et al. have previously described the
recruitment of the study participants [2]. Bierut et al. have
previously reported the study design and defined the phe-
notypes of interest [3]. These data contain 13 electrophys-
iological phenotypes: TTTH1-TTTH4, TTDT1-TTDT4,
NTTH1-NTTH4, and ECB21. These phenotypes are ERPs,
i.e., neuroelectric activity generated in response to stimu-
lus, with the exception of ECB21, which is the spontane-
ous electrical activity of the brain of a relaxed subject.
Electrodes attached to the scalp of the subject record the
activity transmitted through a conductive gel. Spatial and
temporal characteristics differentiate the various ERPs.
The data also include the age of the individual at collec-
tion of the ERP data (ERPAGE), which may have occurred
after the initial recruitment. A dichotomous variable,
SMOKER, indicates habitual smoking, defined as smok-
ing a pack or more of cigarettes a day for a period of at
least six months. A related continuous variable, CIGP-
KYRS, is the number of packs of cigarette smoked per day
for one year. We created indicator of any smoking
(SMK_STATUS) by dichotomizing CIGPKYRS into a
group with zero consumption and another with any con-
sumption.

Model parameterization
We parameterized a gene × discrete environment (G × dis-
crete E) variance components model to allow for separate

environmental-specific genetic and environmental SD.
Table 1 specifies the general form of the three possible
covariance matrices for this parameterization. This model
allowed one genetic SD for smokers and another genetic
SD for nonsmokers. Specifically, we tested whether the
genetic SDs were the same in smokers (σxg) and nonsmok-
ers (σyg) and whether the genetic correlation (ρg) between
smokers and nonsmokers differed from 1. When the genes
in both smokers and nonsmokers that influence the trait
comprise identical sets, ρg = 1, whereas when the genes in
smokers and nonsmokers that influence the trait comprise
completely different, nonoverlapping sets of genes, ρg = 0.
In this description, smoker is general for either SMOKER
or SMK_STATUS. Towne et al. [4] describe more fully this
type of variance components model for G × discrete E.

The corresponding parameterization of a gene × continu-
ous environment (G × continuous E) model allowed the
genetic SD (σg) to be a linear function of cigarette pack-
years. This involves two parameters, a genetic SD (σg) that
applies at the mean value of cigarette pack-years and a
slope (β) for change in the natural logarithm of the
genetic SD with cigarette pack-years. Specifically,

σ2
g = exp [α + β(CIGPKYRS - µCIGPKYRS)] (1)

ρg = exp [-λ|CIGPKYRSi - CIGPKYRSj|] (2)

Under this parameterization, the natural logarithm of the
genetic correlation (ρg) decreases linearly with increasing
disparity in CIGPKYRS, such that individuals with the
same CIGPKYRS have ρg = 1 and individuals with increas-
ing differences in CIGPKYRS have decreasing ln(ρg) with
slope -λ. Almasy et al. [5] further described this G × con-
tinuous E model. We tested whether the β was different
from zero by employing a likelihood ratio test with one
degree of freedom for significance testing. Two models,
which differed only in that one was subject to the con-
straint β = 0, generated the likelihoods for this test.

Linkage analysis
We performed whole-genome linkage analyses that incor-
porated a G × E interaction and linkage analyses that did
not incorporate a G × E interaction. For all of the analyses,
we used SOLAR [6]. For the linkage analyses we used the
microsatellite-based genotypes. The measured covariates
included ERPAGE, sex, the square of ERPAGE, the interac-
tion of sex with both ERPAGE and the square of ERPAGE,
and, when incorporating G × E interactions, smoking sta-
tus (SMOKER).

Akaike's Information Criterion (AIC)
For the various models, we calculated AIC [7] and scaled
the trait values by multiplying them by 10 for ease of com-
putation.

Table 1: The general form of covariance matrices for the G × 
discrete E parameterization

Subject i smokes Subject j smokes Covariance Matrix

1 1 Ω = 2 Φ σ2
xg + I σ2

xe
0 0 Ω = 2 Φ σ2

yg + I σ2
ye

1 0 Ω = 2 Φ σxg σyg ρg + I σxe σye
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Results
G × discrete E
We found evidence of a genotype-by-smoking interaction
only for TTTH1, using either SMOKER or SMK_STATUS as
the discrete environment. Table 2 shows the genetic SD
specific to the smoking (x) and to the nonsmoking envi-
ronment (y). Additionally, Table 2 presents the AIC for
the unconstrained model, the model subject to the con-
straint σxg = σyg, and the model subject to the constraint ρg
= 1. Though the differences in AIC between the models
were unimpressive, the models subject to the constraint ρg
= 1 consistently had the lowest AIC, except for the trait
NTTH3, in which it equaled that for the model subject to
the constraint σxg = σyg. For all outcomes, including that of
TTTH1, there was no difference in the source of genetic
effects between the habitual smokers and non-habitual
smokers, i.e., the genetic correlation (ρg) was not statisti-
cally different from 1. When SMK_STATUS was the dis-
crete environment, however, there was evidence that ρg for
TTTH3 and for TTTH4 differed statistically from 1 (p =

0.022 and p = 0.025, respectively), i.e., the sets of genes in
smokers and nonsmokers that influence the trait were not
identical.

Upon performing a linkage analysis without incorporat-
ing the G × discrete E interaction we found a maximum
LOD score of 3.4116 at chromosome 7, 157–158 cM.
Upon incorporating the G × discrete E interaction, for
which SMOKER was the discrete environment of interest,
we found a maximum LOD of 3.6190 at the same loca-
tion. Table 3 contrasts the LOD scores found in the analy-
ses that incorporated the genotype × smoking interaction
versus those that did not.

The genetic SD due to the locus at chromosome 7, 157–
158 cM among smokers was not significantly different
from that of nonsmokers, σqx = 0.338 and σqy = 0.335,
respectively. The difference in residual polygenic effect
among smokers and nonsmokers, σgx = 0.271 and σgy =
0.550, respectively, appears intriguing, but remains statis-

Table 2: Genetic standard deviations specific to the discrete environment, the genetic correlations, and the corresponding AICa

Model AICa

Trait σxg
b σyg

b ρg
c Unconstrained σxg = σyg ρg = 1

CB21 3.8850 3.5510 1.0000 3700.2200 3698.5900 3698.2200
NTTH1 0.2400 0.2080 1.0000 3005.3000 3003.5600 3003.3000
NTTH2 0.4380 0.4080 1.0000 3521.6300 3519.7700 3519.6300
NTTH3 0.5080 0.5010 1.0000 3563.2000 3561.2000 3561.2000
NTTH4 0.4050 0.3470 1.0000 3552.6800 3551.1200 3550.6800
TTDT1 0.3950 0.5060 1.0000 3795.3100 3794.0500 3793.3100
TTDT2 0.5870 0.8050 1.0000 4036.0500 4037.1500 4034.0500
TTDT3 0.7410 0.9570 1.0000 4302.4600 4302.6100 4300.4600
TTDT4 0.8710 1.0390 1.0000 4479.1500 4478.1700 4477.1500
TTTH1 0.463d 0.653d 0.9020 3452.8800 3455.1500 3450.9700
TTTH2 0.7130 0.7360 1.0000 4022.0400 4020.0800 4020.0400
TTTH3 0.7460 0.8060 1.0000 4059.3000 4057.6100 4057.3000
TTTH4 0.6140 0.6420 1.0000 3850.9600 3849.0500 3848.9600

aAIC, Akaike's Information Criteria
bGenetic standard deviation within smokers (x) and nonsmokers (y)
cGenetic correlation between smokers and nonsmokers. None were significantly different from 1, i.e., the sets of genes influencing the traits were 
identical between smokers and nonsmokers.
dp = 0.039

Table 3: Linkage analyses of TTTH1 with and without incorporation of G × discrete E interaction

LOD without
G × E

LOD with
G × E

QTL SD Residual genetic SD

Chromosome cM Smokers Nonsmokers Smokers Nonsmokers

1 212 1.97 2.63 0.32 0.33 0.31 0.56
6 96–97 1.68 2.25 0.40a 0.77a 0.28 0.27
7 157–158 3.40 3.62 0.34 0.34 0.27 0.55

ap = 0.0139
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tically insignificant (p = 0.36). For the locus at chromo-
some 6, 96 cM, there is a statistical difference (p = 0.0139)
between the genetic variation due to the locus among
smokers and that among nonsmokers.

G × continuous E
We found evidence of G × continuous E interaction for
NTTH1, NTTH4, and TTTH4, but not for TTTH1. In each
case, β was positive, indicating that the genetic variance
increased with increasing cigarette pack-years. Table 4
presents the results of these analyses and the AIC for the
unconstrained and constrained models (β = 0). Given that
the likelihood ratio test tested the constraint, it is consist-
ent that the cases in which β was significantly different
from zero resulted in a lower AIC for the unconstrained
model. The linkage analyses with the G × continuous E
interaction did not improve the LOD scores. The AIC from
the models with the continuous parameterizations were
lower than those from the corresponding models with the
discrete parameterizations.

Conclusion
These analyses suggest that the parameterization using the
continuous environment seems to be a better choice as
more results of G × E investigations were significant for
the continuous environment and the resulting AIC were
lower. Whether this parameterization conveys greater
power, however, is unknown. Further, as indicated by the
linkage analyses, implementation of this parameteriza-
tion may be sensitive to the particular functional relation-
ship of the environment to the genetic variance. In
particular, alternative parameterizations, such as
described by Diego et al. [8], may provide directions for
further exploration.
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