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Abstract
The Genetic Analysis Workshop 14 simulated data presents an interesting, challenging, and
plausible example of a complex disease interaction in a dataset. This paper summarizes the ease of
detection for each of the simulated Kofendrerd Personality Disorder (KPD) genes across all of the
replicates for five standard linkage statistics. Using the KPD affection status, we have analyzed the
microsatellite markers flanking each of the disease genes, plus an additional 2 markers that were
not linked to any of the disease loci. All markers were analyzed using the following two-point
linkage methods: 1) a MMLS, which is a standard admixture LOD score maximized over θ, α, and
mode of inheritance, 2) a MLS calculated by GENEHUNTER, 3) the Kong and Cox LOD score as
computed by MERLIN, 4) a MOD score (standard heterogeneity LOD maximized over θ, α, and a
grid of genetic model parameters), and 5) the PPL, a Bayesian statistic that directly measures the
strength of evidence for linkage to a marker. All of the major loci (D1–D4) were detectable with
varying probabilities in the different populations. However, the modifier genes (D5 and D6) were
difficult to detect, with similar distributions under the null and alternative across populations and
statistics. The pooling of the four datasets in each replicate (n = 350 pedigrees) greatly improved
the chance of detecting the major genes using all five methods, but failed to increase the chance to
detect D5 and D6.

Background
In this study we used the simulated the Genetic Analysis
Workshop 14 (GAW14) data using the Kofendrerd Per-
sonality Disorder (KPD) affection status as our pheno-
type. We did this with full knowledge of the generating
model. We chose to examine the performance of the sta-
tistics by comparing markers flanking a known disease
gene location to a pair of markers from a chromosome
containing no disease genes. Our data consist of 13 mark-

ers: two markers flanking D1, D3, D4, D5, and D6, a sin-
gle marker flanking D2 (because it falls at the end of
chromosome 3), and our arbitrarily chosen unlinked
markers, D04S128 and D04S129, which we refer to as
markers flanking unlinked locus U1. We analyzed the
data from all 100 replicates in each of the four popula-
tions as well as creating a pooled dataset of 350 pedigrees
created by combining the data from all four populations.
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Methods
MMLS
The first statistic we examined was the maximized maxi-
mum LOD score (MMLS) [1-3] that is a standard admix-
ture heterogeneity LOD score (HLOD) maximized over θ,
α, and mode of inheritance (dominant/recessive). MMLS
scores were computed using MLIP [4]. For both the dom-
inant and the recessive model the penetrance for an indi-
vidual not carrying any disease alleles was set to 1% while
the penetrance for genetically affected individuals was set
to 80%. The risk allele frequency assumed was 1% under
the dominant model and 10% under the recessive model.

Note that this differs from the MMLS reported in Hodge et
al. [2], in which homogeneity and different genetic model
parameters were assumed.

MLS
Risch's maximum LOD score statistics (MLS scores) [5,6]
were computed using GENEHUNTER [7], allowing for
dominance variance. GENEHUNTER was run, discarding
the unaffected individuals. A max-bits setting of 24 was
used for all datasets except for replicate 43 of the NY data,
which would not finish unless the max-bits was set to 22.
All pairs were used with unequal weight to reflect the

Table 1: Mean/max for AI, DA, KY, NY, and combined populations

MMLS MLS KCLS MOD PPL PPL-p PPL-seq

AI
D1 1.526/5.636 0.708/3.812 0.816/4.040 2.111/5.731 16.8%/98.2%
D2 2.815/8.440 2.210/6.241 2.034/6.600 3.693/9.152 43.3%/100.0%
D3 1.584/6.188 1.438/4.843 1.510/5.560 2.469/6.945 19.6%/99.8%
D4 1.775/6.904 1.339/5.198 1.194/5.380 2.500/7.044 19.2%/99.8%
D5 0.244/1.696 0.145/1.626 0.044/2.200 0.698/2.526 1.9%/14.4%
D6 0.238/1.636 0.122/1.407 0.013/2.280 0.646/2.609 1.8%/14.7%
U1 0.190/1.509 0.084/1.195 -0.037/1.230 0.575/2.419 1.6%/6.8%

DA
D1 3.698/10.740 2.722/6.993 3.044/7.510 5.005/12.670 71.7%/100.0%
D2 3.156/8.144 3.159/8.106 3.367/8.190 4.673/10.480 64.6%/100.0%
D3 0.482/3.429 0.370/3.568 0.318/2.500 0.956/4.455 2.9%/68.0%
D4 0.451/2.830 0.382/2.869 0.291/4.160 0.914/4.565 3.1%/78.6%
D5 0.349/3.948 0.274/3.025 0.230/3.700 0.790/4.522 3.0%/79.3%
D6 0.256/2.258 0.109/1.298 -0.047/1.210 0.627/2.991 1.9%/18.8%
U1 0.243/1.928 0.128/1.211 0.017/1.190 0.616/2.277 1.6%/5.7%

KA
D1 0.849/5.454 0.477/3.493 0.445/3.020 1.452/7.427 6.9%/99.7%
D2 2.136/5.953 1.694/5.267 1.539/4.350 2.812/7.775 27.6%/99.9%
D3 2.345/6.894 2.390/6.770 2.520/7.020 3.550/8.210 41.7%/99.9%
D4 3.418/10.510 2.606/7.270 2.244/6.320 4.523/11.660 51.1%/100.0%
D5 0.388/2.475 0.212/1.482 0.143/1.640 0.820/3.563 2.3%/24.0%
D6 0.276/1.972 0.160/2.080 0.031/1.850 0.638/3.094 1.9%/17.3%
U1 0.238/1.891 0.148/1.322 0.016/1.410 0.615/2.654 1.8%/14.2%

NY
D1 1.076/5.906 0.311/2.224 0.485/3.170 1.932/6.002 11.4%/99.4%
D2 3.087/8.396 1.504/6.281 1.762/5.430 4.487/9.694 56.0/100.0%
D3 1.269/3.673 0.564/3.109 0.990/4.400 2.357/6.068 14.5%/98.5%
D4 0.928/3.107 0.401/2.319 0.376/2.480 1.689/4.632 4.4%/50.5%
D5 0.244/2.148 0.080/0.976 0.004/1.340 0.751/3.225 1.4%/9.1%
D6 0.270/2.213 0.119/1.694 0.065/0.950 0.812/2.804 1.6%/5.4%
U1 0.357/3.573 0.123/1.680 0.069/1.710 0.967/5.684 2.0%/32.3%

Combined
D1 4.797/11.940 2.565/9.668 3.344/11.880 6.105/12.370 82.3%/100.0% 88.9%/100.0%
D2 9.090/15.970 7.288/13.270 7.695/15.380 12.010/21.710 99.9%/100.0% 99.17%/

100.0%
D3 3.596/8.239 3.337/7.933 4.052/9.480 5.826/13.320 79.6%/100.0% 76.4%/100.0%
D4 4.347/11.150 3.101/8.215 2.976/11.430 5.648/12.730 68.8%/100.0% 70.6%/100.0%
D5 0.373/2.364 0.272/3.381 0.229/4.600 0.940/4.699 1.9%/60.0% 2.4%/77.0%
D6 0.313/2.298 0.148/1.676 0.042/1.580 0.849/3.102 1.6%/24.6% 1.3%/21.7%
U1 0.289/2.187 0.129/1.120 0.022/1.320 0.824/3.555 1.5%/28.4% 1.2%/25.8%
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appropriate per-pedigree influence. Note that GENE-
HUNTER estimates the identical-by-descent (IBD) sharing
under the triangle constraint.

Kong and Cox LOD scores
Two-point Kong and Cox LOD scores (KCLS) [8], were
computed using MERLIN's [9] single-point option. A
max-bits setting of 50 was used, which caused 26 pedi-
grees (across all replicates) to be dropped from the analy-
sis. Specifically, 22 replicates of the NY dataset had one
pedigree that exceeded 50 bits and two replicates of the
NY dataset had two pedigrees which exceeded 50 bits. No
replicates had more than two pedigrees that exceeded 50
bits.

PPL
We examined the performance of a Bayesian statistic, the
posterior probability of linkage (PPL) [10-13]. The PPL

directly measures the probability that a disease gene is
linked to a particular marker (or genomic location in the
multipoint case). The PPL incorporates an unknown
genetic model by placing priors on the elements of the
genetic model and integrating them out of the likelihood
[14-16]. We present the results for the PPL in the com-
bined dataset in two ways. First, the PPL-p, which is sim-
ply the PPL computed for the entire dataset, and second,
the PPL-seq, which is the PPL computed for the entire
dataset by sequentially updating across all 4 populations,
using the posterior distribution of the recombination frac-
tion, θ, from one analysis as the prior distribution for the
next analysis.

MOD
Finally, we present the results of the MOD [17] score,
which is a standard admixture LOD score (HLOD) maxi-
mized over θ, the proportion of linked pedigrees (α), and

Table 2: P for AI, DA, KA, NY and combined populations

MMLS MLS KCLS MOD PPL PPL-p PPL-seq

AI
D1 60%a 30% 40% 54% 57%
D2 78% 76% 72% 75% 77%
D3 61% 70% 69% 62% 65%
D4 70% 67% 55% 67% 68%
D5 2% 3% 3% 2% 4%
D6 2% 1% 2% 1% 3%

DA
D1 97% 98% 98% 99% 100%
D2 76% 89% 90% 89% 90%
D3 4% 8% 10% 10% 15%
D4 6% 13%a 7% 11% 11%
D5 4% 7% 7% 6% 6%
D6 2% 2% 1% 4% 5%

KA
D1 20%a 16% 15% 20% 16%
D2 54% 58% 49% 48% 45%
D3 77% 93% 89% 88% 83%
D4 89% 89% 83% 93% 86%
D5 4% 4% 1% 4% 3%
D6 1% 2% 3% 1% 1%

NY
D1 6% 2% 8% 3% 15%
D2 32% 31% 43% 25% 61%
D3 4% 7% 28% 2% 24%
D4 0% 6% 10% 0% 2%
D5 0%a 0% 0% 0% 0%
D6 0% 1% 0% 0% 0%

Combined
D1 97% 95% 98% 97% 96% 100%
D2 100%a 100% 100% 100% 100% 100%
D3 90% 99% 100% 97% 95% 98%
D4 91% 99% 97% 92% 89% 95%
D5 1% 5% 2% 1% 1% 4%
D6 1% 2% 1% 0% 0% 0%

aBold text indicates the method receiving the highest score at each population/locus.
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the genetic model parameters. The MOD scores were com-
puted using MLIP and were maximized over the same set
of model parameters used to compute the PPL. Of course,
maximizing over a larger portion of the space will result in
MOD scores that are greater than MMLS scores for both
the linked and unlinked markers.

Results
The mean and maximum scores for flanking markers at
each disease locus and each of the methods for each of the
populations and the pooled data are contained in Table 1.
In the interest of space, both flanking markers have been
pooled into a single score for each disease locus (mean/
max are across both replicates and flanking markers)
except in the case of disease locus 2, which had only a sin-
gle flanking marker.

In general, MMLS and MOD scores are larger than MLS
and KCLS scores. However, the MMLS and MOD scores
were also higher for the unlinked locus than the other two
methods, so that the increase in score does not necessarily
indicate an increase in power. Nonetheless, there are a few
things that can be determined from Table 1. While disease
loci 1–4 are relatively easy to identify, the results for loci
5 and 6 do not deviate far from their behavior under the
null. Additionally, the means varied as a function of the
population for each dataset. Pooling the data greatly
increased the mean scores for the linked loci. This
occurred despite the fact that the underlying disease
mechanism varied widely from locus to locus.

Table 2 presents the value of P, which we define as the per-
centage of replicates in which the maximum score for one
of the flanking markers exceeded the maximum value
received under the null distribution, once again across
replicates. P represents a rough approximation to the
chance that each marker would be detected by a 0.01 size
test (except for the D2 case for which P would be conserv-
ative). The method receiving the highest score at each
population/locus is indicated in bold font in the tables.
Perhaps surprisingly, there is no clear winner when the
performance of these statistics were compared in this way.
As indicated by the means, D5 and D6 were particularly
difficult to detect, with no statistic/dataset combination
able to achieve a P greater than 7%.

Conclusion
We have compared the performance of five statistics, the
MMLS, the MLS, the KCLS, the MOD, and the PPL, by
examining markers flanking the known disease locations
in the GAW14 simulated data. By computing P, which is
an empirical measure of the power, we are able to com-
pare statistics that have different scales. We find that none
of the statistics emerges a clear victor, with different statis-
tics having greater power depending on which disease

locus and population were examined. However, it is sur-
prising that the MMLS and MOD score, which make use
of the entire pedigree structure (as opposed to the MLS,
which uses only affected sib pairs, and KCLS, which uses
affected relative pairs), and whose scores were calculated
without any trimming or dropping of large pedigrees,
were not able to utilize this information to their advan-
tage in the NY population, where the sample consists of
extended pedigrees. This is due to the high values of these
statistics obtained under the null. The PPL performs better
in the NY dataset, using data from the entire pedigree,
without a similar inflation of null values. D1–D4 appear
detectable, with maximum scores in the range that would
indicate linkage. However, values of P were surprisingly
low for these loci, especially since the maximum values
under the null, presented in Table 1, would scarcely be
considered adequate to conclude linkage. Pooling the
samples for D1–D4 increased power to the range where
linkage was consistently detectable, despite the fact that
variation in the diagnostic schemes causes the genetic
model to differ from dataset to dataset. Loci D5 and D6
were not readily detectable in any of the populations or in
the pooled data.
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