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Abstract
Background: Approximately 800,000 primarily feral dogs live on the small island of Bali. To
analyze the genetic diversity in this population, forty samples were collected at random from dogs
in the Denpasar, Bali region and tested using 31 polymorphic microsatellites. Australian dingoes and
28 American Kennel Club breeds were compared to the Bali Street Dog (BSD) for allelic diversity,
heterozygosities, F-statistics, GST estimates, Nei's DA distance and phylogenetic relationships.

Results: The BSD proved to be the most heterogeneous, exhibiting 239 of the 366 total alleles
observed across all groups and breeds and had an observed heterozygosity of 0.692. Thirteen
private alleles were observed in the BSD with an additional three alleles observed only in the BSD
and the Australian dingo. The BSD was related most closely to the Chow Chow with a FST of 0.088
and also with high bootstrap support to the Australian dingo and Akita in the phylogenetic analysis.

Conclusions: This preliminary study into the diversity and relationship of the BSD to other
domestic and feral dog populations shows the BSD to be highly heterogeneous and related to
populations of East Asian origin. These results indicate that a viable and diverse population of dogs
existed on the island of Bali prior to its geographic isolation approximately 12,000 years ago and
has been little influenced by domesticated European dogs since that time.

Background
Bali, a province of the Republic of Indonesia, is an island
just 87 km from north to south and 142 km from east to
west and home to more than 2.9 million people [1].
Approximately 800,000 stray dogs (Fig. 1) also live on the
island based on a survey conducted by the Bali Street Dog
Foundation (personal communication). Only a small per-
centage of these dogs live in homes or are provided rou-
tine veterinary care [2].

More than 90% of the residents of Bali are Hindu [3] with
myth and ritual playing a vital part of daily life [1]. The
dog is also an important part of Balinese life and mythol-
ogy. A popular tale from the Mahabharata [4] describes
King Yudisthira's journey to Heaven's Gate, and his love
for a dog that befriended him on his arduous and tragic
journey (Fig. 2). As a direct result of such mythology,
BSDs are treated with a degree of reverence and are often
provided ceremonial food offerings [2]. The deliberate
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killing of street dogs is not typically practiced, because
Balinese people believe that all things should be allowed
to die naturally [2]. These cultural mores have contributed
to the current overpopulation of dogs on the island.

As a result of overpopulation, many BSDs suffer from
chronic skin diseases, internal parasites, parvo- and dis-
temper-virus infections, and malnutrition. In an effort to
reduce the dog population and to care for their medical
needs, the Bali Street Dog Foundation (Yayasan Yudis-
thira Swarga) was founded in 1998 [2]. They provide
emergency care, treatment for skin disease and parasites,
sterilization, public education on the plight of feral dogs,
and improved veterinarian training. Twenty to 30 dogs are
sterilized each day, with more than 9,000 dogs sterilized
to date.

The BSD population is of interest for both its genetic
diversity and historical relationships. It is also a popula-
tion that has bred more or less randomly for thousands of
years with limited genetic influx, due mainly to geo-
graphic barriers and a strict rabies control program in
effect since 1926. The present study is concerned with the
genetic diversity of this unique canine population and its
relationship to other canine subpopulations in Asia and
throughout the world. Data presented herein was derived
from the DNA testing of 40 BSD samples from the Den-
pasar city region of Bali with 31 polymorphic microsatel-
lite loci. The genetic diversity of the BSD was compared to
that of the Australian dingo and 28 American Kennel Club
(AKC) breeds.

Results
Locus diversity
Analysis of locus diversity across all 30 subpopulations
revealed that the number of observed alleles ranged from
six to 20 with a total of 366 for all loci (Table 1). Overall
heterozygosity of the loci was high, with an average of
0.779, and all but four loci having HT values greater than
0.700. Average HS was 0.577 for the 30 subpopulations,
with all but three loci having HS values greater than 0.500.
The HS and HT values were closest for C23.123 and far-
thest for C22.279 and C10.404. HWE analysis revealed
that all but one locus had at least one population out of
equilibrium for the 30 populations sampled. C01.424,
C31.646 and CPH16 had 7 populations out of HWE and
AHT130 did not have any populations with p values
below 0.05. The level of locus diversity attributable to sub-
population structure was evaluated with two statistics –
RST and FST. Both statistics gave similar average values at
0.230 and 0.236 respectively. However, RST ranged from
0.098 to 0.486 while FST ranged from 0.179 to 0.328.

Typical Balinese street dogsFigure 1
Typical Balinese street dogs. Their phenotypic appearance is 
similar to that described for randomly breeding feral dog 
subpopulations in other parts of the world.

The Story of Yudisthira [4]Figure 2
The Story of Yudisthira [4].
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Bali street dog diversity
Overall, the BSD was the most genetically diverse popula-
tion surveyed here, displaying 239 total alleles out of the
366 seen in all 30 subpopulations or 65.3% of the total
observed alleles (Table 2). The Australian dingo displayed
144 alleles and the AKC breeds displayed 138.8 on aver-
age. Analysis of expected (HE) and observed (HO) hetero-
zygosities (Table 2) revealed that the BSD had a 44.0%
higher HE than the Australian dingo (0.736 vs. 0.511) and
a 28.4% higher HE than the average AKC breed (0.573).
HO was also highest in the BSD at 0.692, versus 0.426 in
the Australian dingo and 0.563 in the average AKC breed.

In order to evaluate the bias of sampling twice the number
of BSDs, twenty samples were taken at random from the

total pool of 40 for bootstrap determinations, and the
number of observed alleles, HE, and HO were calculated.
This process was repeated for 10,000 iterations and the
average value for each measurement was determined. The
average bootstrap value for the number of observed alleles
for 20 BSDs was 214.6. The average bootstrapped HE and
HO values for the BSD were 0.727 and 0.692 respectively.

To understand the loss of approximately 24 observed alle-
les after bootstrapping, the allele frequencies for the BSD
at each locus was examined. While the BSD had the high-
est number of alleles, they also had the highest number of
alleles with a frequency below 5% (67 out of 239, data not
shown).

Table 1: Observed number of alleles, average total heterozygosity (HT), average subpopulation heterozygosity (HS), number of 
populations out of HWE, average p values, RST, FST, RST/FSTratio, GSTand pairwise FSTvalues for 31 loci.

BSD Pairwise FST by 
Locus

Chr. Num. 
Observed 

Alleles

HT HS Num. 
Loci with 
p value 
<0.05

Average p 
value

RST FST RST/FST × Dingo × Chow

CPH16 CFA20 11 0.829 0.610 7 0.407 0.098 0.233 0.420 0.005 0.132
C08.618 CFA08 9 0.744 0.553 4 0.481 0.148 0.229 0.646 0.071 0.185
FH2001 CFA23 13 0.791 0.593 4 0.433 0.167 0.225 0.741 0.083 0.100
C20.446 CFA20 10 0.729 0.553 3 0.541 0.173 0.215 0.804 0.123 0.105
C01.424 CFA01 9 0.716 0.476 7 0.475 0.258 0.320 0.807 0.125 0.110
CPH02 CFA32 9 0.693 0.520 4 0.499 0.194 0.223 0.871 0.148 0.066
FH2004 CFA11 18 0.809 0.611 3 0.522 0.187 0.214 0.873 0.057 0.060
AHT137 CFA11 14 0.861 0.672 2 0.427 0.176 0.197 0.893 0.064 0.188
C03.877 CFA03 12 0.730 0.509 1 0.524 0.268 0.275 0.977 0.244 0.114
C06.636 CFA06 12 0.652 0.483 6 0.435 0.233 0.237 0.982 0.069 0.024
AHT121 CFA13 18 0.865 0.632 1 0.511 0.255 0.251 1.016 0.098 0.063
VIASD10 CFA07 9 0.759 0.555 2 0.525 0.249 0.233 1.066 0.268 0.030
C31.646 CFA31 14 0.814 0.566 7 0.410 0.301 0.281 1.075 0.088 0.036
RVC1 CFA15 9 0.774 0.569 4 0.458 0.270 0.242 1.119 0.355 0.216
LEI002 CFA27 11 0.737 0.551 4 0.534 0.259 0.229 1.127 0.107 0.149
LEI004 CFA37 13 0.667 0.509 4 0.510 0.246 0.219 1.128 0.133 0.051
C28.176 CFA28 10 0.735 0.546 6 0.400 0.270 0.234 1.152 0.249 0.013
C22.279 CFA22 11 0.836 0.529 2 0.441 0.262 0.214 1.226 0.201 0.109
PEZ02 Unlinked 12 0.762 0.600 1 0.567 0.232 0.187 1.242 0.134 0.027
FH2054 CFA12 10 0.848 0.654 4 0.524 0.251 0.199 1.261 0.055 0.069
C23.123 CFA23 8 0.766 0.636 4 0.402 0.351 0.278 1.263 0.110 0.002
CPH08 CFA19 11 0.765 0.582 4 0.465 0.284 0.222 1.276 0.082 0.056
C14.866 CFA14 10 0.840 0.604 3 0.473 0.330 0.255 1.293 0.180 0.112
PEZ08 CFA17 17 0.859 0.684 5 0.465 0.235 0.179 1.312 0.121 0.079
AHT130 CFA18 11 0.829 0.614 0 0.539 0.313 0.235 1.331 0.116 0.105
AHT111 CFA02 11 0.785 0.582 4 0.371 0.348 0.246 1.414 0.214 0.006
C10.404 CFA10 13 0.865 0.558 3 0.526 0.486 0.328 1.479 0.177 0.160
C09.250 CFA09 10 0.830 0.582 1 0.491 0.412 0.272 1.513 0.016 0.042
FH2140 CFA05 20 0.795 0.621 2 0.560 0.297 0.192 1.546 0.119 0.072
AHT139 CFA15 6 0.664 0.508 4 0.452 0.330 0.206 1.604 0.085 0.078
CPH03 CFA06 15 0.815 0.612 2 0.526 0.394 0.229 1.724 0.017 0.180
All 366 0.779 0.577 108 0.481 0.230 0.236 1.135 0.126 0.088
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FIS estimates were calculated to assess the level of inbreed-
ing for each subpopulation (Table 2). The BSD had the
lowest value at 0.097 and the Australian dingo had the
highest at 0.194 with the average of AKC breeds at 0.137.

Private alleles
Allele frequency analysis also revealed that 10 private alle-
les were observed in the BSD as well as three alleles shared
only with the Australian dingo (Table 3). The majority of
private alleles in the BSD were below 5% in frequency
with the exception of AHT121 where the private alleles
had a combined frequency of 18.75%. The BSD and the
Australian dingo also shared three alleles not seen in any
AKC breed at locus C10.404 with a combined frequency
of 16.25% in the BSD and 75% in the Australian dingo.

Asian alleles
Several additional unique alleles were found only in the
BSD, Australian dingo, Chow Chow and Akita; demon-
strating a closer relationship of the BSD to Asian versus
non-Asian dogs (data not shown). Appearing at the high-

est frequency was allele 201 of locus CPH08 in the BSD,
Australian dingo and Chow Chow at frequencies of
21.3%, 10% and 20%, respectively. Further, the BSD, Aus-
tralian dingo, Chow Chow and Akita share allele 113 of
locus C22.279 at frequencies of 23.8%, 67.5%, 15% and
5%, respectively. Results for locus PEZ08 demonstrate a
lack of influence of European alleles where a high fre-
quency of deviations from n+4 alleles were observed in
the AKC breeds sampled yet no deviation from n+4 alleles
was observed in the BSD or the Australian dingo.

A pairwise FST analysis was performed for each locus
between the BSD and the two closest subpopulations: the
Australian dingo and Chow Chow (Table 1). The BSD was
most similar to the Australian dingo at locus CPH16 with
a FST of 0.005 and to the Chow Chow at locus C23.123
with a FST of 0.002. The BSD was most dissimilar to the
Australian dingo and Chow Chow at locus RVC1 with a
FST of 0.355 and 0.216 respectively. Several loci had simi-
lar distances for both population pairs, such as locus
C01.424 or locus C20.446 and may indicate areas of the

Table 2: Total number of alleles (NA) observed, range of the lowest and highest number of observed alleles per locus, expected 
heterozygosity (HE), observed heterozygosity (HO), FIS, number of loci out of HWE and average p values for all 31 loci for the BSD, a 
bootstrapped sampling of the BSD, the Australian dingo, the American Kennel Club breeds and for all subpopulations.

NA Observed NA Range HE HO FIS Num. Loci with 
p value <0.05

Average p value

Bali Street Dog 239 3 – 14 0.736 0.692 0.097 4 0.357
Bali Street 
Dog20

214.6 --- 0.727 0.692 --- --- ---

Australian dingo 144 2 – 9 0.511 0.426 0.194 12 0.284
AKC Breeds 138.8 2.2 – 7.8 0.573 0.563 0.137 3.29 0.492
All Populations 366 6 – 20 0.577 0.562 0.136 3.60 0.492

Table 3: Private alleles for the BSD and Australian dingo subpopulations relative to the 28 comparison AKC breeds.

Locus Allele Pop Freq. Pop Freq.

AHT111 92 BSD 0.013
AHT121 82 BSD 0.075
AHT121 90 BSD 0.113
C06.636 158 BSD 0.013
C10.404 168 BSD 0.038 Dingo 0.075
C10.404 170 BSD 0.063 Dingo 0.450
C10.404 172 BSD 0.063 Dingo 0.225
C10.404 174 BSD 0.038
C23.123 154 BSD 0.013
FH2140 160 BSD 0.013
FH2140 171 BSD 0.025
PEZ02 144 BSD 0.013
VIASD10 94 BSD 0.013
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Table 4: Nei's DA distance (lower triangle) and mean FSTestimates (upper triangle) between each pair of 9 dog subpopulations 
represented graphically in Figure 3.
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genome that are neutral to either environmental or
human selection.

Genetic distance relationships
Further distance analysis was performed for all 31 loci
between all 30 subpopulations using both Nei's DA dis-
tance and pairwise FST estimates (Table 4). Across all loci,
the BSD shared allele frequencies most closely with the
Chow Chow (DA = 0.242, FST = 0.088) and the Australian
dingo (DA = 0.242, FST = 0.126), and least closely with the
Airedale Terrier (DA = 0.454, FST = 0.258).

Genetic distance relationships amongst the five Asian sub-
populations were further explored using neighbor-joining
dendograms with four non-Asian subpopulations for
comparison (Fig. 3). The BSD, Chow Chow, Australian
dingo and Akita clustered together in 90% of the trees. The
BSD, Chow Chow and Australian dingo further clustered
in 87% of the trees. The BSD and Australian dingo main-
tained their relationship within the larger cluster in 84%
of the trees. In the remainder of the tree, the Rhodesian
Ridgeback, Greyhound, Airedale Terrier and Borzoi main-
tained a relationship in 51% of the trees and the Airedale
Terrier/Borzoi cluster was seen in 63% of the trees. The
Pug did not maintain a relationship with any other breed

in this analysis, but was intermediate to the Asian and
non-Asian subpopulations.

Discussion
Population diversity
Microsatellites have been previously used to assess genetic
diversity and relationships in feral dog subpopulations
[6,7]. Kim et al. [6] found that HO was high in three feral
dog subpopulations of Korea, Sakhalin and Taiwan, rang-
ing from 0.539 in the Taiwanese to 0.717 in the Korean
dogs. Given that the loci used in that study had an average
allele number of 7.75, these values are similar to the HO
of 0.692 observed in the BSD. Wilton et al. [7] surveyed a
population of Australian dingoes and found an average
HO of 0.387 using microsatellites with an average allele
number of 6.93, similar to the HO of 0.426 for the Austral-
ian dingoes reported herein with an average allele number
of 11.8.

Given the size of the island of Bali, it is extraordinary that
800,000 feral dogs can thrive and maintain such high lev-
els of genetic diversity. Of all the subpopulations surveyed
here, the BSD has the highest number of observed alleles,
the highest heterozygosity, the fewest number of loci out
of Hardy-Weinberg equilibrium and the lowest FIS. Even
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Table 4: Nei's DA distance (lower triangle) and mean FSTestimates (upper triangle) between each pair of 9 dog subpopulations 
represented graphically in Figure 3. (Continued)
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a. Unrooted neighbor-joining dendogram showing the genetic relationships among 9 dog subpopulations based on DA genetic distanceFigure 3
a. Unrooted neighbor-joining dendogram showing the genetic relationships among 9 dog subpopulations based on DA genetic 
distance. b. Rooted neighbor-joining dendogram showing the genetic relationships among 9 dog subpopulations based on DA 
genetic distance. In both versions of the dendogram the Pug did not cluster with any population but is placed intermediate 
between the Asian and non-Asian subpopulations.
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after adjusting for sample size, the BSD maintains their
status as the most heterogeneous population in the study.
Unlike the Australian dingo which exhibits a much lower
level of diversity, the BSD findings suggest either a large
founding population on Bali and/or a consistent genetic
influx since the geographic isolation of ~12,000 years ago.
This data also supports that the BSD appears to approxi-
mate a randomly breeding population with little selection
pressure.

When comparing the heterogeneity of the BSD to that
observed within the AKC breeds some caveats should be
addressed. One may initially expect long established,
well-defined dog breeds to be much less heterogeneous
than reported here. While some breeds do have a low HE,
such as the Boxer with a HE of 0.320, breeds like the Jack
Russell Terrier have a high HE of 0.713 and overall their HE
is higher than that of the dingo. Of first note, the selection
of the dogs that contribute to a breed composition mostly
occurs prior to official breed recognition primarily by
genetic drift due to geographic isolation and selection for
particular working or physical characteristics. After official
breed recognition future breeding choices are based pri-
marily on the availability of sires and dams that approxi-
mate the breed standard. As a result, there is a founding
population that proceeds to breed mostly by convenience.
Also, many breed standards have changed considerably
over the years resulting in retention of a certain level of
diversity within each breed, some breeds retaining much
more than others. Finally, dogs comprising the compari-
son AKC breeds were sampled from across the United
States, removing any geographical bias of the genotypes
observed and slightly elevating the heterozygosities.

Locus diversity
The average allelic diversity of the loci used in the present
study was 11.8 alleles per locus, versus 7.75 in the Kim et
al work [6]. However, the average number of alleles
observed is 4.6 among the subpopulations in the present
study and the average HT is 0.577. The average values for
the 11 subpopulations surveyed in the Kim et al [6] work
were 4.34 and 0.547, respectively. The higher total allelic
diversity in the present study is likely due to the fact that
nearly three times more subpopulations were studied.

RST and FST values were nearly identical across all subpop-
ulations and all loci, indicating that approximately 23%
of the differences observed in allele frequencies can be
attributed to differences between subpopulations. FST pro-
vides an unbiased estimate of genetic drift between sub-
populations by comparing alleles identical by state. RST
takes advantage of the stepwise mutation model, which
assumes that mutations most often occur as whole repeat
unit losses or gains from the original allele size. As a
result, the number of mutations provides an estimate of

time from divergence. It is interesting, therefore, to com-
pare RST and FST values by locus. Eighteen of the 31 loci
studied have an RST to FST ratio greater than 1.1 (Table 1)
indicating that the populations have been separated for a
sufficient amount of time for mutations to impact genetic
structure. An interesting exception is observed at CPH16
where the ratio is 0.420. CPH16 may have a mutation pat-
tern where both stepwise additions and subtractions
occur at equal and high frequency. Of note, the average
pairwise RST value between the BSD and each of the 29
comparison subpopulations is 0.056 at locus CPH16. The
highest RST to FST ratio occurs at locus CPH03 with a value
of 1.724. Interestingly, the BSD and the Australian dingo
have a pairwise RST value of 0.017 at CPH03, whereas the
average value of the BSD compared to the other 28 sub-
populations has a value of 0.254. The distance between
the BSD and the Australian dingo at CPH03 may support
that those two populations were isolated most recently
from each other relative to the other 28 subpopulations.

Bali street dog origin
The origin of the people of Bali is clouded by myth and a
scarcity of archeological findings. Therefore, the origin of
the dog on Bali is also speculative. Nonetheless, a hypoth-
esis can be formed based on known human and dog his-
tories. Current evidence points to an early migration of
humans from Africa through Indonesia and into Australia
approximately 60,000 to 70,000 years ago [8,9]. Recent
excavations have also revealed that there was a great
expansion into Indonesia from China between 4,000 and
5,000 years ago that could have contributed to a popula-
tion pre-existing on Bali [1]. Supportive evidence that
Indonesia was populated prior to 5,000 years ago is a
higher degree of heterogeneity in the Indonesian popula-
tion than seen in the North Asian population, suggesting
that the Indonesia was populated earlier than regions to
the North [10]. The "Slow Boat Model" for the peopling
of Polynesia also suggests a prolonged mixing of South-
east Asians with Indonesians, which predated migration
to the East [11]. In short, Indonesia appears to be a
human genetic melting pot with genetic influences over
tens of thousands of years.

The dog on the island of Bali may also be a parallel
"canine genetic melting pot." While the domestication
date of the dog is in much dispute [12], approximately
14,000 years ago is accepted as a late date. During the ear-
liest human migrations through Indonesia however, it is
highly possible that wolf packs or feral dogs traveled the
same routes, establishing a feral population on Bali in the
process. Even if humans were not capable of taming the
dog at that time, dogs could still have benefited from close
proximity to humans. Figure 4 shows a superimposition
of the proposed geographic origin for five Asian and four
non-Asian dog subpopulations presented herein and the
Page 8 of 13
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major theorized human migration routes. It is noteworthy
that the BSD, Chow Chow and Australian dingo, related
breeds by genetic analysis, all share one proposed human
migration route.

If a feral dog population was established on the island of
Bali more than 14,000 years ago, then that population
became isolated approximately 10,000 years ago when
the sea levels drastically rose, submerging the land bridges
of the Indonesia archipelago [13]. Geographic isolation
was unlikely to have been absolute; genetic diversity of the
BSD was invariably enhanced at various times by the
influx of new dogs. At the time humans migrated to Indo-

nesia from China, dogs were known to be domesticated
and undoubtedly accompanied people as companions
[17]. Mitochondrial DNA sequencing evidence suggests
that the dingo was introduced into Australia about that
time from the Indonesian archipelago [15,8,9]. Bali's doc-
umented history of repeated war and trade spanning the
last 2,000 years [1,16,17] represents actions that are often
associated with the introduction of new animals. Indeed,
a somewhat free movement of dogs probably occurred up
to 1926, when the import of dogs to Bali was greatly cur-
tailed as a means to prevent the introduction of rabies [5].
This policy greatly reduced, though not eliminated, new
outside introductions of new dogs to the island. In con-

Human migration patterns proposed in "Tracing the road down under" [8], a summary of the Modern human origins: Australian perspectives conference at the University of New South Wales, September 2003 with locations of origin for 5 Asian and 4 non-Asian dog subpopulationsFigure 4
Human migration patterns proposed in "Tracing the road down under" [8], a summary of the Modern human origins: Australian 
perspectives conference at the University of New South Wales, September 2003 with locations of origin for 5 Asian and 4 non-
Asian dog subpopulations.
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trast to the Australian dingo population, which appears to
have undergone a severe population bottleneck or
founder effect based on microsatellite alleles and mtDNA
[18], the BSD population maintains a high level of genetic
variation. There is no evidence for a genetic bottleneck or
small founding population for the BSD.

The relatedness of the BSD to the Australian dingo and the
Chow Chow is evidenced by common unique alleles and
allele frequencies despite the very different levels of
genetic diversity between the subpopulations. According
to the hypothesis presented herein, one could imagine
that feral dog subpopulations were established through-
out Indonesia with much mixing until ~12,000 years ago.
At that time, each population became closed with little
influx of new genetic material until humans migrated
south from Asia between 4,000 and 5,000 years ago. The
degree of influx since that period would have been influ-
enced by the frequency of trade and conflict, factors
determined by accessibility, available natural resources,
and political structure. The island of Bali is historically a
less visited island than it's neighbor Java and therefore the
indigenous dog population would have been subjected to
less influence.

Conclusions
This study into the diversity and relationship of the BSD
to other domestic and feral dog populations shows the
BSD to be highly diverse and related to populations of
East Asian origin. These results indicate that a viable and
diverse population of dogs existed on the island of Bali
prior to its geographic isolation approximately 12,000
years ago and has been little influenced by domesticated
European dogs since that time. It would be of interest to
study feral subpopulations on other islands in the archi-
pelago to determine if the same level of diversity is
observed elsewhere, or if the situation on Bali is truly
unique. Y-chromosome, mitochondrial and MHC marker
typing on the BSD, as well as feral dogs from other
regions, would help to determine if indeed dogs followed
the same migration routes as their likely human
companions.

Methods
Animal selection
BSDs were randomly captured and taken to a BSD Foun-
dation field clinic for treatment or sterilization and simul-
taneously sampled for DNA collection with buccal swabs.
Familial relationships of the BSDs sampled could not be
easily determined; therefore the sample population was
doubled (40 vs. 19–20 samples) over that of other study
groups. Blood samples from the Australian dingo were
taken from captive animals in Australia. Australian din-
goes were known to be unrelated by at least one
generation.

Dogs from 28 American Kennel Club (AKC) breeds,
equally representing the AKC group designations, were
sampled with buccal swabs for a previous study [19].
Twenty dogs were tested for each breed, with the excep-
tion of two breeds (Doberman Pinscher and the Border
Collie) that comprised 19 individuals. The 28 breeds
included were: Airedale Terrier, Akita, American Eskimo,
Australian Shepherd, Belgian Tervuren, Bernese Mountain
Dog, Border Collie, Borzoi, Boxer, Brittany, Bull Terrier,
Bulldog, Chow Chow, Doberman Pinscher, Golden
Retriever, Greyhound, Jack Russell Terrier, Keeshond, Lab-
rador Retriever, Miniature Bull Terrier, Norwegian
Elkhound, Papillon, Pembroke Welsh Corgi, Pomeranian,
Pug, Rhodesian Ridgeback, Weimaraner, and Yorkshire
Terrier. Dogs within each breed were unrelated by at least
one generation.

Marker selection
Thirty-one of the 100 microsatellites multiplexed into 12
PCRs by the Veterinary Genetics Laboratory [20] had been
previously used to evaluate the Australian dingo samples
(unpublished data). For comparison purposes, those
same 31 microsatellites were selected for use in the
present study. All markers but one (PEZ02) were mapped
on either the 1999 canine genetic linkage map [21] or the
Radiation hybrid map [22]. Loci selected for study repre-
sented 25 of the 38 autosomes of the dog, with five auto-
somes represented by two loci. The average distance for
the markers on chromosomes CFA06, CFA11, CFA20 and
CFA23 is 23.5 cM and 23.4 Mb between AHT139 and
RVC1 on CFA15. As a result, only 25 loci are known to be
unlinked. PEZ02 has not been mapped and may be linked
to a marker in the study.

Forward primers were synthesized and dye labeled with
either Fam, Hex or Vic, or Tamra or Ned (Applied Biosys-
tems, Inc. (ABI), Foster City, CA). Reverse primers were
synthesized by Operon (Alameda, CA). Primer sequences
and concentrations for all markers are available as Addi-
tional file 1.

Sample preparation and PCR conditions
BSD and AKC breed DNA was derived from buccal cells
harvested from the inside of the cheek with nylon bristle
cytology brushes (Medical Packaging Corp., Camarillo,
CA). Samples were collected by owners or field volunteers
and submitted directly to the laboratory. DNA was
extracted by heating a single swab for 10 min at 95°C in
400 µl 50 mM NaOH and then neutralized with 140 µl 1
M Tris-HCl, pH 8.0. Australian dingo DNA was extracted
from blood using a standard sodium hydroxide digest.

A 2 µl aliquot of extract was used in each PCR which
equates to approximately 50 ng DNA. All markers and
DNAs were amplified with a PCR reagent mix of 1X PCR
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buffer (ABI), 4.17 mM MgCl2, 200 µM of each dNTP
(Hoffmann-La Roche Inc, Nutley, NJ), 0.6 unit AmpliTaq
(ABI), and 2% DMSO (Sigma) then covered with 15 ul
Chill-out™ Liquid Wax (MJ Research, Inc., Waltham, MA)
to prevent evaporation. One of five thermal cycler pro-
grams was used for each primer mix ranging from 56° to
64° degrees for the annealing temperature. All PCR work
was done in polycarbonate 96-well v-bottom microtiter
plates (USA Scientific, Ocala, FL) on MJ Research PTC-100
thermal cyclers (MJ Research, Inc., Waltham, MA). Proto-
cols are also available in Additional 1.

Gel electrophoresis conditions and DNA fragment analysis
One µl aliquots of PCR product were mixed with 2 µl Flu-
orescent Ladder (CXR) 60–400 (Promega 400) or Internal
Lane Standard 600 (Promega 600) (Promega, Madison,
WI) fluorescent size standard, denatured on MJ Research
PTC-100 thermal cyclers for three minutes at 95°C, then
held at 5°C or placed on ice for at least one minute before
gel loading. Two µl aliquots were then loaded onto a 6%
denaturing polyacrylamide gel and run on an ABI 377
Automated Sequencer using ABI 10" × 7 1/8" short plates
(12 cm). Gels were run at 1.10 kV (constant) voltage, 60.0
mA current, 200 W power, 51°C and 40.0 mW (constant)
laser power for up to 2 hours when using Promega 400,
and up to 3 hours using Promega 600. DNA fragment
analysis was performed with in-house designed STRand
software [23], which replaces ABI Genotyper and
Genescan software. This data was then transferred to an
in-house database compatible with the STRand software.

Statistical analysis
Allelic diversity and observed heterozygosities (HO) were
determined by direct counting for each of the 30 subpop-
ulations. Hardy-Weinberg equilibrium (HWE) tests were
performed using Genepop version 3.4 [24]. Pairwise FST
estimates and subpopulation expected heterozygosities
(HE) for the 30 breeds or dog groups were performed
using Genepop version 3.4 [24]. FIS estimates (inbreeding
coefficient of each subpopulation) for each allele follow-
ing Weir and Cockerham [25] were calculated using Gene-
pop version 3.4 and are presented as averages across all
loci.

Gene diversity or total population heterozygosity (HT)
and its associated parameters, HS (average heterozygosity
among subpopulations) and GST (coefficient of genetic
differentiation), were calculated across all loci using the
public domain software, DISPAN [26]. Two additional
measures of variance, FST [25] and RST [27,28] were calcu-
lated using Genepop version 3.4. A pairwise genetic dis-
tance matrix using Nei's DA distance was also created
using DISPAN with bootstrapping. Genotype data for all
populations is available in Additional file 2.

Phylogenetic tree construction
Allele frequencies were used to compute a matrix of
genetic distances [29], which were then used to construct
a phylogenetic tree of relationships among 5 Asian and 4
non-Asian dog subpopulations. Takezaki's [30] POPTREE
program was used to create a neighbor joining tree using
DA distances with 1000 bootstrap replications. The out-
put of POPTREE was then converted to the New Hamp-
shire format for editing in the stand alone program
TREEVIEW version 1.6.6 [31] and bootstrap values were
added.
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PG: Pug

RR: Rhodesian Ridgeback
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