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Abstract
Background: Detection and evaluation of population stratification are crucial issues in the conduct
of genetic association studies. Statistical approaches useful for understanding these issues have been
proposed; these methods rely on information gained from genotyping sets of markers that reflect
population ancestry. Before using these methods, a set of markers informative for differentiating
population genetic substructure (PGS) is necessary. We have previously evaluated the performance
of a Bayesian clustering method implemented in the software STRUCTURE in detecting PGS with
a particular informative marker set. In this study, we implemented a likelihood based method (LBM)
in evaluating the informativeness of the same selected marker panel, with respect to assessing
potential for stratification in samples of European Americans (EAs) and African Americans (AAs),
that are known to be admixed. LBM calculates the probability of a set of genotypes based on
observations in a reference population with known specific allele frequencies for each marker,
assuming Hardy Weinberg equilibrium (HWE) for each marker and linkage equilibrium among
markers.

Results: In EAs, the assignment accuracy by LBM exceeded 99% using the most efficient marker
FY, and reached perfect assignment accuracy using the 10 most efficient markers excluding FY. In
AAs, the assignment accuracy reached 96.4% using FY, and >95% when using at least the 9 most
efficient markers. The comparison of the observed and reference allele frequencies (which were
derived from previous publications and public databases) shows that allele frequencies observed in
EAs matched the reference group more accurately than allele frequencies observed in AAs. As a
result, the LBM performed better in EAs than AAs, as might be expected given the dependence of
LBMs on prior knowledge of allele frequencies. Performance was not dependent on sample size.

Conclusion: The performance of the LBM depends on the efficiency and number of markers, and
depends greatly on how representative the available reference allele frequencies are for those of
the population being assigned. This method is of value when the parental population is known and
relevant allele frequencies are available.
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Background
Population stratification is a crucial issue in conducting
genetic association studies, in particular, for case-control
study designs, such that if it is not accounted for study
results could be invalid – either false positive or false neg-
ative [1]. Methods to address the issue have been pro-
posed [2-17]. Before using these methods, an informative
set of markers is necessary; this is known as a set of ances-
try informative markers (AIMs). In this study, we imple-
mented a likelihood based method (LBM), as an
alternative to popular Bayesian methods such as that
implemented in STRUCTURE [3,13], and used it to evalu-
ate the informativeness of a selected marker panel and to
assess potential for stratification in a sample of European

Americans (EAs) and African Americans (AAs) that are
known to be admixed.

Likelihood-based methods (LBMs) provide a framework
for assignment of individuals to specific populations
based on observed allele frequencies in AIMs. LBMs for
the classification of individuals into subgroups can be
implemented by calculating the probability of a marker
genotype profile (i.e., a set of genotypes) based on obser-
vations in a reference population with known specific
allele frequencies for each marker ("training frequen-
cies"), assuming Hardy Weinberg equilibrium (HWE) for
each marker and linkage equilibrium among markers
[18]. The LBM method is also called an "assignment test"

Marker efficiency in terms of the metric δFigure 1
Marker efficiency in terms of the metric δ. (1) Comparison of delta between for AAs and EAs as observed in our sample, 
and as reported in the prior literature: δstudy-AA-EA versus δreference-study-EA (red triangle) or δreference-study-AA (blue dot). (2) Ratio for 
deltas for each marker (AA/EA) as observed in our sample compared to the prior literature: δstudy-AA-EA versus the ratio of δrefer-

ence-study-AA to δreference-study-EA.
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and is widely applied in molecular ecology and animal
forensics for identifying population genetic substructures
for animals or plants [18-24]. Research on the assignment
test or LBM has not yet focused on the performance of the
test or of specific markers in differentiating the PGS in
human subjects. In theory, LBM may be better for proba-
bilistic classification of individuals to subpopulations, if
certain conditions are met. The most important of these
conditions is availability of an accurate set of training fre-
quencies. Obviously, this method may be applicable only
if the populations from which the sample to be classified
are already known or can be determined. This condition
can be met in most situations; for example, the AA popu-
lation is well known to have principally African and Euro-
pean American ancestry.

In the present study, we compared the performance of
LBMs to that of the popular Bayesian approach used by
the software program STRUCTURE. We predicted that, if
the conditions for successful LBM application are met,
LBMs would be more efficient that Bayesian methods for
population group assignment, because they make use of
more information (i.e., known ancestral population allele
frequencies, which are provided a priori rather than
inferred from the data presented to the program).

Results
We calculated the measure of marker efficiency by the
metric δ for each marker. (Note that δ as defined here is

different from that defined in Rosenberg et al. 2003 [25]).
We designated δstudy-AA-EA as the measure of marker effi-
ciency between EA and AA in our study populations, and
δreference-study-EA or δreference-study-AA as the quantitative differ-
ence in efficiency between marker characteristics as they
were reported previously, and as we observed them in the
study populations. We observed that the maximum δstudy-

AA-EA was 0.82, for the marker FY, and the minimum δstudy-

AA-EA was 0.15. The mean was 0.32 and median was 0.28.
Larger observed δstudy-AA-EA corresponded to greater marker
efficiency for differentiating the EA and AA study popula-
tions. Furthermore, smaller values of the δreference-study
(including δreference-study-EA or δreference-study-AA) indicate that
the marker as observed is more similar to the marker as
described in the reference (and therefore the reported
allele frequencies were relatively accurate for LBM train-
ing). For markers with higher values of this measure, since
they did not match the training frequencies as well, their
utility in practice was reduced. An efficient classification
marker would be one with bigger δstudy-AA-EA and smaller
δreference-study when the reference allele frequencies are used
for training for the LBM. Figure 1 shows the relationship
of these three δ measures; the straight line in the Figure
1(1) indicates the equality of δstudy-AA-EA and δreference-study.
Thus, Figure 1(1) illustrates that the majority of the mark-
ers have δstudy-AA-EA > δreference-study, and Figure 1(2) shows
the ratio of δreference-study-AA to δreference-study-EA with a horizon-
tal line specifying δreference-study-AA = δreference-study-EA. (Twenty-
two of 36 markers studied (61%) are above the horizontal

Assignment accuracy by LBMFigure 2
Assignment accuracy by LBM. Assignment accuracy by LBM. The markers are adding one by one either by δ descending or 
ascending. Assignment accuracy without FY, the most efficient marker in the panel studied, was also evaluated.
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line, which indicates that they are less representative (of
prior reports) for AAs than for EAs. This reduced corre-
spondence of the observed AA allele frequency compared
to the prior reports relative to our observations in EA pop-
ulations, also causes decreased assignment accuracy in
AAs compared to EA – in fact, the assignment accuracy in
AAs never reaches 100%. Even with imperfect training fre-
quencies, the LBM using the selected makers to classify
individuals into subpopulations still performed very well,
with average assignment accuracy of 96.8% and 99.9% for
AA and EA respectively.) These results illustrate, further,
that the selected marker panel is a relatively informative
marker set in differentiating between EAs and AAs.

Assignment accuracy
In order to ascertain the smallest sufficient marker set and
identify how many makers are needed to reach reasonable
assignment accuracy, we took the approach of selecting
markers by marker efficiency, as we did previously in eval-
uating the Bayesian method [1]. The relative assignment
accuracy was evaluated by adding markers one-by-one up
to 36 markers, with the order of δ either descending or
ascending; the results are shown in Figure 2 (This result by
LBM can be compared with results from STRUCTURE in
Yang et al. 2005 [1]; cf. Figure 3, p. 308). FY was the most
informative marker, and due to its unique value in distin-
guishing the EA and AA populations under study, we per-

formed analyses separately either including or excluding
this marker.

In EAs (Figure 2, (1)), the assignment accuracy by LBM
exceeded 99% using the most efficient marker FY, and
reached 100% using the 10 most efficient markers exclud-
ing FY (when FY was excluded, the assignment accuracy
using the next most efficient marker D11S936 dropped by
9%). In contrast, it would take 29 markers to reach >99%
assignment accuracy when the least efficient markers are
selected or the seven most efficient markers are omitted.
In AAs (Figure 2, (2)), the assignment accuracy reached
96.4% using FY, and then the assignment accuracy
changed inconsistently as more markers were added up to
21 markers, at which point assignment accuracy stabilized
at 97.6%, achieving the maximum of 98.8% when all 36
markers were used. Overall, using LBM, it can exceed 95%
when using at least the 9 most efficient markers. When FY
was excluded, the assignment accuracy dropped by 38%.

This 38% drop, which reflects the difference in accuracy
between the most efficient marker, FY, and the second
most efficient one, D11S936, was further investigated by
a corresponding analysis in which the study sample was
randomly split into two groups and one group was treated
as a reference sample. The drop declined to 6%, which was
more comparable to the 9% in EAs. Thus, this reduced

Assignment accuracy by LBM for Split samplesFigure 3
Assignment accuracy by LBM for Split samples. Assignment accuracy by LBM for Split samples. Split samples were used 
to evaluate the impact of reference group of allele frequencies on the assignment accuracy by LBM.
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accuracy was in large part attributable to mismatch
between reported training allele frequencies and frequen-
cies that are more representative of our Northeastern US
AA population. LBM never reaches perfect assignment
accuracy for AAs in this sample even when all the 36 mark-
ers were used, but accuracy did reach 98.8%.

Comparison of observed and reference allele frequencies
The high assignment accuracy by LBMs was observed not-
withstanding the deviation between our observed allele
frequencies and the reference frequencies described
above. We further compared our observed allele frequen-
cies with published reference allele frequencies using the
χ2 test. In EAs, after adjusting for sample size, there were
19 markers that differed at p < 0.05, while in AAs, the cor-
responding number of markers was 29. In other words,

allele frequencies observed in EAs matched the reference
group more closely than did allele frequencies observed in
AAs. As a result, the LBM performed better in EAs than
AAs, as might be expected given the dependence of LBMs
on prior knowledge of allele frequencies.

Evaluation of the influence of mismatched reference allele 
frequencies on assignment accuracy by means of split 
samples
As noted above, in many cases our observed allele fre-
quencies showed nominally significant differences from
population reference frequencies. This could reflect, for
example, sampling error, or differences in allele frequency
for population groups with similar self-identified ethnic-
ity that are assessed at different geographic locations. To
further assess the impact of the reference group on the

Logarithm of likelihood ratio for each individualFigure 4
Logarithm of likelihood ratio for each individual. Logarithm of likelihood ratio for each individual grouping by their self-
identified ethnicity. Markers were added one by one with δ descending. The first marker is FY.
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assignment accuracy for LBM, we randomly split our EA
and AA study datasets each into two equal-sized samples,
treating one as the study group and the other as the refer-
ence group. Thus, we were able to model geographically
appropriate allele frequencies for each group, at the
expense of reducing the analysis sample size by a factor of
two. The distributions of the allele frequencies for the two
split samples are the same in EAs and AAs for all the mark-
ers based on the χ2 test (p-value ranges from > 0.57 to 1).
The results (Figure 3) for AAs using internal split samples
improved dramatically compared to the results using the
external reference group in AAs (Figure 2). These results
(Figure 3) illustrate that the performance of the LBM
depends greatly on how representative the reference allele
frequencies are to those of the population being assigned
when the parental population is known.

Logarithm likelihood ratio
We also calculated the logarithm of the likelihood ratio,
expressing the comparison of the probability of being in
the EA group compared to the AA group, based on for-
mula (2) (Methods section), and generated a visual dis-
play of correct or misplaced group assignment for each
individual, adding the markers one by one using a
descending value of δ. Figure 4 shows the 12 most effi-
cient markers. The horizontal line represents a log likeli-
hood ratio of zero; those above zero are allocated to EA,

and below zero to AA (refer to equation (2)). The vertical
line separates the groups. Therefore, those in the upper
right and lower left quadrants are misclassified based on
self-identified race. The first graph represents the alloca-
tion of each individual using only the most efficient
marker, FY. As markers are added to the analyses, the log
likelihood ratios increase and the separation between
clusters become more and more marked. (Note that the Y-
axis scale is not constant.)

One individual in the AA series appeared to be misclassi-
fied; see Figure 4 with 9 to 12 markers. Based on this
observation, we examined the phenotypic information for
this subject, and determined that, although self-identified
as AA, the subject had one AA and one EA parent.

Comparison of LBM results with Bayesian results obtained 
using STRUCTURE
We compared the performance of LBM with results
obtained using STRUCTURE and the same panel of mark-
ers by Yang et al. 2005 [1] (Figure 5); the samples used for
Figure 5 are exactly the same as those for Figure 3 in Yang
et al. 2005 [1] (cf. Figure 3, p. 308). In EAs (Figure 5 –
(1)), the LBM provided more accurate group assignment
than STRUCTURE, with the FY locus included or
excluded. In AAs (Figure 5 – (2)), the relative performance
of STRUCTURE and LBM was mixed.

Comparison of STRUCTURE and LBM on assignment accuracyFigure 5
Comparison of STRUCTURE and LBM on assignment accuracy. The markers are adding one by one either by delta 
descending or ascending. Assignment accuracy without FY, the most efficient marker in the panel studied, was also evaluated.
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Discussion
The LBM is appealing for population group assignment
because it is straightforward and easily implemented, pro-
vided that sufficiently accurate reference allele frequencies
are available. We provide a set of allele frequencies for all
markers herein that will prove useful for classifying popu-
lations similar to those discussed in the present article [see
Additional file 1]. Under these circumstances, the LBM
should classify individuals at least as accurately as STRUC-
TURE, and probably more accurately. However, a repre-
sentative reference population may be difficult to
establish in some cases. With a good reference group, as
shown in the analysis of split samples (p-values of the χ2

test range from >0.57 to 1 for distributions of allele fre-
quencies for the two split samples), LBM performed very
well. In EAs, the clustering by LBM is as good as by
STRUCTURE (using an ancestry model of admixture and
an allele frequency dependence model) for δ descending,
but LBM performs better for ascending values of δ. For
AAs, LBM and STRUCTURE cluster the groups equally
well. STRUCTURE retains certain advantages, such as the
ability to classify individuals by proportional ancestry for
subsequent application of the structured association
method, as discussed elsewhere [1]. It should be noted
that the superior performance of LBMs over STRUCTURE,
when observed, depends on LBM having more data avail-
able than STRUCTURE in the form of reference allele fre-
quencies.

The observed allele frequencies in this study matched ref-
erence allele frequencies better for EA than AA popula-
tions. Subjects from some populations from different
geographic areas might have quite different admixture
proportions and ancestral origins. This is demonstrably
the case for African-Americans, since in different parts of
the US the percent admixture from EAs is known to range
at least from 12% to 23% [26]. Another issue with LBM
involves justification for the multiplication of allele fre-
quencies across loci under the assumption of linkage
equilibrium. If the allele frequencies of different STRs vary
among subpopulations, then the loci are not in complete
linkage equilibrium or are not statistically independent
even if they are genetically unlinked. However, we did
assume linkage equilibrium within the subpopulations.
This is also an underlying assumption for STRUCTURE
[4]. This assumption might prove to be problematic under
some circumstances, but the practical impact seemed min-
imal for the present study, as evidenced by the fact that
LBM performed well.

The result from the single most informative marker, FY,
could exceed 99% and 96% assignment accuracy in EAs
and AAs, respectively. This result is, of course, sample-spe-
cific to some extent; AA subjects who are homozygous for
the allele more characteristic of European ancestry (i.e., FY

(+/+)), should have a population frequency of about 4%,
given a 20% admixture rate from EA, and would be mis-
classified into the EA group if based only on this marker;
this misclassification rate is equal to what we observed,
about 4% in AAs. Likewise, EAs heterozygous for the FY(-
) allele characteristic of AAs are observed as well, and they
are liable to be misclassified as AAs. Our Northeastern US
AA population had approximated the expected European
admixture rate, based on the information from FY.

The sample size of the populations being assigned is not
an issue for LBM, while it is for STRUCTURE. The Bayesian
cluster approach taken by STRUCTURE requires building
a likelihood function from the observed samples to infer
allele frequencies, such that if the sample size is insuffi-
cient, the estimated allele frequencies might not be accu-
rate. As a result, sample size in each subgroup affects the
assignment accuracy, and our simulation result [1] shows
that approximately fifty subjects are required to have sta-
ble assignment accuracy by STRUCTURE. LBM, in con-
trast, uses allele frequencies from the reference
populations; there is no need to estimate allele frequen-
cies by LBM. Thus, even a single individual can be
assigned accurately using the LBM.

We conclude that assignment accuracy by LBM depends
on the efficiency of the markers selected (FY alone can
separate EAs and AAs with accuracy that can approach
99% for excluding AAs from a presumed EA sample), the
number of markers (other things being equal, more mark-
ers produce higher assignment accuracy), and greatly on
how representative the parental population reference
allele frequencies are for the populations being queried.

Methods
Subjects
Three hundred sixty-six individuals recruited in the North-
eastern US (classified as 282 EAs, 84 AAs) were studied.
These individuals were selected from a larger sample for
evaluation of this likelihood based method because they
had complete marker data for all markers described
below. All subjects provided informed consent as
approved by the appropriate institutional review boards.

Markers genotyped
Detailed marker and genotyping information was
described previously [1]. Briefly, two different sets of STR
markers were used. First, we used the AmpFLSTR Identi-
filer PCR Amplification Kit (Applied Biosystems (ABI),
Foster City, CA), which provides data from a set of 16 loci
useful for forensic purposes (D8S1179, D21S11, D7S820,
CSF1PO, D3S1358, TH01, D13S317, D16S539,
D2S1338, D19S443, vWA, TPOX, D18S51, D5S818, FGA,
and amelogenin). Amelogenin is used for sex identifica-
tion rather than for polymorphism content, so informa-
Page 7 of 9
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tion from that locus was not included in any analyses.
Second, we selected 21 markers known to have high δ
between EAs and AAs, and in some cases Hispanic and
Asian populations, based on the report of Smith et al.
2001 [27]. This marker panel includes markers D1S196,
D1S2628, D2S162, D2S319, D5S407, D5S410, D6S1610,
D7S640, D7S657, D8S272, D8S1827, D9S175, D10S197,
D10S1786, D11S935, D12S352, D14S68, D15S1002,
D16S3017, D17S799, and D22S274. We also genotyped
marker FY, added to the 36 STRs because of its known
value in identifying individuals of primarily African
ancestry.

Measures of marker efficiency
δ was used to measure the marker efficiency. The defini-
tion and properties of δ are described in Yang et al. 2005
[1]. Briefly, δ is half the sum of the absolute difference in
population frequency over all alleles for each marker
between two populations.

Analysis with the likelihood-based method (LBM)
We assumed HWE among alleles for each marker within
populations and linkage equilibrium between markers.
The likelihood, or the probability of observed genotype
profile, for each individual to be in a specific population
is calculated as

where X is a vector of genotypes of marker loci, Z is the
proposed population of origin, PZ(p11, p12,..., ) is the
set of reference allele frequencies p11, p12,...,  for the
nm alleles of m markers of population Z, and h is a dummy
variable for homozygosity (i.e., when the locus is
homozygous, h is 1, otherwise h is 0) for each marker
locus. When an allele is absent for a given population in
the reference frequencies, the corresponding allele fre-
quency in the study group is estimated and used in the cal-
culation of likelihood. An individual is assigned to a
population if the maximum likelihood results from
assignment to that population among all possible popu-
lation-specific likelihoods calculated. For assigning indi-
viduals into one of two populations A or B, an individual
is assigned to population A if the logarithm of likelihood
ratio is greater than zero, or otherwise to B, as shown in
equation (2).

An individual was considered to be assigned accurately to
a group when the greatest likelihood among all the calcu-

lated likelihoods assigned an individual the same ethnic-
ity as the self-identified population group of that
individual. Assignment accuracy in each population
group was defined as the proportion of correctly assigned
ethnicities. (The above decision rule is optimal if we have
equal priors of proportion for the two ethnic groups.
However, when there are more people from one group, a
priori, then the prior information needs to be incorporated
to improve the overall performance in terms of misclassi-
fication rate.) The method was realized in R/S-Plus; the
function codes are available upon request from the
authors.

The initial set of reference population-specific allele fre-
quencies (training frequencies) for the 36 markers were
derived from ABI reference materials [27] or Smith et al.
2001 [28], depending on the source of each marker. Since
ABI uses different nomenclature (in some cases) and we
redesigned some primers referenced by Smith to facilitate
efficient genotyping, each observed allele had to be
matched to the corresponding allele for each marker. Alle-
les at one marker locus (D6S1610) described by Smith et
al. 2001 [28] could not be matched accurately to our data
from the same marker (however, the value of EA/AAδ that
we derived for that marker, 0.336, was similar to the value
reported by Smith et al., which was 0.337). The χ2 test was
used to compare the allele distributions of the study group
and the reference group.

Evaluation of the impact of the training frequencies on 
population group assignment accuracy
To evaluate the impact of the training frequencies on pop-
ulation group assignment accuracy, we compared the lit-
erature-derived training allele frequencies (described
above) with training allele frequencies computed from
our specific populations. To do so, we randomly split the
282 EAs and 84 AAs into two equal-sized groups. One was
treated as the study group, and the other was treated as the
reference group, from which the training allele frequen-
cies were estimated.
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