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Abstract
Background: Human inherited diseases can be associated by genetic linkage with one or more
genomic regions. The availability of the complete sequence of the human genome allows examining
those locations for an associated gene. We previously developed an algorithm to prioritize genes
on a chromosomal region according to their possible relation to an inherited disease using a
combination of data mining on biomedical databases and gene sequence analysis.

Results: We have implemented this method as a web application in our site G2D (Genes to
Diseases). It allows users to inspect any region of the human genome to find candidate genes
related to a genetic disease of their interest. In addition, the G2D server includes pre-computed
analyses of candidate genes for 552 linked monogenic diseases without an associated gene, and the
analysis of 18 asthma loci.

Conclusion: G2D can be publicly accessed at http://www.ogic.ca/projects/g2d_2/.

Background
Mutations in genes are responsible for inherited diseases.
The discovery of the association of a gene with a disease is
essential for potential diagnosis and treatment and often
helps understanding the mechanisms involved. The detec-
tion is usually a several step "gene hunt" where the gene is
first located within a genomic region by linkage to anon-
ymous markers followed by actual sequencing to find all
genetic variation and finally to test for association of gene
variants typical in diseased subjects [1].

Because the region eventually linked to a disease might
contain hundreds of genes, and genotyping or directly

sequencing genes of patients and controls is costly, it is
important to use available information such as the com-
plete sequence of the human genome plus a set of anno-
tated genes and their functions (either known or
predicted) to target the sequencing effort on those genes
that appear to have more chances of being associated with
the disease. The key to this prioritization is the expecta-
tion of the relation of a gene function to a disease (for
example, a defect in a neural receptor could produce a
neurological disease).

Following these ideas, we developed an algorithm to
relate genes to human inherited diseases that combines
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The G2D algorithmFigure 1
The G2D algorithm. The cylinders represent public databases. MEDLINE contains references to scientific literature anno-
tated at the National Library of Medicine with terms from the MeSH ontology. For each disease being studied we take the 
MeSH C terms ('Diseases Category') from the publications associated in OMIM [3] as its keywords. For each gene we take the 
Gene Ontology (GO) terms [8] associated to its product in the RefSeq protein database [34] as its keywords. MEDLINE does 
not contain enough clinical literature to allow us to directly relate every symptom, represented by a MeSH C term, to every 
gene feature, represented by a GO term. Taking into account that genes relate to phenotypes by means of molecules, we can 
increase the robustness of the gene/phenotype relations using an intermediate association step through the MeSH D category 
of 'Chemicals & Drugs' (top). Accordingly, we first compute associations between MeSH C terms ('Diseases') and MeSH D 
terms ('Chemicals & Drugs') by their co-annotation on the same record, more specifically looking for dependences of MeSH D 
terms on MeSH C terms. For example, we would deduce a relation between "Alzheimer's disease" (MeSH C) and "Amyloid 
protein" (MeSH D) if the presence of the C term in a MEDLINE entry always implies the presence of the D term. Records in 
the RefSeq database contain annotations from GO that describe the protein function, and will often include a link to MEDLINE, 
mostly dealing with the experimental characterization of the protein. We use these links to relate MeSH D terms from the 
MEDLINE reference to GO terms from the sequence, again looking for GO term dependence on a MeSH D term. In this case 
we could deduce an association between the MeSH D term "Amyloid Protein" and the GO term "Amyloid Protein". Finally, we 
combine both sets of relations to obtain associations between MeSH C terms and GO terms (for example, the relation of 
Alzheimer's disease to the amyloid protein). To evaluate the genes associated with a particular disease we follow two direc-
tions. First, we deduce the gene functions (GO terms) related to the disease using the associations from phenotypes (MeSH C 
terms) describing the disease. For this, we collect the MeSH C terms found in the MEDLINE references from its corresponding 
OMIM entry (left), score all GO terms according to their relation to the terms in the MeSH C list (top), and finally, score all 
the proteins in RefSeq with the average of scores of their GO terms (right). For example, the analysis of late-onset familial 
Alzheimer disease (LOFAD) [9] would start by characterizing the disease with the MeSH C term "Alzheimer's Disease" among 
others. This would point to a series of GO terms including "Amyloid Protein" as a likely related function. One of the most 
related sequences in RefSeq (according to its GO annotations) would be the human amyloid beta A4 precursor protein-bind-
ing, which is annotated with the GO-term "amyloid protein". The other component of the analysis is a BLAST homology search 
[35] of the human genome region where the disease is mapped against the sequences stored in the RefSeq database (bottom). 
All hits in the region (red block) below a cut-off of E-value of 10e-10 are registered and sorted according to the score of the 
RefSeq protein they hit. Following our example, the analysis of the region where the LOFAD was mapped would show a gene 
similar to the human amyloid beta A4 precursor protein-binding annotated with the GO-term "amyloid protein": the APBA3 
gene, which interacts with the Alzheimer's beta-amyloid precursor protein [12]. The analysis of LOFAD is extensively 
described in the Results section. Further details of the method are given in [2] and in the G2D web site.
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the extraction of relations between phenotypes and gene
functions in sequence, disease, and literature databases,
with sequence similarity searches [2] (Figure 1). The main
assumption of this method is that for a given disease with
an undiscovered associated gene X, and a phenotypically
similar disease with a known associated gene Y, some
functions of the X and Y genes will be related and relevant
to those phenotypes.

We now implemented this method in the G2D web site
allowing users to analyse diseases and genetic regions of
their interest. The web site includes a collection of
precomputed analyses of 552 inherited monogenic dis-
eases stored in the OMIM database [3] that were linked to
a genomic region but not yet associated with a gene. Here
we describe the latest update of the method and illustrate
its use via the G2D web server to propose original target
genes for one monogenic disease and for asthma, a com-
plex disease.

Implementation
The algorithm needs basically two inputs to work with: a
phenotypical definition of a disease as a list of weighted
MeSH terms of the C category ('Diseases' category) [4],
and the definition of a genomic region in the human
genome where it has to search for genes potentially asso-
ciated with the disease.

In the current web implementation of G2D, we free the
user from the production of a list of MeSH C terms by
requiring instead the identifier of the disease in the OMIM
database of human inherited diseases [3] or of a pheno-
typically equivalent one in that database. For example, a
researcher investigating a particular variant of Alzheimer's
disease not yet present in OMIM might search the data-
base at the NCBI web server using "Alzheimer" as query
term, and use one of the identifiers of the closest variant
according to their phenotypes and the user's knowledge.
Then, the system compiles automatically a list of MeSH C
terms from those present in the MEDLINE references
linked to the OMIM entry, weighting them by the fraction
of linked MEDLINE references containing them. That is, a
MeSH C present in all linked references will be taken more
into account than one linked only to one of the references.
Currently, a total of 1,663 different OMIM entries that
contain enough linked MeSH C terms can be used to
query the system.

The chromosomal location is a range that can be defined
in three ways: two chromosomal markers (if one is given,
a band of 5 Mb is taken around it), two base positions in
the build hg17 of the human genome, or two cytogenetic
bands (if one is given the band is taken as the range).

The current G2D web server implements new features to
further guide the user in the analysis of the results, follow-
ing strategies that take advantage of the combination of
positional data with gene expression data to guide dis-
ease-gene data mining [5]. On the one hand, we indicate
the overlap of candidate genes with predicted pseudo-
genes [6], which suggests that they will not be likely
expressed genes. On the other hand, we indicate the over-
lap of candidate genes with expressed sequence tags
(ESTs), which suggests expression of the gene.

Results
Benchmark of the method
G2D is a method for the prioritization of genes according
to their relation to a disease. The benchmark of such a
method must be done testing diseases for which the dis-
ease-related gene is known but without providing the sys-
tem with the obvious link between the target gene and the
disease. Otherwise the real capacity of the system in eval-
uating relations between genes and diseases cannot be
assessed. It is also important that the diseases are chosen
in a completely unbiased manner.

Therefore, in our previous evaluation of G2D [2], we first
compiled a set of 100 monogenic diseases randomly cho-
sen among those with known associated gene according
to their entries in the LocusLink database [3]. For the sake
of comparison we will use the same set and benchmark
procedure in this work, noting that any differences
between the two benchmark results will be due exclusively
to the newer versions of the databases used, since the
method was not changed since then.

In brief, we attempted to remove all experimental and
genetic information on the diseases used for the bench-
mark by producing a version of MEDLINE devoid of refer-
ences matching the disease names. In this way, we wanted
to assure that our algorithm would be discovering the
associations of genes to a test-disease based on informa-
tion extracted from a different disease. Matching entries
were found by querying MEDLINE via PubMed using the
expansion of the query with synonyms (such as "cancer"
and "tumour") and scanning both the abstract of the ref-
erence and the MeSH terms associated with it.

For each test-disease, genes in a 30 Mb region centred on
the target gene were scored; on average this region con-
tained about 300 genes. This size was taken because such
was the average size of the loci of other diseases mapped
to a genomic region but for which no gene had been
found yet to be related.

The benchmark results were better than those obtained in
our previous analysis [2]. The target gene was identified in
87 of the 100 test diseases (55 previously). The target gene
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was among the 8 best scoring genes in 47 cases (25 previ-
ously), and among the 30 best scoring genes in 62 cases
(50 previously) (see details of this and previous bench-
mark in the Supplement page of the G2D web site). The
improved system performance was due in part to the
improved quality of the hg17 human genome assembly
(build 35, supported by the UCSC Genome Bioinformat-
ics Site; May 2004 freeze) [7]. A performance improve-
ment was likely also obtained from the increased number
of sequences in RefSeq, and of their functional annota-
tions with Gene Ontology terms (GO terms; [8]), a system
for the description of genetic functionality that is also in
continuous expansion and refinement.

Analysis of a monogenic disease: late-onset Alzheimer 
disease
To illustrate how to use the G2D server for analysis of a
monogenic disease, we will be using the recent genetic
linkage of a type of late-onset familial Alzheimer disease
(LOFAD) to a locus on chromosome 19p13.2 [9] for
which no responsible gene has been yet found. Although
Alzheimer disease is genetically heterogeneous, there are
some common themes among the functions of the pro-
teins related, such as their interaction with the beta-amy-
loid protein, which can be used to track down a new
candidate as we will show.

To search for genes that could be associated with the dis-
ease in a chromosomal region two inputs are needed: an
OMIM identifier of the disease (or of a similar one), and
a chromosomal location. The user defines these two
inputs in the "COMBO BOX" (see Figure 2a). Following
the example, we type in the "PHENOTYPE BOX" OMIM
id window, 104310, which is the OMIM id corresponding
to another LOFAD, the AD2 that was linked to the gene
APOE4 [10]. In the "LOCATION BOX" we define the
chromosomal range to be analyzed as band 19p13 on
chromosome 19, intentionally wider than the 19p13.2
locus reported for this disease [9]. To do this, we specify
that we are defining the location by band by selecting the
option "band(s)", and we type the name of the band, p13
in the first window. Finally we select the chromosome
where the band is located, 19.

The "OUTPUT BOX" allows changing the restrictions on
the number of BLAST hits in the region to be displayed.
This is done by modifying two parameters: the maximum
BLAST E-value threshold in order to report a hit of
sequence similarity in the region to a sequence in RefSeq;
and the total number of hits to be displayed, considering
that those are sorted by decreasing relatedness to the dis-
ease (the derived GO score). More restrictive values (a
lower BLAST E-value threshold result in a smaller number
of candidates) reduce the time needed for the production
and download of the results via a web page, although at

the risk of missing an interesting candidate. The default
values should be appropriate for a first exploratory search.
In this example, we keep the default thresholds (E-value =
e-10, and 20 candidates displayed).

The result is a search in a region of 19.8 Mb. The only
MeSH C term that is extracted from the MEDLINE links
from the OMIM entry, is "Alzheimer Disease" (present in
four links). The GO term that receives the highest score is
"copper homeostasis", then quite close "amyloid pro-
tein". Both are pointed through the MeSH D term "Amy-
loid beta-Protein Precursor" that is strongly associated
with the MeSH C term "Alzheimer Disease". This informa-
tion can be examined by traveling the network of relations
between MeSH C, MeSH D, and GO terms, following the
links marked as green arrows (Figure 2b).

The list of candidates contains reports for hits in the 19.8
Mb region to protein sequences in RefSeq (with a BLAST
E-value of or below 1e-10). Note that multiple hits may be
pointing to the same gene in the region, or that a hit may
be pointing to multiple genes in the region (if for example
there are two similar genes in the area).

The first hit is given by similarity to a sequence from rat,
follistatin, identified by the GO term "serine protease
inhibitor", which scores 0.0108. The next one is more
appealing, given by similarity to the human amyloid beta
A4 precursor protein-binding, which is annotated with
the better GO-term "amyloid protein" (Figure 2c). The
hits from positions 3,705,192 to 3,701,877 in the nega-
tive strand of Chromosome 9, match the N-terminal part
(positions 420 to the end, 749) of that protein, which
contains a PTB domain (phosphotyrosine-binding
domain; positions 367–533) and two PDZ domains
(positions 577–655 and 669–735), according to the
SMART protein domain search online-tool [11]. PDZ
domains are implied in polypeptide binding.

The genomic region of each match can be examined via
the UCSC Genome Bioinformatics Site following the links
marked with a "U" (see Figure 2d). In this case, the UCSC
browser allows confirming that the seven matches of can-
didate 2 actually overlap with the APBA3 gene that
encodes a protein with a similar domain distribution in its
C-terminal part, which interacts with the Alzheimer's
beta-amyloid precursor protein [12]. As such, this is an
ideal candidate to search for mutations in patients of
Alzheimer disease.

However, in this particular case, the linkage analysis dis-
played a maximum of intensity ratio between the markers
D19S216 (at position 4.9 Mb) and D19S221 (at position
12.5 Mb), therefore 1.2 Mb further from the telomere
than the position of the APBA3 gene, and this led to the
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group researching this disease to disregard this gene that
otherwise they found biologically interesting (Gerard D.
Schellenberg, personal communication).

Analysis of a complex disease: asthma
G2D can be likewise used for complex diseases linked to
multiple loci. Users have to repeat the analysis with the
phenotype of the disease for each of the linked regions
separately. In order to illustrate the analysis of a complex
disease, we have pre-computed the analysis of candidate

genes for asthma. The results of this analysis are available
at the G2D web site. Here, we describe the steps taken to
produce this analysis.

Asthma is a common chronic airway disease caused by
multigenic influences, many environmental factors, and a
high interaction between various risk factors [13]. Disease
loci have been mapped to different chromosomes.
Although asthma is the complex disease with the largest
number of genome scans (currently more than 15 studies)

Example of analysis of a monogenic diseaseFigure 2
Example of analysis of a monogenic disease. (a) The data defining the phenotype of the disease (in this case the OMIM 
identifier of an equivalent disease) and the region where it was mapped are given in the COMBO box. (b) The results window 
displays the MeSH C terms derived from the links to MEDLINE found in the OMIM entry, and the resulting scores for the GO 
terms. The green arrows allow traveling the MeSH C/MeSH D/GO network of connections back and forth. (c) Further down 
in the results window, the list of candidates displays the position of the BLASTx hits [35] in the chromosomal region (dark 
green bar over the light green bar) and of the hits in the matching protein sequence (dark red bars over the light red bar). Each 
hit in the genome is linked to the UCSC Genome Browser ("U" link). (d) The UCSC Genome Browser allows examining the 
genes known or predicted that overlap with the match linking to very useful databases and resources.

a
b

c
d
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[14], few genes have been associated with the disease (as
far as we know; those are ADAM33, DPP10, PHF11 [15],
GPRA [16], and Vitamin D receptor [17]). We used the
data stored in the Asthma and Allergy Gene Database [18]
as an input to G2D to propose candidates in several
genomic regions.

To obtain MeSH C terms related to asthma we queried
MEDLINE via PubMed with "asthma [tw] AND 'Case
Report' [MH]". A total of 4,317 references was retrieved.
The most related GO terms were peptidyl-dipeptidase,
interleukin-5 receptor, fluid secretion, peroxidase, and
protein kinase inhibitor. We then followed up all ten
genome scans fully available in the Asthma and Allergy
Gene Database [18]. One study provided genome scans
from three populations [19] while all others reported one
single genome scan [20-26]. Only one trait per study was
selected for this analysis (usually asthma except for two
studies where total IgE was taken [20,25]). If available, P-
values were taken directly from the data files submitted to
us. Otherwise LOD scores were converted into P-values by
subtracting 1 minus the probability from a chi-squared
distribution with 1 degree of freedom of the individual
LOD score that has been multiplied before with the 2 fold
logarithm of 10 (P = 1 - Pχ2 (2 log10·LOD, 1)). This is a
less conservative approximation than suggested elsewhere
[27] but used throughout the database. Finally, 233
unique markers with linkage P-values below 0.05 were
then selected from these 10 scans. Microsatellite markers
were grouped according to recent Marshfield genetic map
data. We then defined linkage regions by having at least
four supporting markers in a 20 cM interval. This reduced
the linkage dataset to 18 regions that were expanded 6 Mb
both to the 3' and 5' direction to allow for some impreci-
sion in marker positioning. G2D was used to prioritize
genes according to their relation to asthma in each of the
regions. The lists of candidate genes obtained for each of
the 18 linkage regions are available at the G2D web site.

As a proof-of-principle, we tested the system with one
gene recently linked to asthma: ADAM33 in the cytoge-
netic band 20p13 [28]. It was discovered in a region so far
not linked to asthma by at least two different studies and
therefore not in our list of target regions. We applied the
system to the band defining the disease via OMIM id
600807 ('Asthma susceptibility') and checking the best
3000 scored sequences in RefSeq. ADAM33 was identified
(as the 9th best candidate in band 20p13 after removing
redundant hits) because of its sequence similarity to
ADAM9 encoding for a protein with a disintegrase and
metalloproteinase domain 9.

Discussion
We have implemented in a public web server a method
that allows the ranking of genes in a region of the human

genome according to their possible relation to a disease.
Both the region and the disease can be defined by the user.
Since the method is computationally very intensive,
mostly due to the amount of genes used for the sequence
similarity analysis, we introduced limitations in the max-
imum size of the genomic region to scan and in the
number of candidates to report. Still, the analysis might
take a few minutes depending on the load of the server.

We have updated the method and its benchmark with
respect to the original version (G2D, [2]) using newer
database versions, observing an improvement in perform-
ance almost certainly due both to the increased accuracy
of the human genome sequence, and to the continuous
functional annotation efforts on human sequences and
their homologues in other organisms.

In the current version, a test with 100 diseases of known
genetic cause indicated that G2D finds the responsible
gene in 87 cases out of a pool of 300 genes (on average),
the target gene being among the 8 best scoring genes in
the 47 of the successful 87 cases.

It must be noted that the identification of candidate genes
by G2D relies partly on the sequence similarity compari-
son of (query) proteins to parts of the genome, and that it
is advisable to examine the extent and position of this
similarity. For example, the region of similarity could be
restricted to a fragment of the query protein not being
responsible for the functionality that might be associated
to the disease. Moreover, the method could be pointing to
a pseudogene. To support the human examination of the
results, we indicate the positions of the sequence similar-
ity match both in the query protein and in the genome.
We also took advantage of existing information on pseu-
dogene prediction, and we added links to the UCSC
genome browser. This allows putting the candidate genes
in the context of the latest genetic knowledge, which has
been shown to be of great help when identifying genes
involved in disease [5].

Although G2D was originally devised for the analysis of
single genetic regions, we encourage researchers working
on complex diseases to apply the system independently
for each of the genomic regions associated with a complex
disease (as illustrated in the Results section), provided
that the quality of the linkage analysis is good. Actually, it
has been shown that when multiple associations of
genetic variation to a disease are demonstrated there is a
great likelihood that each of them separately constitutes a
risk factor contributing to the disease [29]. Accordingly, it
is gaining wider acceptance that the classification of a dis-
ease as monogenic might be more the result of our lack of
knowledge of all the genes involved in that disease than to
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reality [1,30]. The conceptual separation between mono-
genic and complex diseases might be illusory.

As far as we know, we have created a unique resource.
Other efforts applying data-mining to the study of genes
associated with diseases have a different focus. Mainly,
none of them uses sequence similarity searches to assess
candidate genes so that, in principle, if a disease-related
gene lacks functional or protein domain annotation, or if
it is not even predicted to be a gene, it will not be detected
by such methods.

For example, Freudenberg and Propping [31] also use
phenotype information associated with diseases and the
GO annotations of genes, but they cluster diseases with
similar phenotypes and pool the GO terms of the genes
associated. This means that their method cannot distin-
guish whether a gene will be related to one particular dis-
ease but to a pool of diseases. Although the method was
tested with a leave-one-out cross-validation in a set of 878
diseases from OMIM with already known associated gene,
their results are not as good as ours with 1/3 of cases hav-
ing the disease-related gene among 160 candidates and
the remaining 2/3 being among 1600. However, posi-
tional information is not taken into account. The system
is not accessible through a web server.

Turner et al. [32] developed POCUS, a method for the pre-
diction of genes related to diseases linked to more than
one genomic region. This is exclusively based on the com-
mon GO terms and protein domains found among the
genes from multiple loci. The performance of the method
is shown in a set of 29 diseases and the genes associated
with each of them (between three and eleven), by using
variable sizes of artificial loci generated around the target
genes. Even when using the smallest size (with an average
of 20 genes in each loci), the rate of identification of dis-
ease genes is of 60 out of 163 disease-genes, with 56 false
positives. For the other two larger sizes assayed they find
a candidate for only 5 and 4 of the 29 test diseases (using
an average of 94, and 187 genes, per loci, respectively)
with an increase in the number of false positives. This
poor performance in comparison to the methods above is
surely due to the fact that they do not use phenotypic
information. This, together with the requirement for mul-
tiple loci, makes this method complementary to the one
above and hard to compare. The method is not available
as a web server though some computer programs are given
as supplementary material [32].

Finally, we mention the work from van Driel et al. (Gene-
Seeker, [5]) more focused on the linkage of information
related to genes and disease from multiple public data-
bases. GeneSeeker relies on positional information of
genetic linkage (to one region), and includes genetic

expression information that is extracted for the genes in
the region from their entries in sequence databases and
MEDLINE references linked therein (but not from ESTs).
The method is tested in only ten human malformation
syndromes for which the associated gene is known, using
an ad-hoc list of organ terms for each one. Obviously, the
method would not be able to find a disease-related gene
lacking a link indicating expression in an organ. The aver-
age of genes in the loci examined was 165. The results vary
greatly depending on how the list of terms is applied. In
the least restrictive test the gene is found in all the ten
cases but among an average of 22 candidate genes. Again,
this method is not using any functional information
about the genes analyzed or of the disease phenotype, so
it is not surprising that its performance is inferior to G2D.
Contrary to the methods previously discussed, this
method is accessible through a web server.

Conclusion
Irrespective of the variation between these methods and
their complementarity, they represent the effort of the
scientific community to put together existing resources for
the help of the geneticists searching for disease-related
genes. It would be interesting to measure how these
efforts are accelerating the pace of disease-related gene dis-
covery. In this respect, we note that at the time we applied
G2D for the analysis of a number of monogenic diseases
in OMIM for the first time (June, 2001), there was a total
of 455 monogenic diseases linked to a genomic region
without associated gene. In our second analysis of OMIM
that is presented in the G2D web server (July, 2005), the
amount of such diseases has risen to 552. In the interven-
ing three years, 104 diseases were associated with genes,
representing the successful completion of a gene hunt.
However, another 201 genetic diseases were newly
mapped to the human genome, leading to a net increase
of 97 diseases in our list of analyses. Although the human
genome sequence is completed and there is a number of
resources available to researchers to assist them in com-
pleting the last stages of disease-gene hunt, the bottleneck
of the process of characterizing genes associated with dis-
eases is still the definition of the disease-related gene at
the end of the search and not the genetic linkage of the
disease, or the discovery of new diseases with an inherit-
ance pattern.

Further directions for improvement suggested have been
to include other types of information about disease
related genes [33], and to take into account the functional
links existing between genes associated with a complex
disease [32].

Finally, we note that another important factor for
improvement is the feedback and collaboration with the
experimental groups that are benefited by these new data-
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mining methods. As with other efforts in Bioinformatics,
only by close collaboration between computational and
experimental groups can we expect a real advance on the
methodology. For this, both parts have heavy duties: com-
putational groups must explain these tools cleanly and
clearly, making them openly available in a stable and up-
to-date fashion, swift to adapt to the suggestions of the
users; but we should not forget that experimental groups
must try the tools made for them and in doing that give
constructive feedback and fair acknowledgment to their
authors.
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