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Abstract
Background: The incidence of Type 1 diabetes (T1DM) is increasing fast in many populations. The
reasons for this are not known, although an increase in the penetrance of the diabetes-associated
alleles, through changes in the environment, might be the most plausible mechanism. After the
introduction of insulin treatment in 1930s, an increase in the pool of genetically susceptible
individuals has been suggested to contribute to the increase in the incidence of Type 1 diabetes.

Results: To explore this hypothesis, the authors formulate a simple population genetic model for
the incidence change driven by non-Mendelian transmission of a single susceptibility factor, either
allele(s) or haplotype(s). A Poisson mixture model is used to model the observed number of cases.
Model parameters were estimated by maximizing the log-likelihood function. Based on the Finnish
incidence data 1965–1996 the point estimate of the transmission probability was 0.998. Given our
current knowledge of the penetrance of the most diabetic gene variants in the HLA region and their
transmission probabilities, this value is exceedingly unrealistic.

Conclusions: As a consequence, non-Mendelian transmission of diabetic allele(s)/haplotype(s) if
present, could explain only a small part of the increase in incidence in Finland. Hence, the
importance of other, probably environmental factors modifying the disease incidence is
emphasized.

Background
The incidence of Type 1 diabetes is characterized by exten-
sive differences between populations, from 0.7/100,000/
year in Peru [1] to 45/100,000/year in Finland in 1996.
The incidence is increasing in many populations; in Fin-
land [2,3], England [4], Norway [5], Israel [6], Austria [7],
and several other countries [8]. In Finland, the incidence
has more than tripled from 1953, when it was 12/
100,000/year [9], with an average increase of 2.4 percent
per year according to log-linear model of disease
incidence.

The reasons for the increasing incidence of Type 1 diabetes
are not known, largely because the etiology of the disease
is still poorly understood. Type 1 diabetes develops in
individuals who are genetically susceptible. An exposure
to some yet unknown triggering environmental factor(s)
may be required. The genetic background is complex,
involving a major contribution from the HLA region, but
also several other genes may be involved, each having a
minor effect on disease susceptibility [10-12]. However,
the roles for these genes have been difficult to assess
because of their small effects and because of the small size
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of the samples studied thus far [13-15]. Twin studies have
revealed that 70–75 per cent of the risk of Type 1 diabetes
is related to genetic effects and 25–30 per cent to environ-
mental factors [16,17]. The estimated proportion of HLA
of the genetic risk varies [18-20].

Candidates for environmental components include for
instance viral infections [21], early introduction of cow's
milk in infancy [22], short duration of breast feeding [23],
or nitrites and nitrosamines in the diet [24]. However,
convincing evidence for some major environmental factor
to be the initiator of the disease process has so far not
been presented.

Significant, but modest shift towards excess sharing
(50.43 %) in single and multipoint linkage analysis of
randomly collected families was found by Zollner at al.
[25]. It supports the existence of several loci with skewed
transmission in human chromosomes. Some other
reports suggesting non-Mendelian inheritance on some
HLA loci alleles have been published [26-28], but the
results are conflicting [29-32]. An important observation
of transmission distortion for INS-IGF2 VNTR [33] has
been reported earlier. This locus is probably the second
most important Type 1 diabetes susceptibility locus. In
our data, some evidence of increased transmission for a
special Finnish high-risk HLA haplotype (A2, Cw1, B56,
DR4, DQ8) was found [34], as this haplotype was seen to
have been transmitted at a rate higher than 50% to the off-
spring, using single ascertainment correction. After adjust-
ing for ascertainment, no statistically significant
transmission distortion was found at the A, B and DR loci,
however [34]. These results do not exclude the possibility
that other HLA or non-HLA susceptibility genes could be
transmitted in non-Mendelian fashion. If true, transmis-
sion distortion would naturally slowly influence the fre-
quencies of diabetic alleles in the population and thus
affect the incidence of Type 1 diabetes.

In this paper we present a simple genetic model in order
to evaluate the magnitude of the allele frequency change
in time, and by assuming reasonable penetrance probabil-
ities, evaluate the effect on the time trend of the incidence
of Type 1 diabetes. We fit this model by applying the
method of maximum likelihood, using data of newly
diagnosed Finnish Type 1 diabetes cases under the age of
15, registered between 1965 to 1996.

Results
Material
Data on the new cases of Type 1 diabetes in Finland were
obtained from two nationwide sources: new cases
between 1965 and 1986 were obtained from the Central
Drug Registry of the Social Insurance Institution, and
between 1987 and 1996 from the prospective childhood

Type 1 diabetes registry. In Finland, all children with Type
1 diabetes are treated in hospital at the time of diagnosis
and therefore case ascertainment is virtually 100% com-
plete. Details of the data collection are described else-
where [36,37].

Theoretical considerations
Considering three values of the transmission distortion
parameter τ, we illustrate how the allele and genotype fre-
quencies develop in time when the above one locus
genetic model is assumed (Figures 1, 2). In order to eval-
uate the effects of allele frequency and penetrance on inci-
dence, Figures 3, 4, 5 were drawn. Obviously, in the
situation where the susceptibility allele is dominant with
high penetrance and high initial allele frequency, the inci-
dence is high. The relative change in incidence is most
prominent when there is a large difference in the relative
genotype specific penetrances, even if the change in allele
frequency is small.

Analysis of Type 1 diabetes in Finland 1965–1996
The above genetic model for the increasing incidence was
fitted to the data consisting of all new Type 1 diabetes
cases in Finland during the period from 1965 to 1996. In
doing so we postulated that there can be transmission dis-
tortion at one susceptibility region for Type 1 diabetes. A
potential example of this could be HLA-DR4, which is the
best known genetic marker and it has been suggested to be
inherited in a non-Mendelian fashion [26,27]. Thus, one
can consider DR4 allele as "allele A", and all other DR alle-
les lumped together as "allele a". We further assume that
the incidence is increasing with age. The allele frequency
of DR4 in the present Finnish population has been esti-
mated to be 0.18 [42], and thus corresponding to the
allele frequency of DR4 in the Finnish population we
chose the starting value (in 1930s) of the allele frequency
to be 0.2.

Two models were fitted: one with transmission probabil-
ity fixed to 0.5 (M1) and another where transmission
probability was estimated from incidence data (M2). The
estimated parameter values and the value of the deviance
(-2 × the log-likelihood) are given in Table 2. When the
two models were compared using the likelihood ratio test
(χ2 = 231.62, 1 df., p < 0.001), model M2 fitted better. The
point estimate of transmission distortion τ was 0.998 and
the genotype frequencies at the starting point (year 1930)
were (0.02, 0.22, 0.76). The observed and fitted incidence
for both models M1 and M2 of Type 1 diabetes are plotted
in Figure 6.

Discussion
An attempt to explain the observed increase in the inci-
dence of Type 1 diabetes in Finland solely by the transmis-
sion distortion of the diabetic allele A from a heterozygote
Page 2 of 13
(page number not for citation purposes)



BMC Genetics 2004, 5 http://www.biomedcentral.com/1471-2156/5/5
Predicted allele frequencies in annual population of children 0–15 years of age plotted against calendar year, using the popula-tion genetic model for the incidence changeFigure 1
Predicted allele frequencies in annual population of children 0–15 years of age plotted against calendar year, using the popula-
tion genetic model for the incidence change. Transmission probability of the susceptibility allele 'A' from a heterozygous parent, 

τ, is 0.52 (---), 0.55 (-- --) and 0.6 (-- ··· --). Allele frequency of 'A' starts from  = 0.15 in both figures. The transmission dis-

tortion effect is assumed to have been acting since the introduction of insulin in 1930s.
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Predicted genotype frequencies in annual population of children 0–15 years of age plotted against calendar year, using the pop-ulation genetic model for the incidence changeFigure 2
Predicted genotype frequencies in annual population of children 0–15 years of age plotted against calendar year, using the pop-
ulation genetic model for the incidence change. Transmission probability of the susceptibility allele 'A' from a heterozygous par-

ent, τ, is 0.52 (---), 0.55 (-- --) and 0.6 (-- ··· --). Allele frequency of 'A' starts from  = 0.15 in both figures. The transmission 

distortion effect is assumed to have been acting since the introduction of insulin in 1930s.
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Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of allele frequency, where for homozygote AA the penetrance is λAA = 160 and λaa = 10Figure 3
Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of 
allele frequency, where for homozygote AA the penetrance is λAA = 160 and λaa = 10. Four models of gene expression were 
explored ('A' dominant to 'a' (---), alleles codominant (-- --), allele effects multiplicative (-- ··· --), and 'A' recessive to 'a' (·········)). 
The penetrance for heterozygous genotype is always between (or equal to) those of homozygotes.
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Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of allele frequency, where for homozygote AA the penetrance is λAA = 40 and λaa = 10 (low differences in penetrances)Figure 4
Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of 
allele frequency, where for homozygote AA the penetrance is λAA = 40 and λaa = 10 (low differences in penetrances). Four mod-
els of gene expression were explored ('A' dominant to 'a' (---), alleles codominant (-- --), allele effects multiplicative (-- ··· --), 
and 'A' recessive to 'a' (·········)). The penetrance for heterozygous genotype is always between (or equal to) those of 
homozygotes.
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Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of allele frequency, where for homozygote AA the penetrance is λAA = 500 and λaa = 0 (high differences in penetrances)Figure 5
Predicted curves for disease incidence (/100,000/year) of a population experiencing transmission distortion as a function of 
allele frequency, where for homozygote AA the penetrance is λAA = 500 and λaa = 0 (high differences in penetrances). Four 
models of gene expression were explored ('A' dominant to 'a' (---), alleles codominant (-- --), allele effects multiplicative (-- ··· -
-), and 'A' recessive to 'a' (·········)). The penetrance for heterozygous genotype is always between (or equal to) those of 
homozygotes.
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parent (A, a) to an offspring led to estimated transmission
probability 0.998. Such an extreme form of transmission
distortion seems biologically and empirically [35] very
unlikely, given current knowledge of Type 1 diabetes
genes and their effects. Therefore, it is evident that biolog-
ically reasonable transmission distortion alone, with pen-
etrances as defined for example DR4 carrier and non-
carrier genotypes, can explain only a small part of the
rapid increase in the incidence of Type 1 diabetes
observed in Finland. One could naturally try to answer the
question of whether the DR4 allele frequencies have
increased over time by obtaining a large random sample
from the general population and then estimating allele
frequencies in different age groups. Presently no such data
are available, and even if there were, if the survival
depends on the HLA types, the oldest age groups would be
selected on the basis of HLA types and therefore the data
would be biased. Moreover, the observed increase could
be explained by realistic non-Mendelian transmission
rates only if relative penetrance differences of susceptibil-
ity genotypes would be much greater than those known
for DR4 today. Therefore, these results emphasize the role

of other, probably environmental factors modifying the
disease incidence. Environmental factors could either
modify the penetrance of susceptibility gene(s), or as trig-
gering factors, could contribute directly to the incidence.
Factors which have changed rapidly during the last few
decades should be important in this respect, but none
with well established association with Type 1 diabetes is
known. It has been hypothesized that changes in pene-
trance might be linked to patterns of childhood immuni-
zation, but this has yet to be confirmed [43].

However, it follows from the principles of population
genetics that, when there is no selection and inheritance is
Mendelian, the allele frequencies, in a large population,
will be stable: this is easily shown by using equation (1)
and letting τ = 0.5. It is difficult to imagine that there
would be actual positive selection associated with diabe-
tes prone genotypes. At best, one would think that insulin
treatment for diabetes made them selectively equal to the
non-diabetic ones. It should be noted that over longer
time periods, very slow changes in allele frequencies are
possible as a consequence of changes in the mutation-

Table 2: Parameter estimates of genotype and age group specific penetrances per 100,000, allele frequency, and transmission distortion 
under the two models: (M1) transmission probability fixed to 0.5 and (M2) transmission distortion estimated.

M1 M2

Parameter Estimate Estimate

20.737 5.301

37.372 17.777

43.812 37.861

32.167 5.301

105.522 37.861

105.522 37.861

32.167 93.123

390.694 93.123

390.694 93.123

0.001 0.124

τ 0.500 0.998
-2*log-likelihood 40431.68 40663.30

λaa
0 4 99− .

λaa
5 9 99− .

λaa
10 14 99− .

λaA
0 4 99− .

λaA
5 9 99− .

λaA
10 14 99− .

λAA
0 4 99− .

λAA
5 9 99− .

λAA
10 14 99− .

rA
( )0
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selection equilibrium. However, this effect is negligible in
the course of only a few generations.

Irrespective of the effect on incidence, if there is segrega-
tion distortion and it has been acting over generations, it
could have contributed to maintaining, or even accumu-
lating diabetic alleles in the population. For example, the
DR4 allele is quite abundant in the Finnish population,
despite the fact that it confers increased susceptibility to

diabetes and some other autoimmune diseases. One
could speculate that the effect of the eliminating selection,
caused by premature death of many of the susceptible
individuals, could have been balanced, or even exceeded,
by the effect of segregation distortion. This balancing
effect of transmission distortion might just represent, for
example, an advantage in the prenatal period.

The observed incidence of Type 1 diabetes in Finland from 1965 to 1996 and expected incidence under two models: (M1) no transmission distortion (τ fixed 0.5) and (M2) allowing transmission distortion (τ has been set to the estimated value of 0.998)Figure 6
The observed incidence of Type 1 diabetes in Finland from 1965 to 1996 and expected incidence under two models: (M1) no 
transmission distortion (τ fixed 0.5) and (M2) allowing transmission distortion (τ has been set to the estimated value of 0.998).
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The model presented here is a single codominant major
gene model which allows for the possibility to non-Men-
delian transmission. Since Type 1 diabetes is likely to be
an oligogenic disease, we acknowledge that this is only a
simple approximation made in order to compare the rate
of genetic changes to the real increase in incidence
observed in Finland. Unfortunately, given the present
state of our knowledge about the etiology of Type 1
diabetes, it is difficult to evaluate the significance of
alternative hypotheses, such as changes of some
environmental "triggering" factors, that could explain the
observed trend. However in a more complex genetic
model the effect of a non-Mendelian transmission of a
single gene would presumably be diluted by other suscep-
tibility genes and therefore an attempt explain the
observed increase in incidence purely in terms of trans-
mission distortion would be even harder.

Methods
In the construction of the genetic model we make the fol-
lowing assumptions:

1. A single diabetes-associated susceptibility factor
(allele(s) or haplotype(s)) is assumed to show transmis-
sion distortion. The allele(s)/haplotype(s) showing the
transmission distortion and conferring increased suscepti-
bility to Type 1 diabetes is denoted by 'A'; other alleles/
haplotypes are simply collapsed to 'a'.

2. τ denotes the probability of inheriting A from a hetero-
zygous (A, a) parent. If inheritance is Mendelian, τ = 0.5.
In model M2 segregation distortion is assumed to have
been acting at approximately the same rate through
(some) generations; the time period of interest ranges
from the 1930s to the present. This is because the insulin
replacement therapy, which stopped Type 1 diabetes to be
a fatal disease, was introduced in the early 1930s.

3. The evolutionary forces of mutation, drift and migra-
tion, are omitted from the model because of the short
time period of interest (appr. 70 years), large population
size (3–5 million), and very low immigration rate.

4. The mating is random with respect to the susceptibility
factor of interest.

5. Excluding the possible transmission distortion effect,
the formation of zygotes is random, and there is no
homozygosity deficiency (which, on the contrary, is
known to exist in HLA in certain populations, as shown in
[39,40]).

6. For simplicity, penetrances of susceptibility alleles are
assumed to be constant through calendar time. Thus, all
individuals with a certain genotype and in some specified

age class have the same probability of acquiring Type 1
diabetes through the considered calendar time period.
The probability of Type 1 diabetes varies between age
classes and thus we adjust for age effects in search for
transmission effects of susceptibility alleles. We note that
joint estimation of age specific penetrances of a latent sus-
ceptibility gene and environmental effects, given that we
use only the age and year specific number of new Type 1
diabetes cases and population at risk, is beyond the scope
of this study.

In the following, k is used to denote the genotype ({k =
1,2,3} for genotypes (A, A), (A, a) and (a, a), respectively),
and b the birth cohort. The genetic model was constructed
as follows. The genotype frequencies are assumed to be in
Hardy-Weinberg equilibrium in the first generation. Let

 denote the genotype frequencies of genotype k in

generation t, and let  and  denote the allele fre-

quency of 'A' and 'a' in generation t. All mating types, their
frequencies (based on the assumption of random mat-
ing), and the genotype frequencies in the offspring are
given in Table 1.

In the standard fashion, from the Table 1, the expected
new genotype frequencies in generation t+1 are

These are the expected genotype frequencies in the off-
spring of parents with corresponding genotype frequen-

cies ,  and . As the incidence of Type 1 diabetes
in our data depends on the genetic susceptibility in chil-
dren aged 14 years or under, the genetic change should be
calculated individually for every birth cohort. However,
because we are mainly interested in finding out the
approximate magnitude of the effect, not its exact value,
we simply use the genotype frequencies given by the non-
overlapping generation model. They are now treated as
genotype frequencies of the distinct annual birth cohorts,
with the interval between two consecutive generations
chosen to be 25 years. In order to obtain the genotype fre-
quencies for annual birth cohorts between these genera-
tions, a linear approximation of (equation 1) was used,
giving then

where  is the genotype frequency in the birth cohort

born in year b. The rate of change of the allele and geno-
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type frequencies depends on the deviation of τ from the
Mendelian expectation, 0.5. The incidence is now a func-
tion of the birth cohort genotype frequencies and the pen-
etrance parameters.

The following notation was used

i = calendar year

j = age

b = i-j = year of birth (of a birth cohort)

Nb = size of the birth cohort obtained from the national
population registry (constant)

dij = number of new cases of Type 1 diabetes in year i in the
j-years-old

Nijk = number of genotype k carriers in year i in age class j

 =  = the frequency of genotype k in the cohort
born in year b

λijk = penetrance for genotype k in year i at age j.

q0 = frequency of allele A in the year in which insulin treat-
ment was introduced (1930)

The observed data consist of {dij, Nij; i = 65,...,96, j =
0,...,14}. However, here we assume for simplicity a con-
stant population size and therefore use only the numbers
of incident cases in the analysis. In order to reduce the
number of parameters to be estimated, we suppose that
λijk does not depend on i, i.e. λijk = λjk and further, that λjk

is constant in each of the age groups 0–4.99, 5–9.99, 10–
14.99. We index these three age groups by j = 1,2,3 and
similarly the three genotypes ((A, A), (A, a), (a, a)) by k =
1,2,3. Since Type 1 diabetes is a rare disease and we
assume that the numbers of new cases in each (i, j, k) cell
are mutually independent, it is natural to have dij~Pois-

son(µij), where . We

express the likelihood of the data P(dij; i = 65,...,96, j =
1,2,3 | θ) in the logarithmic form:

, where θ = (λjk (j, k =

1,2,3), τ, q0). The following natural constraints on the
three parameters λjk are then imposed: for every j = 1, 2, 3
we assume that λj1 ≥ λj2 ≥ λj3 and similarly for every k = 1,
2, 3 that λ1k ≤ λ2k ≤ λ3k. Log-likelihood function was max-
imized using the SAS/IML software nlpnra-function,
which performs maximization of restricted non-linear
functions by the Newton-Raphson method [41].
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