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Abstract
An empirical comparison between three different methods for estimation of pair-wise identity-by-
descent (IBD) sharing at marker loci was conducted in order to quantify the resulting differences
in power and localization precision in variance components-based linkage analysis. On the
examined simulated, error-free data set, it was found that an increase in accuracy of allele sharing
calculation resulted in an increase in power to detect linkage. Linkage analysis based on
approximate multi-marker IBD matrices computed by a Markov chain Monte Carlo approach was
much more powerful than linkage analysis based on exact single-marker IBD probabilities. A
"multiple two-point" approximation to true "multipoint" IBD computation was found to be roughly
intermediate in power. Both multi-marker approaches were similar to each other in accuracy of
localization of the quantitative trait locus and far superior to the single-marker approach. The
overall conclusions of this study with respect to power are expected to also hold for different data
structures and situations, even though the degree of superiority of one approach over another
depends on the specific circumstances. It should be kept in mind, however, that an increase in
computational accuracy is expected to go hand in hand with a decrease in robustness to various
sources of errors.

Background
All methods of statistical gene mapping by means of link-
age and/or linkage disequilibrium use, in one way or
another, the information on polymorphic phenotypesÂ-
typically, the genotypes at one or several polymorphic
marker lociÂ-to trace the inheritance of any specific chro-
mosomal position through the available pedigree data. In
variance-component (VC) linkage analysis, this transmis-
sion pattern is captured by an identity-by-descent (IBD)
matrix, which contains the estimated proportions of alle-
les shared at a particular genomic location for all pairs of

pedigree members. Normally, the observed marker locus
genotypes provide only partial information about the
meiotic transmissions of a given point on a chromosome,
such that many different inheritance patterns are compat-
ible with the observed marker locus genotypes. For rea-
sons of computational simplicity, it is currently standard,
though likely sub-optimal, practice in VC-based linkage
analysis to form a weighted average of IBD sharing over all
admissible segregation patterns, with the probability of
each possible transmission pattern used for weighting.
The resulting estimated IBD matrix is part of the variance-
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covariance matrix used to compute the likelihood on the
data under an assumed multivariate normal distribution
[1] or a multivariate t distribution [2].

The IBD matrix may be estimated from the genotype
information at single marker loci, one locus at a time.
Alternatively, the genotypes observed at several linked
marker loci may be used jointly to infer the transmission
pattern in the data set. Because the genotypes at a single
marker locus are almost never fully informative, and
because the joint use of several marker loci generally
allows more information on the point-wise transmission
pattern to be extracted, the "multi-point" approach is
often preferred to the "two-point" approach. This is espe-
cially true for VC-based linkage analysis where, in contrast
to penetrance-model-based linkage analysis, single-
marker and multi-marker analyses are equally robust to
misspecification of the trait phenotype-trait locus geno-
type relationship, for reasons explained by Göring and
Terwilliger [3]. It should be kept in mind, however, that a
multi-marker approach is not penalty-free even for VC-
based linkage analysis, because multi-marker analysis is
generally less robust to errors in pedigree structure and
marker information [e.g., [4,5]].

A key problem with multi-marker analysis is its computa-
tional burden. The Elston-Stewart algorithm [6] allows
likelihood computations on large pedigrees but only for a
single marker locus or a small number of loci at most, and
the Lander-Green algorithm [7] makes possible the joint
analysis of many loci but only on pedigrees of moderate
size. Several approximate approaches have been devel-
oped to overcome these limitations. Markov chain Monte
Carlo (MCMC) methods [e.g., [8,9]] extend the feasibility
of linkage analysis with regards to the complexity of a ped-
igree that can be handled while leaving it intact, and to the
number of loci that can be analyzed jointly, by sampling
from the permissible inheritance patterns. However, even
these approaches can require long computation times.
Furthermore, it is typically not clear how closely the
obtained information on chromosomal transmissions
approximates the information from an exact analysis. An
alternative concept to approximating exact multi-locus
analysis is sometimes referred to as multiple two-point
analysis. The idea behind this approach is to combine the
computational simplicity of single-marker analysis and
the increased power of multi-marker analysis. In VC-
based linkage analysis, this is achieved by first computing
exact single-marker IBD matrices for all linked marker loci
individually and by then combining these IBD matrices
into an approximate multi-marker IBD matrix for a given
chromosomal location [10,11].

Here, we describe an empirical power comparison
between VC-based linkage analysis using single-marker

(two-point) analysis, approximate multi-marker analysis
using a multiple two-point approach, and approximate
multi-marker analysis using a multipoint MCMC
approach, to quantify the relative gain in power by
increasing the computational complexity of IBD matrix
estimation.

Methods
Data
The simulated data prepared for the Genetic Analysis
Workshop (GAW) 13 were used for analysis. The data set
comprises 4692 individuals in 330 pedigrees in total,
modeled after the Framingham Heart Study [12]. The data
set was "randomly" ascertained, i.e., without regard to a
specific phenotype. The phenotypic and genotypic data
from Cohort 2 was used, which consists of 1634 individ-
uals of younger generations. Cohort 1 contains older indi-
viduals connecting the younger individuals together into
larger pedigrees. No phenotypic or genotypic information
from Cohort 1 was used here. Thus, for the most part, data
were available only from the youngest one or two
generations.

We analyzed height measured at the first clinic visit of this
cohort (phenotype hgt1). This phenotype is largely con-
trolled by additive genetic effects, which together explain
84% of the sex-specific variance. The most important
quantitative trait locus (QTL), Gb1, is located on chromo-
some 5 at 80.41 cM of the sex-averaged map and explains
40% of the sex-specific variance. The QTL is flanked by the
eight marker loci c5g9-c5g16 (four on either side), which
have roughly 10 cM inter-marker spacing. The observed
genotypes at these eight marker loci were used for analy-
sis. To better highlight the difference in power between
VC-based linkage analysis based on the various examined
approaches to IBD matrix estimation, two of these marker
loci (c5g12 and c5g14) were made diallelic by combining
all even and all odd alleles. The other six marker loci had
stated heterozygosities of at least 0.68. Replicates 1–10
were analyzed. The simulation settings (i.e., the
"answers") were known prior to analysis.

Statistical analysis
Single-marker and various multi-marker VC-based linkage
analyses were performed using eight linked marker loci. A
sex-averaged map was used throughout, and absence of
recombination interference was assumed in the analysis.
Marker allele frequencies were estimated by a simple
allele-counting algorithm on all genotyped individuals,
regardless of relationship. Single marker IBD matrices
were computed by computer program SOLAR version
1.7.3 [11], which used computer program FASTLINK ver-
sion 3.0P [13] as the underlying computation engine for
these IBD calculations. SOLAR's built-in multiple two-
point regression-based approach [11] was used to
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combine the single-marker IBD matrices into approxi-
mate multi-marker IBD matrices. The computer program
SIMWALK2 version 2.82 [8], which uses a MCMC approx-
imation to exact likelihood computation, was used to
compute true multi-marker IBD matrices. Standard VC-
based linkage analysis was performed with SOLAR assum-
ing phenotypic multivariate normality and using sex as a
fixed effect covariate, based on the IBD matrices obtained
by any of the three alternatives in turn.

Results
Power
Table 1 shows the maximum LOD score in the region
around the QTL for the three different methods of IBD
sharing computation for Replicates 1–10. In 9 out of 10
replicates, the maximum LOD score for the multiple two-
point approach, which uses a regression procedure to
combine the individual single marker IBD matrices into
approximate multi-marker IBD matrices, is higher than
the maximum LOD score obtained in two-point analysis,
which is based on IBD matrices computed from the geno-
types at single marker loci individually. The difference in
magnitude between the two LOD score peaks is often
quite substantial. The only replicate where the two-point
approach is more powerful is the replicate giving the low-
est LOD score peak for both methods.

The true multi-marker approach, using an MCMC approx-
imation to compute multi-locus IBD probabilities, is in
turn more powerful than the multiple two-point
approach in 9 out of 10 replicates, in many cases giving a
substantially higher LOD score peak. On average, the
regression-based multiple two-point approach gives max-
imum LOD scores that are roughly intermediate between
those from a single-marker and a true multi-marker
approach.

Localization
Table 2 shows the genetic distance between the chromo-
somal position where the maximum LOD score occurred
and the true chromosomal position of the QTL for the dif-
ferent approaches to IBD sharing estimation for the same
10 replicates. The single-marker method fared poorly in
comparison to the multi-marker approaches, giving much
greater genetic distances on average. This was expected,
because the two flanking marker loci were ~6 and ~12 cM
away from the QTL, respectively. The regression-based
multiple two-point approach and the MCMC-based
multipoint approaches were used to compute IBD matri-
ces every centimorgan (cM) and were comparable in accu-
racy of QTL localization.

Discussion
Differences in power
We have compared three different approximations to
multi-marker IBD sharing computation with regards to
power of VC-based linkage analysis. On the examined
data, it is clear that the multipoint approach is more pow-
erful than the multiple two-point approach, which in turn
in more powerful than the two-point approach. In this
data set, the multiple two-point method is able to capture
more information on the chromosomal segregation pat-
tern than a two-point approach, without a significant
increase in computational burden. On the other hand, the
multiple two-point approach clearly does not use all avail-
able information on the chromosomal transmissions
among pedigree members contained in the observed
genotypes.

The difference in power between the two considered
multi-marker approaches is expected to be especially pro-
nounced when the marker loci individually are quite
uninformative (data not shown). The degree to which the

Table 1: Maximum LOD scores for three different methods of IBD sharing estimation

Replicate Two-Point Multiple Two-Point 
(Regression)

Multipoint (MCMC)

1 3.54 6.08 7.18
2 4.48 5.23 7.44
3 2.29 2.83 4.70
4 3.30 5.64 6.41
5 4.78 5.05 6.64
6 4.37 6.50 6.52
7 4.21 7.18 7.03
8 3.28 4.36 5.12
9 3.03 3.70 4.44
10 1.35 0.74 1.76
Mean 3.46 4.73 5.72
Median 3.42 5.14 6.47
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true multipoint approach is preferred may scale differ-
ently depending on the reasons why individual marker
loci provide little information, such as low heterozygosity,
e.g., when single nucleotide polymorphisms are used, or
when genotyped individuals are separated by multiple
generations of ungenotyped individuals. The marker
locus density is also expected to play a role.

We were unable to compute exact multi-marker IBD shar-
ing probabilities on this data set for comparison because
the pedigrees were found to be too large for such calcula-
tions, at least for the time being. We suspect that such an
approach would be at least as powerful as the employed
MCMC approximation, unless the sampler underlying the
SIMWALK2 computer program biases the IBD sharing
probabilities in a systematic fashion relative to the ana-
lyzed phenotype, which seems unlikely in this case given
the "random" ascertainment of these pedigrees.

Generality of findings
This has been an empirical investigation on a data set with
specific characteristics of the pedigrees, the phenotype,
and the marker loci and their genotypes. While we suspect
that our overall conclusion, that power to detect linkage
increases with an increased computational sophistication
in computing IBD sharing probabilities, holds more gen-
erally, the following caveats should be kept in mind.

The data were simulated to be without any errors. While
the simulations were based on sex-specific recombination
fractions, the analysis assumed equal genetic distances for
both sexes. (This choice was made to keep the conditions
as similar as possible between the different IBD calcula-
tions. While SIMWALK2 can handle sex-specific maps cur-
rently, SOLAR's multiple two-point approach cannot at
present.) However, besides this one source of error, the

data and analyses represent an ideal situation that is unre-
alistic for real data. It is known, however, that multi-
marker analysis is generally less robust to errors in pedi-
gree structure, genetic marker map, marker allele/haplo-
type frequencies, and marker genotypes [e.g., [4,5]]. We
suspect that the multiple two-point approximation is
more robust to most if not all of these errors than true
multipoint analysis. Thus, there is a trade-off between
increasing accuracy of computation and resulting increase
in power on the one hand and robustness to errors on the
other hand. The critical point of balance between both
considerations likely falls on different error levels for dif-
ferent data sets and conditions.
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