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Abstract

Background: The advent of high throughput sequencing technology has enabled the 1000 Genomes Project Pilot
3 to generate complete sequence data for more than 906 genes and 8,140 exons representing 697 subjects. The
1000 Genomes database provides a critical opportunity for further interpreting disease associations with single
nucleotide polymorphisms (SNPs) discovered from genetic association studies. Currently, direct sequencing of
candidate genes or regions on a large number of subjects remains both cost- and time-prohibitive.

Results: To accelerate the translation from discovery to functional studies, we propose an in silico gene
sequencing method (ISS), which predicts phased sequences of intragenic regions, using SNPs. The key underlying
idea of our method is to infer diploid sequences (a pair of phased sequences/alleles) at every functional locus
utilizing the deep sequencing data from the 1000 Genomes Project and SNP data from the HapMap Project, and
to build prediction models using flanking SNPs. Using this method, we have developed a database of prediction
models for 611 known genes. Sequence prediction accuracy for these genes is 96.26% on average (ranges 79%-
100%). This database of prediction models can be enhanced and scaled up to include new genes as the 1000
Genomes Project sequences additional genes on additional individuals. Applying our predictive model for the
KCNJ11 gene to the Wellcome Trust Case Control Consortium (WTCCC) Type 2 diabetes cohort, we demonstrate
how the prediction of phased sequences inferred from GWAS SNP genotype data can be used to facilitate
interpretation and identify a probable functional mechanism such as protein changes.

Conclusions: Prior to the general availability of routine sequencing of all subjects, the ISS method proposed here
provides a time- and cost-effective approach to broadening the characterization of disease associated SNPs and
regions, and facilitating the prioritization of candidate genes for more detailed functional and mechanistic studies.

Keywords: In silico, SNPs, 1000 Genomes Project, multi-allelic gene, imputation

Background
The recent advent of SNP array based high throughput
genotyping technologies has stimulated a wave of
genetic association studies, including genome-wide asso-
ciation studies (GWAS) [1], and has led to a number of
discovered and validated associations, which are fully
catalogued on the website http://www.genome.gov/gwas-
tudies/. While many of the disease associations were
found with single nucleotide polymorphisms (SNPs) in
non-coding regions, some are found with SNPs within
or nearby known functional genes. To move beyond
SNP associations, a common approach is to sequence

the candidate gene region in affected subjects and fully
define the entire variation in the region. With this, one
could study the disease association with the gene via
natural “genetic alleles” before launching more detailed
mechanistic studies [2]. Despite the recent advances in
high-throughput sequencing technologies (e.g., Solexa of
Illumina http://www.illumina.com/, 454 Life Sciences
http://www.454.com/, Solid of Applied Biosystem http://
www.appliedbiosystems.com), sequencing targeted genes
or regions for a large number of samples remains cost-
prohibitive.
In this study, we describe an in silico sequencing (ISS)

method to more fully define the sequence variations in
candidate gene regions. Recently, the 1000 Genomes
Project http://www.1000genomes.org has completed its
initial phases, including a pilot project which has
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sequenced 8,140 target exons from 906 selected gene
regions in 697 subjects with an average depth of 50X.
With this high quality sequence data, we were able to
deduce a database of multi-allelic gene polymorphisms
for a majority of the selected gene regions. Based upon
the linkage-disequilibrium between the inferred gene
alleles and the SNP genotype data of these subjects, we
constructed models for predicting a pair phased
sequences of these genes using selected flanking SNPs.
Such prediction models can be used to sequence can-
didate genes in silico with minimal genotyping
requirement.
This development is an extension to our recently

developed method [3], which predicts Human Leukocyte
antigen (HLA) gene alleles. The key idea is to model
gene alleles as multi-allelic polymorphisms, and to build
a likelihood framework of all gene alleles and genotypes
of flanking SNPs for the sample set. Previously, we have
demonstrated success in predicting HLA-A, -B, -C, -DR
and -DQ genes in high resolution with accuracy 95, 93,
97, 79, and 83% respectively. Of course, HLA genes are
quite special, since 1) these genes are among the most
polymorphic genes known to date, 2) there is extensive
linkage disequilibrium (LD) in the region, 3) large sets
of samples have been directly sequenced for their HLA
gene alleles with resolved phasing information in hema-
topoietic stem cell transplantation (HSCT), or studies of
autoimmune diseases, such as Type 1 diabetes. In this
study, we show that it is possible to build comparable
prediction models with satisfactory accuracies for other
genes by treating diploid sequences in the gene region
as large multi-allelic polymorphisms.
This method of predicting polymorphic genetic var-

iants is closely related to the commonly used imputation
methods. Typically, imputation methodologies such as
Impute [4,5], Mach [6], and BEAGLE [7], are designed
to impute untyped SNPs for GWAS on a particular
commercial SNP arrays (e.g. Affymetrix 6.0 or Illumina
1.2 M array), based upon a reference panel of a more
dense set of SNPs (e.g. the HapMap SNPs). While utiliz-
ing underlying LD structure, these imputation methods
typically aim to produce “imputed genotypes” for single
nucleotide variants. In contrast, we have tuned our
approach to predict (or impute) a pair of phased gene
alleles. The primary reason for our focus is that gene
alleles, typically associated with functional sequences in
the coding gene region, can be readily converted to
amino acid sequences for further interpretation. In addi-
tion, one can naturally incorporate structural variations
into allele polymorphisms, due to the modeling of the
entire sequence region.
In the remainder of the paper, we first describe the

proposed methods then summarize the properties of
genes deep sequenced in the 1000 Genomes Project,

and evaluate the performance of our gene prediction
models in the Results Section. Then we present an
application of our approach to an existing GWAS data
gathered from the WTCCC. We conclude this paper
with discussions on the strengths and limitations of the
proposed method.

Methods
Deducing Diploid Sequences
In order to build prediction models for gene diploid
sequences, one of the first steps is to deduce the phase
information of the gene sequences for the training data-
set, which are the samples sequenced in Pilot 3 of the
1000 Genomes Project here. Utilizing all SNP calls
within each gene, we deduced diploid sequences for
every subject. This is equivalent to phasing multiple
SNPs, in the absence of any structural variants as in the
current case. Several methods have been developed for
phasing multiple SNPs [8-12]. The empirical method for
estimating haplotype frequencies and for inferring hap-
lotypes as described in [8] and implemented in HPlus
http://qge.fhcrc.org/hplus/ was used here to efficiently
phase the genotypes even when the number of SNPs
was large.

Predicting Multi-Allelic Genes
With these phased gene diploid sequences, we expanded
the previously developed methodology [3] to predict
alleles of genes sequenced in the 1000 Genomes Project
Pilot3. The key idea is to model gene diploid sequences
as multi-allelic polymorphisms, and to build a likelihood
framework of all gene alleles and genotypes of flanking
SNPs for the sample set. That is, given a random sample
of N subjects, we denote the genotype of a gene by

hi = ḣiḧi , where ḣi and ḧi are the two alleles of the
gene for the ith subject. The genotypes of the q SNPs
flanking the gene region is denoted by gi = (gi1, gi2, ...,
giq), where gij is the SNP genotype at the jth locus for
the ith subject. If the phase at each locus is known, then
the genotypes of the q SNPs can be represented by

gi = (Ġi, G̈i) , where Ġi and G̈i are the SNP haplotypes.
The gene-SNP haplotypes hG is assumed to follow a
multinomial distribution expressed as

f (ḣiĠi) =
∏

hG∈�
Pr (hG)I(ḣiĠi=hG) , where � = �(hi, gi)

includes all haplotype pairs (hG) that are consistent with
the observed genotypes (hi, gi). The frequencies of gene-
SNP haplotypes Pr(hG) are estimated by maximizing the
log likelihood function

l =
N∑
i=1

log f (hi, gi) =
N∑
i=1

log

⎛
⎝ ∑

(ḣiĠi,ḧiG̈i)∈�(hi,gi)

f (ḣiĠi, ḧiG̈i)

⎞
⎠,
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which leads to

l =
N∑
i=1

log
∑

(ḣiĠi,ḧiG̈i)∈�(hi,gi)

f (ḣiĠi)f (ḧiG̈i)

under the Hardy-Weinberg equilibrium (HWE). The
detailed estimation procedure was described in [8]. The
gene alleles are then predicted following the Bayesian
rule as:

f (h|g) = f (h, g)∑
H=ḢḦ

f (H, g)
=

∑
(ḣĠ,ḧG̈)∈�(h,g)

∏
hG

Pr (hG)I(ḣĠ=hG)+I(ḧG̈=hG)

∑
ḢḦ

∑
(ḢĠ,ḦG̈)∈�(H,g)

∏
hG

Pr (hG)I(ḢĠ=hG)+I(ḦG̈=hG)
.

We build a procedure to systematically select the most
informative SNPs using a forward-and-backward
scheme, which starts with the SNPs within a gene (if
available) and gradually extends to flanking regions of
each gene. The SNP selection process was evaluated by
an objective function, which is the negative log-likeli-
hood of the gene allele given SNP genotypes penalized
by the number of additional parameters to be estimated
(Akaike information criterion (AIC) [13]) as follows:

Q = −
N∑
i=1

log f (hi|gi) + (m − k),

where the second term equals the difference of the
number of gene-SNP haplotypes (m) and the number of
gene alleles (k).
The search region was empirically chosen to maximize

the prediction accuracies while retaining parsimony. We
have chosen 150 kb flanking region to predict HLA
genes in our previous work [3]. However, when building
prediction models to accommodate multiple genes, we
had to choose the searching boundary generally applic-
able to all genes. In this study, we evaluated the perfor-
mance of flanking regions of size 0 to 500 kb with a
step size of 50 kb for each gene. In order to compare
the relationship between objective function and size of
flanking region among all selected genes, we rescale the
objective function values (Og) for gene g, denoted as Ôg,
by (Og-min(Og))/(max(Og)-min(Og)), where the mini-
mum and maximum of Og is taken across all sizes of
flanking region. By definition, these rescaled objective
function values are within range 0 [1]. The goal was to
choose a size of flanking region such that Ôg reaches its
minimum for a majority of the genes. In addition, to
accommodate genes with different complexity level, we
have incorporated several modifications (see Additional
file 1) to ensure computational efficiency and feasibility.
Prediction accuracies
As part of the model validation, we applied prediction
models built from the training set, to predict diploid

sequences on another dataset, and to compare the pre-
dictions with the actual diploid sequences. For this com-
parison, we used the following accuracy measurement.

Suppose that Dip = ḣip|ḧip and Dio = ḣio|ḧiodenote the

predicted and observed diploid sequences for the ith
subject respectively. Then the prediction accuracy, over
all subjects in the validation set, was measured by the
percentage of correctly predicted diploid sequences, i.e.

Accuracy =
1
2N

N∑
i=1

ni,

where N is the number of subjects and

ni = max
[
I(ḣip = ḣio) + I(ḧip = ḧio), I(ḣip = ḧio) + I(ḧip = ḣio)

]

represents the number of correctly predicted diploid
sequences for the ith subject.
Measuring genetic polymorphism
Typical genes under consideration are polymorphic, i.e.,
with multiple alleles. To measure such polymorphisms,
we propose to use the Shannon entropy, which is com-
monly used to measure variability of discrete variable
[14]. Consider a gene with n alleles, with allelic frequen-
cies (f1, f2, ..., fn). The entropy of this gene was defined
as

E(G) = −
n∑
i=1

fi log(fi),

where the summation is over all possible alleles.
Entropy with value of 0 means that the gene is not poly-
morphic. The maximum value of entropy equals to log
(n). In general, the larger the entropy is, the more poly-
morphic is the gene.

Analysis Pipeline
Here we describe a general analysis strategy for building
prediction models for diploid sequences of genes
sequenced in the 1000 Genomes Project using SNPs.
The resulting prediction models can be easily applied to
sequence candidate genes in silico and facilitate the
interpretation of association discoveries. To build reli-
able prediction models based on a relatively small num-
ber of samples from each population (Table 1), one can
combine samples from multiple ethnicities [15]. To
separate the training and validation processes, we ran-
domly selected half of the samples from each of the
seven selected study populations into the training set
and designated the remaining samples to the validation
set.
Given the large amount of sequencing data, the typical

first step is to align short-read sequences to the refer-
ence genome, and then to make variant callings. In this
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project, investigators from the 1000 Genomes Project
have already performed such analysis, producing all pos-
sible SNP genotype calls in each study population.
The second step is to clean the data. For each gene,

we filtered out samples that have at least one SNP miss-
ing in the gene. Genes that have more than 50% of sam-
ples filtered or have only one SNP were excluded from
analysis. In addition, samples that were filtered in more
than 60% of genes were excluded.
The third step is to deduce diploid sequences by phas-

ing genotypes of all SNPs within every gene for every
subject. To maintain phasing efficiency and at the same
time retain the independence of the training and valida-
tion sets, we estimated the frequency of alleles of each
gene using the entire set of samples, and then predicted
the phases of gene alleles for samples in the training
and validation set separately. Each distinct gene allele
was then assigned a label as GeneName*Allele, where
Allele was labeled by the numerical number 1, 2,..., in
the order of the frequency of corresponding gene allele.
The diploid sequences were called for each subject, if
the corresponding posterior probability was maximum
and also exceeded a pre-assigned threshold. Otherwise,
the subject’s sequence pair was deemed as missing. To
ensure the quality of prediction models, a stringent
threshold of probability > 0.95 was applied and only
genes that had less than 10% samples with missing
diploid sequences in both training and validation sets
were selected for further model building.
The fourth step is to build prediction models for each

gene using our algorithm of predicting multi-allelic
genes. The prediction models built based on diploid
sequences and SNP genotype data of samples in the
training set were then applied to the training set itself.
The prediction accuracy on the training set was thus

evaluated by comparing the predicted diploid sequences
with the observed ones. To control the quality of predic-
tion accuracy, we used call threshold (CT) of CT = 0,
0.5 and 0.9, i.e., one would make a prediction only if the
posterior probability exceeds CT.
The last step is to validate these prediction models. By

applying the prediction models built in the above step
to the validation set, we computed the prediction accu-
racy using CT = 0, 0.5 and 0.9, which would reflect
“true” prediction accuracies in practice.

Results
Deeply Sequenced Genes
All variants from Pilot 3 of the 1000 Genomes Project
have been identified and organized in a variant file [16].
Briefly, a total of 1,000 CCDS (Consensus Coding
Sequences: http://www.ncbi.nlm.nih.gov/CCDS/
CcdsBrowse.cgi) genes were considered, and were repre-
sented by 8,496 exon targets. Of these genes, there were
907 autosomal genes with a total of 8,174 consensus tar-
get exons successfully captured and sequenced at multi-
ple centers for 695 independent individuals from seven
populations (Table 1). Except for 21 insertions/deletions,
nearly all polymorphisms called in these exons are SNPs.
Thus, all sequence variations were effectively represented
by SNPs. By linking SNPs with their specific genes, we
found that 862 of 907 genes (95%) have two or more
SNPs. For each gene, we filtered out samples that have
one or more SNPs missing in the gene. Genes that have
more than 50% of samples filtered or have only one SNP
were excluded from analysis. In addition, samples that
were filtered in more than 60% of genes were excluded.
There are 643 genes and 684 samples remaining for
further analysis (see Figure 1 for the breakdown).

Properties of Selected Genes
Utilizing all SNPs in the gene, we successfully deduced
diploid sequences for 611 of the 643 genes (See Meth-
ods Section for further information). Of these genes
selected for the following modeling exercise, 84% are
less than 100 KB, while the remaining are larger, with
the largest being 856 KB in size (Figure 2a). The num-
ber of SNPs in each gene ranges from 2 to as many as
42 (Figure 2b). The majority of the genes have between
6 and 21 identified alleles, while 55 of the genes (9%)
have at least 21 to 41 alleles (Figure 2c). The broad
range of polymorphisms among the 611 genes is further
illustrated by the distribution of gene entropies (defined
in Methods Section)(Figure 2d). See Additional file 2 for
a more detailed summary of gene properties.

Training Prediction models
Of the individuals sequenced in Pilot 3, 614 samples
from multiple populations have been genotyped in

Table 1 Samples genotyped in the 1000 Genomes Project
pilot3 and the HapMap3 Project

Populations\Projects 1000 Genomes HapMap3* Both projects

Project pilot3#

European CEU 89 165 83

ancestry TSI 66 102 61

East Asian CHB 109 137 89

ancestry CHD 107 109 90

JPT 105 113 89

West African YRI 111 203 104

ancestry LWK 108 110 98

# The 1000 Genomes project pilot3 sequenced two trio samples from CEU
and YRI. The children in these families were excluded from this analysis.

* Only samples that were in the same 7 populations of the 1000 Genomes
project were listed here. The HapMap3 project also genotyped samples from
ASW (African ancestry in Southwest USA), GIH (Gujarati Indians in Houston,
Texas), MEX (Mexican ancestry in Los Angeles, California), and MKK (Maasai in
Kinyawa, Kenya).
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HapMap 3 using the Affymetrix Human SNP array 6.0
and the Illumina Human 1M-single BeadChip. We have
recently shown that prediction models built using a
training set that includes multi-ethnic populations are
reliable and perform well for the subpopulations [15].
Thereby we combined samples from different ethnicities
in this model building process.
Using the training set, we built prediction models for

all 611 genes and plotted the rescaled objective function
value Ôg (See Methods Section for further details) for
each gene at each flanking region size, quantified by the

color intensity as shown in the color bar. As illustrated
in Figure 3, Ôg generally decreases as the flanking size
increases. While Ôg for some genes continues to
decrease as SNPs up to 500 kb away from the gene
were selected, it reaches its minimum for about half of
the genes at flanking size 250 kb. To balance between
prediction accuracy and the possible over-fitting pro-
blem, we chose to use 250 kb as the size of flanking
region for our further analysis.
Upon the completion of the model building, we pre-

dicted diploid sequences for the training set using pre-
diction models, and compared prediction results with
observed diploid sequences. Using call threshold (CT)
as 0, 594 out of 611 genes have predictive accuracies
averaging 98.26% (range, 95% to 100%) (Figure 4a).
Increasing CT to 0.5 and 0.9 improves prediction
accuracies to 98.34% and 99.23% respectively, at the
expense of reducing call rates (Figure 4c). Balancing
between prediction accuracies and call rates, this exer-
cise supports the use of CT = 0, which is taken as
default hereafter.
Prediction accuracies were examined in the relation to

entropy (Figure 5). In the training set (top panel), pre-
diction accuracies are largely above 0.95. However, there
is a tendency for the prediction accuracy to decline as
the entropy increases.

Validating Prediction models
The prediction models built from the training set were
validated by predicting sequence variants for each of the
611 genes in the independent validation sample set. The
accuracy of the prediction was evaluated by comparing
between the predicted and observed diploid sequences.

Figure 1 Categories of genes targeted in the 1000 Genomes
Project Pilot3. Of the 1,000 CCDS genes targeted, 93 genes (Missed)
were not targeted successfully in at least one genotyping center, 45
genes (0 or 1 SNP) have only zero to 1 SNP called, 219 genes
(Filtered) were filtered out (≥ 50% of the samples have missing value
in at least one SNP within the gene), 32 genes (Unphased) were not
phased properly (≥ 10% of the samples have phasing probability <
0.95 in either training or validation set), the remaining 611 genes
(Predicted) were selected for analysis in this project.

Figure 2 Histograms of the characteristics of genes (N = 611) selected in this project. Note that the interval length of each group is not
evenly distributed.
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The distributions of prediction accuracy with CT = 0,
0.5 and 0.9 are illustrated in Figure 4b, and the distribu-
tions of the call rates corresponding to CT = 0, 0.5 and
0.9 are illustrated in Figure 4d. As expected, the call
rates decline as CT increases from 0 to 0.9. Interest-
ingly, the accuracies with any CT largely peaked at the
interval [95%, 100%), among about 500 out of 611
genes. About 50 genes have accuracies approaching to
100% and slightly more than 50 genes have accuracies
around 90%. The relationship between the prediction
accuracy and the variability of gene is similar to that
shown in the training set (Figure 5). For more details,
see Additional file 3.

Final Model
The training and validation exercises described above
have shown that the proposed method of in silico
sequencing candidate genes is valid, scalable, and has
satisfactory prediction accuracies for a broad sampling
of genes. To make the gene prediction models more
robust, we combined the training and validation sets to
build the final prediction models for all 611 genes using
the procedure described above. The prediction models
included the number of SNPs ranged from 1 to 38.
Those models and the SNPs selected are available on
our website http://qge.fhcrc.org/ISS/.

DC

BA

Figure 4 Prediction accuracy (%) and Call rate (%) of prediction models built using flanking region size 250 K in the training set (N =
342) and the validation set (N = 342).

Figure 3 Plot of rescaled objective function value versus the
flanking region size. The prediction models for the set of 611
genes selected were built using nine different flanking region sizes,
shown on x axis. The y axis shows the list of genes (name not
shown). For each gene g, the objective function value Og is rescaled
as (Og-min(Og))/(max(Og)-min(Og)). The change of this rescaled ratio
for different flanking sizes is plotted on row g using the color
lightness as shown in the color bar.
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KCNJ11: A Type 2 Diabetes Associated Gene
To illustrate the utility of the prediction model in silico
gene sequencing, we analyzed the Type 2 diabetes
(T2D) GWAS data generated by WTCCC [17]. The
WTCCC T2D study includes 2,000 cases and 3,000 con-
trols. Genotyping was done using the Human GeneChip
500 K Mapping Array (Affy500K). WTCCC investigators
have successfully replicated 13 disease associated var-
iants which include the SNPs located in KCNJ11 and
PPARG gene. KCNJ11 gene has been deeply sequenced
for its exon region in the 1000 Genomes Project Pilot 3.
Thus, using KCNJ11 as an example, we illustrate how
one would use our prediction models to sequence
KCNJ11 gene in silico, and to advance the validation/
functional study of the discovered SNP association
before actually sequencing the gene in the wet lab.
The predictive model was built for KCNJ11 gene fol-

lowing the above modeling process, using the available
SNPs from HapMap 3. Since not all selected SNPs were
genotyped in WTCCC, we employed IMPUTE v2 to
impute the additional SNPs, using default parameters.
With both the imputed and genotyped SNPs from
WTCCC, we sequenced the candidate gene KCNJ11 in
silico based upon the predictive model. The distribution
of predictive probabilities is illustrated Figure 6. It
shows that satisfactory prediction confidences (p > 0.8)
can be achieved for > 77% of samples.
Nine gene alleles were predicted to be in both case

and control sets. Using the most frequent allele
(KCNJ11*3) as the reference, we performed a multi-alle-
lic association test using HPlus [8] for the five common
gene alleles with frequency more than 0.01 in both cases
and controls. As shown in Table 2, KCNJ11*1 and
KCNJ11*2 were significantly associated with T2D with
p-value 0.022 and 0.036 respectively. Both of these sig-
nificant gene alleles differed from the reference allele

only by two SNPs: rs5215 and rs5219. This indicated
the possible functionality of these SNPs. Indeed, rs5215
was the SNP reported in the WTCCC study, and rs5219
has been independently reported the association with
T2D [18]. The two SNPs were in high LD with correla-
tion r2 = 0.9. However, rs5219 was not directly analyzed
in the WTCCC since it was not genotyped on the
Affy500K array. In addition, KCNJ11*1 also had the var-
iant allele of synonymous SNP rs5218. This SNP might
not be as critical as the other two SNPs, since the T2D
association was independent of its alleles. The other
common gene allele KCNJ11*5 differed from the refer-
ence allele only at rs1800467 and was not significantly
different from KCNJ11*3 with regard to T2D
association.
To investigate the functional basis of these variants,

we examined the amino acid sequence variants for
KCNJ11 gene. Utilizing the reference genome from
NCBI http://www.ncbi.nlm.nih.gov/, we converted the
diploid sequences of KCNJ11 gene to their amino acid
sequences. Due to redundant codon usage, the number
of amino sequence variants decreased from nine to five.
With the reduced number of variants, we anticipated an
increase in statistical power. Taking the most frequent
aa*5 as reference, there were two common amino acid
sequence variants, i.e. aa*8 and aa*9, with frequency >
0.01 (Table 3). Both sequences consisted of two amino
acid variants, namely E23K and I337V, which corre-
sponded to exactly the two SNP variants rs5219 and
rs5215 found in the significant genomic sequence var-
iants. The multi-allele association analysis showed that
only aa*8 was significantly associated with T2D and the
p-value is 0.003. This association was comparable to the

Figure 6 Distribution of predictive probabilities (the highest
posterior probability among predicted KCNJ11 alleles for every
subject) in the WTCCC data.

Figure 5 Relationship of the accuracy of prediction models
with gene entropy in the training set and the validation set at
CT = 0.
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significant association of genomic sequence variants
KCNJ11*3 comparing to KCNJ11*1 and KCNJ11*2.
However, due to the reduction of the total number of
sequence variants tested for associations, we observed
more significant p-values, reflecting the increase in sta-
tistical testing power. In addition, the association analy-
sis of amino acid sequence variants also indicates a
potential functional interaction of amino acid variants
L270V with E23K and I337V, since having an additional
variant L270V compared to aa*8 leads to the insignifi-
cant association of sequence variant aa*9 with T2D.
However, the frequency of aa*9 is rather low at 44
copies in the control and 34 copies in the case.

Discussion
The 1000 Genomes Project, built upon the success of
the HapMap project, promises to generate high quality
sequence data for thousands of subjects from multiple
racial/ethnic groups. Besides shedding light on human
genome variations, this project will also generate an
abundance of sequence data that will be useful for fine
mapping and better defining disease associated

functional variants. Towards this goal, we have
described a method for in silico sequencing of candidate
genes and regions of potential interest. Through training
and validation exercises on currently available sequence
data from the 1000 Genomes project, we have shown
that the method produces reliable prediction models
with high accuracies, with few exceptions. To facilitate
the future use for the research community, we devel-
oped a set of predictive models for 611 genes utilizing
all available sequence data. Such models can now be
used to sequence known candidate genes in silico and
further to investigate their functional properties, prior to
carrying out actual sequencing in the wet lab. Therefore,
applications of this method would help accelerate valida-
tion researches from discoveries to functional character-
ization in the most cost-effective and time-efficient way.

Connection with SNP Imputation Methods
Our method of predicting polymorphic genetic variants
may be thought of as an extension to imputation meth-
ods. Specifically, like imputation methods, our method
also uses local LD to infer untyped gene alleles (or

Table 2 Results of the multi-allelic association of the KCNJ11 gene alleles with T2D.

Haplotype Frequency

Common Variations* Control Case Coef SE OR 95% CI Z-score p-value

KCNJ11*3 GCCGGGGCT 0.336 0.364 1

KCNJ11*2 GCTGGGGCC 0.320 0.309 -0.11 0.05 0.9 (0.81,0.99) -2.09 0.036

KCNJ11*1 GCTGGGACC 0.317 0.301 -0.12 0.05 0.89 (0.8, 0.98) -2.29 0.022

KCNJ11*5 GCCGCGGCT 0.015 0.018 0.1 0.16 1.1 (0.8, 1.52) 0.59 0.558

Uncommon

KCNJ11*8 GTTGGGGCC 0.008 0.006

KCNJ11*4 GCTGGCGCC 0.0014 0.0005

KCNJ11*6 GCCTGGGCT 0.00078 0.001

KCNJ11*7 CCTGGGGCC 0.001 0.0003

KCNJ11*13 GCTGGGGAC 0.0005 0

In WTCCC1 cohort, which have 1924 T2D cases and 2938 controls (NBS and 58BC), a total of 9 gene alleles were predicted with variations at 9 SNP locations
(rs41282930, rs8175351, rs5215, rs1800854, rs1800467, rs5216, rs5218, rs0#, rs5219). The 4 common gene alleles (freq > 0.01) were analyzed in a multi-allelic
association in this case-control study.

*The SNP variations among the common haplotypes (freq > 0.01) are highlighted in bold.

#This SNP is located at chr11:17366025 (NCBI build 36) and has not been assigned an rs number.

Table 3 Results of the multi-allelic association of the KCNJ11 amino acid gene alleles with T2D.

Haplotype Frequency

Common Variations* Control Case Coef SE OR 95% CI Z-score p-value

KCNJ11*aa*5 EVLIS 0.647 0.616 1

KCNJ11*aa*8 KVLVS 0.336 0.365 0.13 0.04 1.14 (1.05,1.24) 2.99 0.003

KCNJ11*aa*9 KVVVS 0.015 0.018 0.21 0.16 1.24 (0.9, 1.69) 1.32 0.188

Uncommon

KCNJ11*aa*4 EVLIT 0.001 0.0003

KCNJ11*aa*1 ELLIS 0.0005 0

By converting the predicted genomic gene allele to amino acid sequences, the total number of gene alleles is reduced to 5, with four amino acid variations
(E23K, L64V, L270V, I337V, and S385C). The 3 common haplotypes were considered in this case-control study.

*The amino acid variations among the three common haplotypes are highlighted in bold.
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equivalently, phased diplotypes with multiple SNPs),
whereas imputation methods infer untyped SNPs. By
predicting fully phased sequence diploids, our approach
allows one to translate DNA sequence variants in the
coding region into amino acid sequence variants,
thereby facilitating the functional interpretation of dis-
ease associations.

Connection with Haplotype based Association Analysis
Our methodology also helps to resolve a long-standing
debate on the value of haplotype based association ana-
lysis. Recall that haplotype based association analysis,
since its inception, has been suggested as a preferred
method for assessing disease association [19-22],
because of its desired genetic interpretation and reduced
number of multiple comparisons. However, the broader
application of haplotype based association analyses
would require investigators to rationally choose “haplo-
type units” of multiple SNPs, such as “haplotype blocks”
[19,23,24]. Further investigation of the human genome
has suggested that such blocks are not as robust as they
were originally postulated and are also variable across
populations. Thus, “haplotype unit” remains to be con-
ceptually appealing. In practice, the majority of GWAS
takes simple SNP-by-SNP association analysis, based
upon publications thus far, because SNP-based associa-
tion analysis is straightforward and is more amenable to
comparisons across studies. Our proposed analytic strat-
egy potentially has the advantages from both sides: 1) it
focuses on natural units such as coding genes, or func-
tional regions, which are comparable across studies; 2) it
facilitates interpretations by framing associations in
terms of diploid sequences and reduces the severity of
multiple comparison issue.

Structural Variants
The current methodology can naturally incorporate
structural variants in building prediction models. One of
the major advantages of direct sequencing is the ability
to identify structural variants, including insertions and
deletions. Structural variants could be naturally coded as
additional gene alleles, and incorporated into prediction
models. In the current study, few genes are known to
have structural variants in those sequenced exons; no
illustrations are given here.

Choice of the Flanking Regions
During the model training process, one subjective para-
meter to be chosen, is the flanking region size for each
gene (or region). The larger the flanking region, the
more likely it is that all predictive SNPs are included,
but also the greater is the chance that the prediction
models will be over-fitting. Based upon our empirical
experiences determining the optimal size of flanking

regions for predicting alleles for five HLA genes [3,15],
we have concluded that a default 150 KB flanking region
is usually satisfactory. However, since the majority of the
genes modeled for this study are larger than HLA genes,
the empirical data summarized in Figure 3 lead us to
use a flanking region of ± 250 kb for each gene.

Limitation 1: poor prediction accuracies
While prediction accuracies of most genes are approach-
ing 99%, it is noted that two genes (TLL1 and ZNF474)
have particularly low prediction accuracies in the valida-
tion set. At CT = 0, the lowest prediction accuracy
among all the 611 genes is 79% for TLL1 gene. This
gene is one of the complex genes in this dataset (see
Figure 2), with length of 230,584, as many as 31 SNPs,
more than 50 alleles and entropy of 1.38. More than
half of the prediction errors made on the validation set
occur for uncommon alleles with frequency < 0.01. The
predictive model includes 28 SNPs, with the prediction
accuracy of 97% and 79% on the training and validation
sets respectively, which indicates a possible model over-
fitting. The remedies for such a problem include 1)
increasing sample size in the training set and thus
improving the power of predicting gene alleles, or 2)
reducing the gene complexity by dividing the single
gene into two or more segments based on their LD
structure, or 3) choosing a smaller size of searching
boundary when training the model.
The second gene ZNF474 has the prediction accuracy

of 80% on the training set. Seventy out of the 92 predic-
tion errors involved three alleles ZNF474*1, ZNF474*2
and ZNF474*3, which differ by two SNPs (rs2560306
and rs35262183). Unfortunately, neither SNP was geno-
typed nor in significant LD with any of the SNPs in the
HapMap 3. In the absence of these “highly informative
and yet isolated SNPs”, one would not be able to differ-
entiate these alleles. This phenomenon has also been
observed for HLA predictions [3]. To overcome this
limitation, the remedy is to restrict the prediction only
to the combined alleles, a common practice in HLA
genotyping. If separating such alleles is essential for
practical reasons in prospective studies, one has no
choice but to genotype additional missing SNPs.

Limitation 2: poor diploid sequence quality
In order to recover diploid sequences from the 1000
Genomes Project, it is necessary to statistically infer for
haplotypes. Among the 645 selected genes, 32 genes
have been excluded, because > 10% of samples had rela-
tively poor haplotype inference with probability less
than 0.95. The poorer haplotype inference may associate
with a complex gene structure. For example, of these 32
genes, four genes (ANKRD15, TRPV3, NLRP11,
CYP24A1) are longer than 850Kb, or the entropies are
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greater than 2, or have more than 50 gene alleles. To
address this challenge, our strategy is to divide a gene
into several regions, e.g., by combining adjacent exons
or by short segments, and then deduce the alleles within
each region separately. On the other hand, for those
genes with complex structural variations, probably the
most effective approach is to use sequence technologies
that produce relatively long reads, such as several hun-
dred or even thousand nucleotide bases, which allow us
to deduce diploid sequences directly. Technological
improvement in the future would lessen the impact of
this particular limitation.

Limitation 3: limited polymorphisms in the training
samples
A critical factor of building useful prediction models,
especially for those genes with rare gene alleles, is to
have a sufficiently large sample size so that rare alleles
are observed in the training set. In our study, the SNP
and sequence data used in this paper came from the
614 samples in both HapMap and the 1000 Genomes
Project. Prediction accuracies should be improved when
much more samples are available in future.

Conclusions
Prior to the general availability of routine sequencing all
subjects, the ISS method proposed here provides a
timely and cost-effective approach to broadening the
characterization of disease associated SNPs and regions,
and facilitating the prioritization of candidate genes for
more detailed functional and mechanistic studies.
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