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Abstract

Background: Meta-analysis is a popular methodology in several fields of medical research, including genetic
association studies. However, the methods used for meta-analysis of association studies that report haplotypes
have not been studied in detail. In this work, methods for performing meta-analysis of haplotype association
studies are summarized, compared and presented in a unified framework along with an empirical evaluation of the
literature.

Results: We present multivariate methods that use summary-based data as well as methods that use binary and
count data in a generalized linear mixed model framework (logistic regression, multinomial regression and Poisson
regression). The methods presented here avoid the inflation of the type I error rate that could be the result of the
traditional approach of comparing a haplotype against the remaining ones, whereas, they can be fitted using
standard software. Moreover, formal global tests are presented for assessing the statistical significance of the overall
association. Although the methods presented here assume that the haplotypes are directly observed, they can be
easily extended to allow for such an uncertainty by weighting the haplotypes by their probability.

Conclusions: An empirical evaluation of the published literature and a comparison against the meta-analyses that
use single nucleotide polymorphisms, suggests that the studies reporting meta-analysis of haplotypes contain
approximately half of the included studies and produce significant results twice more often. We show that this
excess of statistically significant results, stems from the sub-optimal method of analysis used and, in approximately
half of the cases, the statistical significance is refuted if the data are properly re-analyzed. Illustrative examples of
code are given in Stata and it is anticipated that the methods developed in this work will be widely applied in the
meta-analysis of haplotype association studies.

Background
The continuously increasing number of published gene-
disease association studies made imperative the need of
collecting and synthesizing the available data [1,2]. The
statistical procedure with which data from multiple stu-
dies are synthesized is known as meta-analysis [3-5]. In
meta-analysis, a set of original studies is synthesized and
the potential heterogeneity is explored using formal sta-
tistical methods [3,4,6,7]. In the medical literature,
meta-analysis was initially applied in the field of rando-
mized clinical trials [8,9], but nowadays it is considered
a valuable tool for the combination of observational

studies [10], as well as for genetic association studies for
which specialized methodology has been developed
[5,11-18].
Most of the genetic association studies (and hence the

meta-analyses derived from them) are performed using
single markers, usually Single Nucleotide Polymorph-
isms (SNPs). However, the SNP that is under investiga-
tion is not always the true susceptibility allele. Instead, it
may be a polymorphism which is in Linkage Disequili-
brium (LD) with the unknown disease-causing locus
[19]. In such cases, the single marker tests may be
underpowered, depending on the degree of LD and the
allele frequencies [20]. Haplotypes, which are the combi-
nation of closely linked alleles on a chromosome, are
therefore important in the study of the genetic basis of
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diseases and thus, they are extensively used [21,22]. The
importance of studying haplotypes ranges from elucidat-
ing the exact biological role played by neighbouring
amino-acids on the protein structure, to providing infor-
mation about ancient ancestral chromosome segments
that harbour alleles influencing human traits [23]. More-
over, haplotype association methods are considered to
be more powerful compared to single marker analyses
[24,25], even though this is questioned by some
researchers [26].
A major problem in haplotype analyses is that in order

for the analysis to be performed we need to reconstruct
or infer the haplotypes, usually with an approach based
on missing data imputation [27-29]. This uncertainty in
imputing the haplotypes poses some problems in the
analysis [30] that are to be discussed later in this work.
Nevertheless, studies that investigate the association of
haplotypes with diseases are increasingly being pub-
lished (Figure 1), with an even more increasing rate
after 2003, when the HapMap project was initiated [31].
This exponential increase follows the general pattern of
gene-disease association studies [1,2,32] and naturally,
the obvious extension would be to use meta-analysis in
order to increase the power of individual studies and to
resolve the reasons of heterogeneity and inconsistency.
This work has two primary goals. First, to perform a

detailed literature search and an empirical evaluation of
the published studies that report meta-analyses of haplo-
type associations; and second, to present a concise over-
view of the statistical methods that could and should be
used in such meta-analyses. These two important issues
were not previously studied in the literature and the

findings are interesting. Even though the methods pre-
sented in this work could be derived in a straightfor-
ward manner from extending previous works on
multivariate meta-analysis [33-37], the majority of the
published meta-analyses did not use optimal methods
for analyzing the data. Moreover, in several circum-
stances the results of some studies are shown to be
severely flawed. The manuscript is organized as follows:
Initially, the commonly used methods for haplotype ana-
lysis for a single study are reviewed in order to establish
notation. Afterwards, the methods of meta-analysis are
presented. In particular, we present the standard method
of univariate meta-analysis and its limitations, which
leads to a more powerful multivariate approach based
on summary-data. Accordingly, a general framework
based on generalized linear mixed models (GLMMs) is
presented and the approaches based on logistic regres-
sion, multinomial logistic regression and Poisson regres-
sion are discussed. We also discuss continuous traits
and details of the implementation of the models. Finally,
we present the results of the empirical evaluation of the
literature and compare the results reported in these ana-
lyses with the ones obtained using the methods devel-
oped here.

Methods
Methods for haplotype association
Let’s assume we have n biallelic markers that form a
haplotype. If the alleles in position m (m = 1, 2... n) are
denoted by Am and Bm the possible haplotypes would be
r = 2n. In a case-control study, a cross-tabulation of
haplotypes by disease status, that ignores the individuals
and counts only the total number of haplotypes
observed in the analysis, would result in data arranged
in the form of a 2 × r contingency table (Table 1). This
cross-tabulation is somehow simplistic since it assumes
a multiplicative (co-dominant) model of inheritance
[38]. However, it is the most commonly reported form
of haplotype data and thus, it is more suitable for meta-
analysis of published studies as we will discuss later.
Assuming a binomial sampling scheme where fixed
numbers of cases and controls are sampled indepen-
dently, we can model the structure of the table using
logistic regression methods where the status (case/

Figure 1 A graphical representation of the increasing number
of published haplotype-association studies. A search was
performed in Pubmed using the terms “haplotype” and “association”
from 1997 to 2009. Even though the reference list may include
review articles, methodological papers or even irrelevant works, the
trend is obvious, especially after 2003 when the HapMap project
was presented. The search was conducted during December 2009
and thus the count for 2009 may be an underestimate.

Table 1 Cross-tabulation of haplotypes by disease status

Haplotype (zj) Cases (y = 1) Controls (y = 0)

1 89 183

2 14 26

3 24 22

4 3 3

The haplotype data obtained in a case-control study on 182 caucasian women
concerning the association of p53 haplotypes with breast cancer [108]. The
data are presented in the form described by Wallenstein and coworkers [38].
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control) is the dependent variable and the haplotypes
are treated as covariates. This corresponds to the so-
called “prospective likelihood”, the likelihood based on
the probability of the disease given the exposure. Thus,
we denote by πj = P(yj = 1) the underlying risk (i.e. the
probability of being a case) of a person carrying a single
copy of the jth haplotype. A reasonable choice would be
to consider the most common haplotype (i.e. h1) as the
reference category and create r-1 dummy variables tak-
ing values zj = 1 for haplotype j and 0 otherwise. This
model can be formulated as:

logit logit  j j j j

j

r

P y j z( ) = =( )⎡
⎣

⎤
⎦ = +

=
∑1 0

2

| (1)

This model was proposed initially by Wallenstein and
co-workers and as we already mentioned, assumes a
multiplicative genetic model of inheritance [38]. More-
over, the haplotypes are assumed known quantities,
which may not always be the case (see below).
Alternatively, assuming a multinomial sampling

scheme where the total sample size is considered fixed,
a multinomial logistic regression model would be appro-
priate, where the different haplotypes would be the
dependent variables. This corresponds to the well-
known “retrospective likelihood” (i.e. the likelihood
based on the probability of exposure given disease sta-
tus) applicable in case control studies. In this case, the
haplotypes are treated as dependent variables and the
case/control status as the predictor in a multinomial
(polytomous or polychotomous) logistic regression [39]:
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By observing that the linear predictor becomes:
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it is easy to understand that the bj coefficients
obtained by fitting the model are estimates of the log-
Odds Ratios (i.e. for comparing hj vs. h1) in equivalence
to the respective coefficients of the model in Eq. (1).
Obviously, b1 = 0 for identifiability since haplotype j = 1
(i.e. h1) is used as the reference category. The particular
model was first used for haplotype analysis by Chen and
Kao [40].
Lastly, assuming that the observed counts are realiza-

tions of a Poisson random variable, one can fit log-linear
models (Poisson regression), where the dependent

variable is the counts and thus, the studies, the type of
haplotypes and the case/control status are treated as inde-
pendent variables. Log-linear models are widely used for
haplotype analysis, for instance, for detecting LD [41,42]
and for haplotype-disease association [43,44]. This model
can be formulated in terms of a Poisson regression model
in the context of generalized linear models, as:

log n y a z z yj j j j

j

r

j j j

j

r

( ) = + + +
= =
∑ ∑  0 0

2 2

(4)

This is the standard saturated model for describing
the 2 × r contingency table of haplotypes by disease.
The bj’s are the coefficients that correspond to the hap-
lotype by disease interaction and are equivalent to those
obtained by fitting the models in Eq. (1) and (2). It is
easily verified that the coefficients a’s and b’s are identi-
cal across the three models. The overall hypothesis for
association (b = 0) can be tested by performing a multi-
variate Wald test using the estimated covariance matrix,
cov(b). Then, the test statistic (score) U = b’cov(b)-1b,
will have asymptotically a c2 distribution on r-1 degrees
of freedom. Alternatively, a likelihood ratio test compar-
ing the saturated model against the model with no inter-
action can be performed. Similar tests can be performed
for the models in Eq. (1) and (2).
Whatever the assumed sampling scheme that gave rise

to the data of Table 1 may be, it is well known that the
results of fitting each one of the three models are nearly
identical [45]. For instance, it has been shown that max-
imum likelihood estimates obtained from the “retrospec-
tive” likelihood are the same as those obtained from the
“prospective” likelihood [46,47]. The equivalence of
logistic regression and Poisson modelling has been also
exploited in the past for deriving methods for detecting
gene-environment interactions [48].
The methods discussed above are simple applications

of the generalized linear model extending the analysis of
single markers to haplotypes and assume that, i) the
haplotype risk follows a multiplicative model of inheri-
tance, ii), the haplotype phase is known and, iii) the
population is in Hardy-Weinberg Equilibrium (HWE).
The genetic model of inheritance can be handled simply
by using in the analysis the so-called haplo-genotypes or
diplotypes, instead of the genotypes. This is easily per-
formed with all the previously presented methods by
using the pairwise combinations of haplotypes (h1h1,
h1h2 and so on). In case-control association studies,
however, with the exception of some cases where direct
genotyping of the haplotypes is applicable (i.e. [38]), the
haplotypes (and the haplo-genotypes) are usually not
known, but are inferred from the data using statistical
methods for missing data, usually with an EM or EM-
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like algorithm [27-29]. Thus, treating them as known
quantities has been shown to be problematic [30]. More
advanced methods have been developed in order to
account for these limitations, for instance weighting the
haplotypes by their probability [49,50]. Score methods
based on the prospective likelihood [51] or the retro-
spective likelihood [52], have also been developed, as
well as methods for allowing for gene-environment
interaction [53]. A comparison of methods has shown
that the approaches are roughly comparable when the
haplotype effect on disease odds follows a multiplicative
model. However, for dominant and recessive models,
the retrospective-likelihood method has increased effi-
ciency with respect to the prospective methods [54].
Graphical models have been proposed by Thomas [55]
and log-linear models by Baker [56]. Lin and co-workers
extended the previously presented methods by including
various sampling schemes in a unified framework [57].
Even though a large body of the genetic epidemiology

literature is dedicated to such methods, their application
in meta-analysis is problematic since in most cases the
original data are not available to the analyst. Thus, in
the following sections where the methods for meta-
analysis are summarized we also assume that the
haplotypes are known. An extension when the posterior
probabilities of haplotypes are given from the output of
the haplotype inference software would then be
straightforward.

Methods for meta-analysis of haplotype association
In this section the methods for meta-analysis are pre-
sented. Initially we will discuss simple methods using
summary data, whereas in the next sub-section more
advanced methods that use generalized linear models on
grouped or Individual Patients Data (IPD) are presented.

Meta-analysis using summary-data
A commonly used approach that is based on traditional
methods and uses solely summary data is to consider
separately the effect of the jth haplotype against the j-1
remaining ones. That is, for each study i (i = 1,2,...,k) we
will compute a log-Odds Ratio (logOR):

y OR
n n
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ij ic

ij ic

= =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟log log 1 0

0 1

(5)

with an asymptotic variance given by:
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(6)

In this notation, nic0 an nic1, are the counts of the
remaining haplotypes (excluding haplotype j) for

controls and cases of the ith study respectively, given
by:
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In a standard univariate random-effects model we
assume that the logarithm of the OR of each study i, is
distributed normally as:

y N si i− +( ) , 2 2 (8)

Thus, the combined logarithm of the Odds Ratio
(logOR) would be given by:

  
∧

= = +( )
= =∑ ∑w w w si i
i

k

i
i

k

i i
1 1

2 21,  with (9)

The between-studies variance (τ2), could be easily
computed by the non-iterative method of moments pro-
posed by Dersimonian and Laird [58], even though
there are several alternatives that use iterative proce-
dures (i.e. Maximum Likelihood (ML) or Restricted
Maximum Likelihood (REML) [33]). Apparently, by set-
ting τ2 = 0 in Eq. (9) corresponds to the well known
fixed-effects estimator with inverse variance weights.
The particular approach is very easily implemented,

intuitive and it can be performed in a standard univari-
ate meta-analysis framework. In the results section we
will see that several already published meta-analyses
used this method. However, the method has some draw-
backs. The most important is that it is prone to an
increased type I error rate due to multiple comparisons.
Multiple comparisons constitute an important problem
in haplotype analysis, especially as the number of haplo-
types increases [59,60]. The model implied by Eqs. (5) -
(8), is conceptually similar to collapsing the genotypes
in a single-marker analysis, an approach that has been
shown to increase the power as well the type I error
rate [61]. Thus, the particular approach can be justified,
only when there is strong prior knowledge concerning a
particular haplotype and this haplotype is the only one
that is being tested.
To overcome the multiple comparisons problem, a

straightforward alternative would be to extend the
model in a multivariate framework modelling simulta-
neously the logORs derived from comparing haplotypes
j = 2,3,...,r against a reference haplotype (j = 1). Follow-
ing the general framework for multivariate meta-analysis
[37,62], we denote by yi the vector containing the r-1
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different estimates, and by b, the vector of the overall
means given by:
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These logORs similarly to Eq. (5) will be given by:
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with an asymptotic variance given by:

var y s
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In the multivariate random-effects meta-analysis, we
assume that yi is distributed following a multivariate
normal distribution around the true means b, according
to the marginal model:

y Ci iMVN  , +( ) (13)

In the above model, we denote by Ci the within-stu-
dies covariance matrix:
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and by Σ the between-studies covariance matrix, given by:
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The diagonal elements of Ci are the study-specific esti-
mates of the variance that are assumed known, whereas
the off-diagonal elements correspond to the pairwise
within-studies covariances, for instance rw23s2is3i=cov(y2i,
y3i). Since the logORs derived for each haplotype are
compared against the same reference category, their pair-
wise covariances will be given [12], by:

cov , , , ’ , , ... , ’’y y
n n

j j r j jji j i
i i

( ) = + ∀ = ≠1 1
2 3

10 11
(16)

We should mention that from standard normal theory it
is known that the multivariate test for b = 0, based on
b’cov(b)-1b, could yield significant results even if all the r-1
univariate Wald tests are non-significant. Thus, the multi-
variate test should be performed initially and only if a sig-
nificant result is found we can proceed by collapsing the
haplotypes and perform a standard univariate meta-analysis.
The model can be fitted in any statistical package cap-

able of fitting random-effects weighted regression models
with an arbitrary covariance matrix, such as SAS (using
PROC MIXED or PROC NLMIXED), R (using lme) or Stata
(using mvmeta). In this work, we used mvmeta which
performs inferences based on either Maximum Likelihood
(ML) or Restricted Maximum Likelihood (REML), by
direct maximization of the approximate likelihood using a
Newton-Raphson algorithm [63]. Alternatively, mvmeta
can also implement the multivariate version of the DerSi-
monian and Laird’s method of moments [64]. The last
option, being non-iterative, is very attractive in case of
large number of haplotypes and/or large number of stu-
dies. A major disadvantage of the methods proposed in
this section is the assumptions of normality that are
employed and the need for correction when there are rare
haplotypes (i.e. adding a pseudocount of 0.5 to the haplo-
types with zero counts). These limitations are surpassed
by using the methods discussed in the next section.

Meta-analysis using binary data
In this section, methods that use directly the binary nat-
ure of the data, within a generalized linear mixed model
(GLMM) are presented. These methods are usually
termed IPD methods [33-37] although in many real-life
applications, individual data may not be literally avail-
able. Instead, extending the models described for a sin-
gle study, only summary counts of individuals carrying
the respective haplotypes will normally be used.
Logistic regression
Using the prospective likelihood we can extend the logis-
tic regression model of Eq. (1) in order to incorporate
study specific effects and perform a stratified analysis
(fixed effects meta-analysis). To do so, we need to intro-
duce k-1 dummy variables di (taking values equal to zero
or one) with coefficients b0i that are indicators of the
study-specific fixed-effects. Thus, the model is a straight-
forward extension to the model described previously for
meta-analysis of genetic association studies for single
nucleotide polymorphisms [16] and is formulated as:

logit logit
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Here, the bj obtained by fitting the model are the
overall estimates of the logORs (i.e. for comparing hj vs.
h1). An overall test for the association of haplotypes
with disease can be performed if we denote by b the
vector of the estimated coefficients and by cov(b) its
estimated variance-covariance matrix. Then, the test sta-
tistic U = b’cov(b)-1b will have asymptotically a c2 dis-
tribution (U~c2r-1) [65]. The particular model has been
used in several meta-analyses of haplotype association
studies [66-69] (see in the results section, the empirical
evaluation of the literature). This fixed effects model
assumes homogeneity of ORs between studies. This
assumption can be tested by adding the interaction
between the study effect and the haplotypes into the
model::
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This is the analogue to the Cochran’s test for hetero-
geneity in the univariate meta-analysis. The hypothesis
can be tested by performing a multivariate Wald test,
where the null hypothesis is:

H i k j rij0 0 2 3 2 3: , , ,..., ; , ,..., = = ∀ = =( )0 

The test statistic can be constructed analogously to
the one used for b. If we denote by g the vector of the
estimated coefficients, by V the estimated variance-cov-
ariance matrix and by Rg = r the vector of the (r-1)(k-1)
linear hypotheses, then the statistic:

W = ( )′ ′( ) ( ) = ′ ( )− −R - r RVR R - r    1 1
cov (19)

will have asymptotically a c2 distribution [65]

W r k  −( ) −( )1 1
2 (20)

Moreover, the value of W could be used in order to
calculate a modified version of the overall inconsistency
index I2 [70]:

I
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This measure is quite useful, since it enables us to
summarize the overall heterogeneity, instead of having

to look at multiple indices of heterogeneity arising from
multiple haplotype contrasts.
In order to account for an additive component of het-

erogeneity and perform a random-effects logistic regres-
sion allowing the haplotype effects to vary between
studies, the most suitable way is to introduce a set of
study-specific random coefficients, representing the
deviation of study’s true effect from the overall mean
effect for each haplotype. Thus, the model becomes:
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In this model, the random terms bi are distributed as:
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The between studies variances and covariances have
the same interpretation as the ones obtained by the
summary-data methods of Eq. (13) and (15).
Multinomial logistic regression
Alternatively, the model may be parameterized assuming
a multinomial sampling scheme utilizing the retrospec-
tive likelihood. In this case, an extension of the model
of Eq. (2), which incorporates fixed-study effects, would
be:
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The linear predictor in the above model becomes:
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Similar to the model based on prospective likelihood,
the variables di are indicators of the study-specific fixed-
effects. An overall test for the association of haplotypes
with disease (b = 0) can be performed similarly to the
logistic regression model (U). Introducing the study by
disease interaction terms can form a test for homogene-
ity of ORs across the k studies:

U
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d y d yij
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r
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                                                           j = 1,22,..., r

(27)

The statistics for heterogeneity (W) as well as the I2

index derived from it are identical to the one presented
in Eq. (19) - (21).
A random-effects extension to the model can be for-

mulated if in the above model, we introduce a haplo-
type-specific random coefficient bij (for haplotypes j =
2,3, ...,r), in which case the linear predictor becomes
[71]:
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and the model is completely specified as a random
effects multivariate meta-analysis, with random terms bi
distributed similarly as bi~MVN(0,Σ). The interpretation
of the variances and covariances of the random terms is
identical to the ones presented in Eq. (13). A version of
this model has been used previously for meta-analysis of
genetic association studies involving single nucleotide
polymorphisms [12], but according to the author’s
knowledge it has never been used for meta-analysis of
haplotypes.
Poisson regression
Lastly, we can extend the log-linear model of Eq. (4) in
order to perform a fixed effects meta-analysis allowing
for the study-specific effects. The major difference
compared to the previous approaches lies in the struc-
ture of the log-linear model and the interpretation of
the main effects and interactions. Having in mind that
we want to model a 2 × r × k contingency table, the
appropriate choice would be to include in the model
of Eq. (4) the study specific main effects as well as the
two-way interactions (study x disease and study x hap-
lotype). Thus, we would have a model containing all
the main effects as well as all the two-way interactions,
a model known as the “no three-factor interaction
model“ [45]:
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(29)

In this model, the coefficients aj, aij, b0, b0j and bj
correspond to the ones obtained by fitting the models in
Eq. (17) and Eq. (15). The overall test for the association
of the haplotypes with the disease (b = 0), is known in
the context of log-linear models as the test of “partial
association“ [72,73]. The model in Eq. (29), assumes
homogeneity of ORs across studies. Thus, in order to
test this assumption we need to include additional terms
for the three-way interaction (study x disease x haplo-
type). This is accomplished by fitting the saturated
model:
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(30)

The test with the null hypothesis Η0: g = 0 (gij = 0,i =
2,3,...,k, j = 2,3,...,r) is identical to the ones obtained by
fitting the models in Eq. (18) and (27). The three-way
interaction model and its interpretation in terms of test-
ing the homogeneity of ORs has been discussed in detail
in the past [45,74-76]. Log-linear models have been
employed in several meta-analyses of haplotype associa-
tion [77,78] (see in the results section). However, even
though not described in detail, it is apparent from the
results reported, that in these analyses the log-linear
model was not applied in an appropriate manner.
Although the authors stated that they performed stratifi-
cation by study, they probably included only the main
effect of the study and not the interaction terms with
both haplotypes and disease. As we will see in the
results section, when the correct model is applied, the
originally drawn conclusions are compromised.
In analogy to models in Eq. (22) and (28), a random

coefficient for the disease by haplotype interaction can
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be applied in order to perform a random-effects meta-
analysis:
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with random terms bi distributed similarly as bi~MVN
(0,Σ). Similarly to the multinomial logistic regression
model, the interpretation of the variances and covar-
iances of the random terms is identical to the ones pre-
sented in Eq. (12).

Continuous traits
The methods discussed so far assume we are dealing
with a binary trait, usually in a case-control setting.
However, continuous traits are not uncommon in
genetic association studies and these should be easily
accommodated using a linear model (linear regression).
For instance, denoting by yij the continuous trait for a
person carrying the jth haplotype in the ith study, the
model would be:

y d zij i i j j

j
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2

(32)

The homogeneity of haplotype effects across studies
can be subsequently checked using a model with a hap-
lotype x study interaction term:
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Finally, a random effects model could be formulated
using a liner mixed model:

y d zij i i j ji j
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(34)

with random terms bi distributed similarly as
bi~MVN(0,Σ). Similarly to the previously described
models, the interpretation of the variances and covar-
iances of the random terms is identical to the ones
presented in Eq. (12). In case where individual data are
not available, the above models could be easily fitted
using summary data (mean values and standard devia-
tions) per haplotype.

Implementation
The models presented in this section can be easily fitted
in Stata using gllamm, or in SAS using PROC
NLMIXED. These models are expected to perform better
compared to the models presented in the previous sec-
tion, in case the normality assumption for logORs does
not hold. Furthermore, a major advantage of these mod-
els is that they can directly be used for pooled meta-
analyses performed under large collaborative projects.
This is why these models are usually termed Individual
Patients Data (IPD) methods [36]. However, a disadvan-
tage is that these methods are computational intensive,
especially when the number of haplotypes is large.
A sometimes useful simplification can be made in Eq.

(15) if we assume that the between-studies variances are
equal [34]. In such case by letting τ = τ2 = τ3 = ... = τr, Σ
reduces to:
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Another approximation would be to impose a single
between studies correlation, but allow for different
between-studies variances [79]:
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In this work however, we chose to use a different
approximation that can be obtained if the number of
random effects is reduced by decomposing the random
terms using factor loadings such as: τ2

2 = l22τ2, τ32 =
l32τ2, ..., τr2 = lr2τ2, and letting l2 = 1 for identification.
Thus, the covariance matrix becomes now:
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The particular approximation is conceptually similar
to the one used previously for the so-called “genetic
model-free approach” for meta-analysis of genetic asso-
ciation studies [14,80], even though the motivation was
different. The model imposes a single between studies
variance τ2 thus, it is much faster since the factor
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loadings lj with j = 3,4,...,r are treated as fixed-effects
parameters. By observing also the off-diagonal elements
of the covariance matrix in Eq. (37), we can see that the
model restricts the between-studies correlations (rBjj’) to
be equal to ±1 (depending on the sign of ljlj’). Never-
theless, the between-studies correlations are usually
poorly estimated especially when the number of studies
is small (<20) and in such cases they are usually esti-
mated to be equal to ±1 [81,82]. Thus, the particular
approach seems to be a good compromise between
speed and precision and we expect to perform well.
Using this approach, the computational complexity as
well as the execution time is reduced drastically but the
obtained estimates agree up to the fourth decimal place
in most of the experiments conducted.
A final comment has to be made concerning the iden-

tifiability of the models presented in the previous sec-
tions, especially when it comes to the log-linear models
which are the ones that contain the largest number of
parameters. Concerning the fixed effects methods, the
number of parameters of the saturated model of Eq. (30)
is equal to 2rk, a number that is equal to the number of
observations [45]. For the model of Eq. (29), the number
of freely estimated parameters is equal to rk + r + k-1,
which is obviously smaller than 2rk (since r > 1 and k >
1). The random effects model of Eq. (31) has a total num-
ber of parameters equal to rk + r + k-1 + r(r-1)/2 since
we need to estimate additionally r(r-1)/2 elements of the
covariance matrix (the variances and the covariances of
the random effects). Thus, in order for the model to be
identifiable we need to ensure that rk + r + k-1 + r(r-1)/2
≤ 2rk which is accomplished if k; ≥ 1+r/2. Intuitively, we
need a relatively larger number of studies compared to
the number of haplotypes. If on the other hand, we fit
the model of Eq. (31) using Eq. (35) for restricting the
covariances, we only need rk + r + k parameters and
when we use Eq. (36) or Eq. (37), we need to estimate rk
+2r + k-1 parameters, numbers which both are smaller
than 2rk. Nevertheless, for practical applications, we will
normally use the logistic regression model of Eq. (22)
coupled with parameterization of Eq. (37), and thus iden-
tifiability issues will never arise in practice.
In Additional file 1, Stata programs for fitting the

models developed in this section are presented. The
models were fitted using the gllamm module for Stata
[83,84]. gllamm uses numerical integration by adaptive
quadrature in order to integrate out the latent variables
and obtain the marginal log-likelihood. Afterwards, the
log-likelihood is maximized by Newton-Raphson using
numerical first and second derivatives.

Results
We initially performed a literature search for identifying
studies that report meta-analyses of haplotype

associations. The initial search in PUBMED using the
term “haplotype” combined with “meta-analysis” or “col-
laborative analysis” or “pooled analysis” yielded 282 stu-
dies. Of these, 35 studies could have been identified
using solely the terms “collaborative analysis” or “pooled
analysis” and “haplotype”. After careful screening, 207
studies were excluded as irrelevant ones (they were not
meta-analyses of haplotypes), 36 studies were excluded
for various reasons (family based-studies, meta-analyses
of SNPs with the term “haplotype” appearing in the
abstract or haplotype analyses in which the term “meta-
analysis” appeared in the abstract etc). Finally, we came
up with 39 published papers containing data for 43
associations. Some studies reported different sets of hap-
lotypes from the same gene (Auburn et al, 2008; Zint-
zaras et al, 2009), haplotypes from different genes
(Thakkinstian et al, 2008), or distinct outcomes mea-
sured on different subsets of patients (Kavvoura et al,
2007) and thus, they were included twice, whereas from
studies that reported different outcomes measured on
the same set of individuals we kept only one. There
were also some pairs of studies that evaluated the same
association and from these we kept only the largest one.
10 out of the 39 published papers could have been iden-
tified using solely the terms “collaborative analysis” or
“pooled analysis” coupled with the term “haplotype”.
The 43 studies and their characteristics are presented in
Table 2.
The average number of polymorphisms included in

the haplotypes was 3.19 (SD = 1.37, median = 3, range
from 2 to 7), whereas the sample size was 5,017.81 (SD
= 4,703.24, median = 3,004, range from 348 to 23,309).
The average number of included studies was 5.14 (SD =
3.06, median = 4, range from 2 to 13). Twenty seven
studies (62.79%) were conducted in a collaborative set-
ting, whereas sixteen (37.21%) were performed using
data derived from the literature. Twenty seven of the
meta-analyses (62.79%) reported significant results and
the majority (22 studies, 51.16%) were analysed under
the “1 vs. others” approach using standard summary
based meta-analysis techniques (with fixed or random
effects), 11 studies (25.58%) were analysed by pooling
the data inappropriately, 6 studies (13.95%) did not
report the method or did not perform pooling at all and
4 analyses (9.30%) were performed using a fixed effects
logistic regression model. Only 13 studies (30.23%)
reported the complete data that suffice for the analysis
to be replicated (Table 2 and 3).
There was only some weak evidence where collabora-

tive meta-analyses contained larger number of studies
compared to literature-based ones (5.67 vs. 4.25), larger
sample size (5,651 vs. 3,948) and produced significant
results more frequently (66.67% vs. 56.25%). However,
these differences did noreach statistical significance
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Table 2 List of the 43 meta-analyses that were used in the empirical evaluation

ID Reference Gene/
Locus

Disease/
Outcome

SNPs in
haplotype

Number of
studies

Sample
Size

Method of
analysis

Data
availability

Collaborative
analysis

Significant
results

1 [109] DRD3 Schizophrenia 4 5 7551 1 vs. others No No No

2 [98] ITGAV Rheumatoid
Arthritis

3 3 6851 N/A Yes Yes Yes

3 [110] IL1A/IL1B/
IL1RN

Osteoarthritis 7 4 2908 1 vs. others No Yes Yes

4 [111] FRZB Osteoarthritis 2 10 12380 1 vs. others No Yes No

5 [99] CX3CR1 CAD 2 6 2912 1 vs. others Yes No Yes

6 [112] ALOX5AP Stroke 4 5 5765 1 vs. others No No No

7 [112] ALOX5AP Stroke 4 3 3004 1 vs. others No No No

8 [113] GNAS Malaria 3 7 8154 1 vs. others No Yes Yes

9 [113] GNAS Malaria 7 6 7632 1 vs. others No Yes Yes

10 [114] PDLIM5 Bipolar
Disorder

2 3 1208 1 vs. others No No No

11 [115] PDE4D Stroke 2 4 4961 1 vs. others No No Yes

12 [116] TGFB1 Renal
Transplantation

2 4 438 pooled No No Yes

13 [116] IL10 Renal
Transplantation

3 4 348 pooled No No No

14 [117] 9p21.3 CAD 4 5 7838 1 vs. others No Yes Yes

15 [118] HLA SLE 2 3 527 1 vs. others No No Yes

16 [94] CTLA4 Graves Disease 2 10 2564 1 vs. others Yes Yes Yes

17 [94] CTLA4 Hashimoto
Thyroiditis

2 5 1210 1 vs. others Yes Yes Yes

18 [119] ENPP1 T2DM 3 3 8676 1 vs. others No No No

19 [77] MTHFR ALL 2 4 894 Log-linear
model

No No Yes

20 [97] CAPN10 T2DM 3 11 5862 1 vs. others Yes Yes Yes

21 [93] ADAM33 Asthma 5 3 1899 pooled Yes No No

22 [120] NRG1 Schizophrenia 6 11 8722 1 vs. others No No Yes

23 [121] RGS4 Schizophrenia 4 8 7243 1 vs. others No Yes No

24 [122] ADRB2 Asthma 2 3 2060 N/A No No Yes

25 [123] ESR1 Fractures 3 8 14622 1 vs. others No Yes Yes

26 [78] VDR Osteoporosis 3 4 2335 Log-linear
model

Yes No Yes

27 [95] ACE Alzheimer’s
Disease

3 4 1619 pooled Yes Yes Yes

28 [124] IGF-I IGF-I levels 3 3 1929 1 vs. others No Yes Yes

29 [125] TF Stroke 2 2 818 N/A No Yes No

30 [92] FcgammaR Celliac Disease 2 2 1057 N/A Yes Yes No

31 [69] VDR Fractures 3 9 23309 Logistic
regression

No Yes No

32 [96] G72/G30 Schizophrenia 2 2 1541 N/A Yes Yes Yes

33 [68] VEGF ALS 3 4 1912 Logistic
regression

Yes Yes Yes

34 [126] BANK1 Rheumatoid
Arthritis

3 4 4445 1 vs. others No Yes Yes

35 [67] CYP19A1 Endometrial
Cancer

2 10 13283 Logistic
regression

No Yes Yes

36 [127] CRP T2DM 3 3 11876 N/A No No Yes

37 [66] 8q24 Colorectal
Adenoma

4 3 5385 Logistic
regression

No Yes Yes

38 [128] CYP1A1 Lung Cancer 2 13 2151 Pooled No Yes Yes
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(p-values equal to 0.144, 0.256 and 0.506 respectively).
The average number of included polymorphisms was
also comparable (3.26 vs. 3.06, p-value = 0.654). The
thirteen meta-analyses that reported complete data, did
not differ significantly from the remaining ones in terms
of the included studies (4.46 vs. 5.43, p-value = 0.345),
the number of SNPs in the haplotypes (3.08 vs. 3.23, p-
value = 0.735) and the proportion of significant findings
(69.23% vs. 60%, p-value = 0.576). The proportion of
collaborative analyses was higher, even though this dif-
ference did not reach statistical significance (76.92% vs.
56.57%, p-value = 0.216). There was however, moderate
evidence that the total sample size included in the
meta-analyses that reported complete data was smaller
compared to the meta-analyses that did not (3,040.31 vs.
5,874.73, p-value = 0.069). We also compared the parti-
cular database against a database of 55 representative
meta-analyses of genetic association studies of SNPs
that was used previously in several empirical evaluations
[85-89]. The mean sample size was approximately equal
(5,017 vs. 4,829, p-value = 0.844), but the number of
included studies was nearly halved in the meta-analyses
of haplotypes (5.14 vs. 10.53, p-value < 10-4), whereas
the proportion of meta-analyses with significant results
was twice as large (62.8% vs. 27.27%, p-value = 0.0003).
The thirteen studies that reported the data necessary

for the analysis to be replicated were subsequently used
in order to apply the methods proposed in this work.
We used all the methods described in the methods sec-
tion except for the simpler approach of comparing 1 vs.
the others haplotypes, i.e. Eq.(5). The results are
reported in Table 3, where we list the p-values for the
tests for the overall association (b = 0). For the fixed
effects IPD methods we additionally report the p-value
of the overall test for the heterogeneity (g = 0). Con-
cerning the results obtained using the IPD methods, we
report only the ones obtained from the logistic regres-
sion method of Eq. (22) using the parameterization of
Eq. (37) which is easier to be fitted, even though the
multinomial logistic regression and the Poisson regres-
sion method would yield similar results. As expected,
when the heterogeneity is low (in 8 out of the 13

studies), the random effects methods coincide with their
fixed effects counterparts. In general, the methods that
use summary data yield slightly different estimates for
the ORs compared to the methods that use IPD, when
there were rare haplotypes (i.e. small counts) or when
the total number of subjects was low (data not shown).
In 2 out of the 13 studies the estimates for the multi-
variate Wald tests for the overall association (b = 0)
produce marginally different results compared to the
univariate ones.
The subsequent re-analysis and the contrasting with

the initial reports yielded some important findings. Con-
cerning the four studies that initially reported no signifi-
cant association [90-93], the methods presented in this
work largely support the initial conclusions. Three of
the nine studies (33.33%) that reported statistically sig-
nificant results [94,95] yielded results that are in com-
plete agreement with the initial reports (the meta-
analysis of Kavvoura and co-workers reported results for
two outcomes and it was counted twice). The most
important finding, however, was the observation that 4
out of the 9 studies (44.44%) [78,96-98], yielded results
that contradict the initial reports. Two additional studies
[68,99] produced marginally significant results as judged
by the disagreement between the multivariate and uni-
variate Wald tests (Table 3).
The reasons for these discrepancies deserve further

investigation. For instance, in the collaborative meta-
analysis for the association of CAPN10 haplotypes with
Type 2 Diabetes mellitus [97], the authors report a mar-
ginally significant OR of 1.09 (1.00, 1.18) for the “1-2-1”
haplotype and similar results for two haplogenotypes
that include this haplotype. Similar results were pre-
viously reported in a literature-based meta-analysis
[100]. However, these estimates have been derived using
the “1 vs. others” approach, which although more
powerful, it is known to suffer from increase type I
error rate; thus it seems that these estimates are the
result of a multiple testing procedure. For the meta-
analysis concerning the association of ITGAV haplo-
types with Rheumatoid Arthritis [98], as well as the
association of G30/G72 haplotypes with schizophrenia

Table 2 List of the 43 meta-analyses that were used in the empirical evaluation (Continued)

39 [91] TNFA Prostate Cancer 5 2 4881 Pooled Yes Yes No

40 [90] PTGS2 Prostate Cancer 4 2 4881 Pooled Yes Yes No

41 [129] AR Endometrial
Cancer

5 2 1424 Pooled No Yes No

42 [130] MGMT Head and Neck
Cancer

2 3 1347 Pooled No Yes No

43 [131] SNCA Parkinson
Disease

2 11 5344 1 vs. other No Yes Yes

We list the reference, the gene name, the disease, the number of SNPs included in the haplotypes, the number of studies, the total sample size, the method of
analysis (N/A: not available), the availability of data, whether the data was collected in a collaborative setting and whether the study reported significant results.
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[96], the authors did not explicitly state how the pooling
of estimates was performed, but the methods presented
in this work suggest clearly that there is not enough evi-
dence supporting the claimed associations. Finally, in
the case of the meta-analysis for the association of VDR
polymorphisms with osteoporosis, in which the authors
claimed to use a log-linear model [78], the initially
drawn conclusions are not supported. It seems that the
authors did not use a correctly specified model that con-
tains all the main effects as well as all the two-way
interactions (i.e. the “no three-factor interaction model“).
This probably resulted in performing a meta-analysis
essentially without stratifying by study. Given that in the
particular dataset the heterogeneity is large, it is of no
surprise that the originally drawn conclusions are com-
promised after the re-analysis, which strongly indicates
that there is no evidence to support a significant asso-
ciation. Concerning the two datasets for which we
observed disagreement between the multivariate and
univariate Wald tests, i.e. the association of CX3CR1
haplotypes with CAD [99] and the association of VEGF
haplotypes with ALS [68], there were different reasons
for the discrepancies. In the meta-analysis of CX3CR1

haplotypes (which was originally performed using the “1
vs. others” approach) the small discrepancies could be
attributed to the marginal statistical significance (p-
values = 0.06-0.09) and the existence of a rare haplo-
type. In the case of the VEGF meta-analysis, the authors
initially used a fixed-effects logistic regression model
analogous to Eq. (17); however, the moderate heteroge-
neity produced slight discrepancies in the results of the
multivariate Wald test under the random effects model
(Table 3).

Discussion
Although the studies reporting haplotypes comprise a
small fraction of genetic association studies, their num-
ber is increasingly growing and so there is a need for
developing formal methods for combining them in a
meta-analysis. In this work, a comprehensive framework
for the meta-analysis of haplotype association studies
was presented and an empirical evaluation has been per-
formed for the first time in the literature.
The methods proposed in this work are extending pre-

vious works in meta-analysis of genetic association stu-
dies [12,16] in order to handle the multiple haplotypes.

Table 3 The results obtained using the methods described in this work on the 13 studies that reported complete data
that suffice for the analysis to be replicated

ID/
[reference]

Gene/
Locus

Disease/
Outcome

SNPs in
haplotype

Number of
studies

Significant
results

Fixed effects Random effects

b = 0
(summary

data)

b = 0
(IPD)

g = 0
(IPD)

b = 0
(summary

data)

b = 0
(IPD)

2/[98] ITGAV Rheumatoid
Arthritis

3 3 Yes$$ 0.2506 0.2489 0.1564 0.3288 0.3851

5/[99] CX3CR1 CAD 2 6 Yes$ 0.0834* 0.0677* 0.6263 0.0883* 0.1031*

16/[94] CTLA4 Graves
Disease

2 10 Yes <0.0001 <0.0001 0.0371 <0.0001 <0.0001

17/[94] CTLA4 Hashimoto
Thyroiditis

2 5 Yes 0.0011 0.0010 <0.0001 0.0044 0.0072

20/[97] CAPN10 T2DM 3 11 Yes$$ 0.1152 0.1036 0.6145 0.2243 0.1655

21/[93] ADAM33 Asthma 5 3 No 0.6209 0.5508 0.4697 0.6134 0.5503

26/[78] VDR Osteoporosis 3 4 Yes$$ 0.1458 0.3051 <0.0001 0.1480 0.5781

27/[95] ACE Alzheimer’s
Disease

3 4 Yes 0.0193 0.0218 0.8906 0.0193 0.0223

30/[92] FcgammaR Celliac
Disease

2 2 No 0.7331 0.7335 0.9502 0.7331 0.7336

32/[96] G72/G30 Schizophrenia 2 2 Yes$$ 0.7790 0.7757 0.0001 0.5750 0.6719

33/[68] VEGF ALS 3 4 Yes$ 0.0437* 0.0414 0.0691 0.0716 0.0455*

39/[91] TNFA Prostate
Cancer

5 2 No 0.2531 0.2515 0.6185 0.2867 0.2511

40/[90] PTGS2 Prostate
Cancer

4 2 No 0.3560 0.3550 0.2087 0.6573 0.4829

For either fixed or random effects methods, we list the p-values for the tests for the overall association (b = 0) using the summary data based methods and the
IPD methods. The results for the IPD methods were obtained from the logistic regression method even though the multinomial logistic regression and the
Poisson regression method yield nearly identical results. For the fixed effects IPD methods we also list the p-value of overall test for the heterogeneity (g = 0).

(*): The significance of the multivariate Wald test (b = 0) contradicts univariate one (bj = 0).

($): The initially claimed statistically significant results are contradicted by either the multivariate or univariate Wald tests (random effects).

($$): The initially claimed statistically significant results are contradicted by both the multivariate and univariate Wald tests (random effects).
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These works in turn, are based on the previously
described large corpus of methods for multivariate meta-
analysis [33,36,37,62,101-103]. We proposed summary-
data based methods as well as methods for IPD.
Although the former are very easily implemented, the lat-
ter provide some very useful insights. By viewing the
meta-analysis data as a 2 × r × k contingency table [45]
allowed developing methods based on logistic regression,
multinomial logistic regression and Poisson regression.
Although logistic regression methods have long being
used for meta-analysis of IPD [33,36,37], multinomial
logistic regression has only being used for meta-analysis
of genetic association studies under the retrospective
likelihood [12,80]. Most importantly, Poisson regression
models have been used in entirely different contexts,
such as survival analysis [104] and meta-analysis of fol-
low-up studies with varying duration [105]. Thus, an
important advancement of this work is the extension of
the commonly used approach for analyzing haplotype
data [43,44] in the meta-analysis setting, describing
appropriately specified models and presenting them in a
unified framework (i.e. the contingency table analysis).
The empirical evaluation of the published literature sug-

gests that studies reporting meta-analysis of haplotypes
did not systematically differ from the meta-analyses of
genetic association using SNPs in terms of the average
sample size, but contain approximately half of the included
studies and produce significant results twice more often.
The meta-analyses that reported the complete data did
not significantly differ from the remaining studies in terms
of the included studies, the number of SNPs included in
the haplotypes, the proportion of significant findings or
the proportion of collaborative analyses. There was how-
ever, moderate evidence that the total sample size included
in the meta-analyses that reported complete data, was
smaller compared to the meta-analyses that did not.
The application of the methods proposed in this work in

studies that reported the complete data, made clear that
approximately half of the significant findings are attributa-
ble to the method of analysis used by the primary authors
and suffer from an inflated type I error rate. Indeed, for
the four out of the nine studies that reported significant
results, these were clearly refuted by the multivariate
methodology. Three of these studies used the 1 vs. other
approach, which although more powerful, is known to suf-
fer from increased type I error rate [61], whereas the
results of the fourth study were based on a misspecified
log-linear model. Two additional studies produced mar-
ginally insignificant results (i.e. the multivariate Wald test
contradicted the univariate one), mainly due to the exis-
tence of rare haplotypes or heterogeneity that has not
been accounted for in the initial analysis.

All the models presented here assume that the haplo-
types are directly observed. However, as we have already
discussed, the haplotypes are usually inferred and thus,
treating them as known quantities may be problematic
[30]. The general framework presented in this work can
be easily extended in order to account for this uncer-
tainty, simply by weighting the inferred haplotypes by
their probability [49,50]. However, this will probably be
problematic in many real life applications, except when
dealing with a collaborative analysis, since a meta-
analyst will rarely have access to individual genotype
data in order to use them to estimate the haplotypes
and their posterior probabilities. If combined genotypes
are available for all studies, the meta-analyst may try to
re-construct the haplotypes with a method of his/her
choice and perform the analysis using the posterior
probabilities as weights. Moreover, if individual genotype
data is available (from the literature or in a collaborative
setting), the framework can be extended to allow the
haplotype risk to follow models of inheritance other
than the multiplicative one (i.e. estimating the risk of
haplogenotypes), or to include patient-level covariates.
The methods proposed in this work, clearly outperform

the traditional naïve method of meta-analysis of haplo-
types, which simply consists of contrasting each haplotype
against the remaining ones. This is expected to be more
profound, especially as the number of possible haplotypes
increases, increasing also the type I error rate due to mul-
tiple comparisons [59,60]. Collapsing the haplotypes and
performing a univariate analysis, may potentially be more
powerful in several situations [61]. However, in genetic
association studies, even though we are interested in small
genetic effects we are also concerned about the probability
of false findings [106,107]. Thus, the multivariate metho-
dology seems to be a reliable alternative.

Conclusions
We presented multivariate methods that use summary-
based data as well as methods that use binary and count
data in a generalized linear mixed model framework
(logistic regression, multinomial regression and Poisson
regression). The methods presented here are easily
implemented using standard software such as Stata, R or
SAS making them easy to be applied even by non-
experts. In the Additional file 1, Stata code for fitting the
models described in this work is given and we expect
that these methods will be widely used in the future.

Additional material

Additional file 1: Stata code for fitting the methods described in
the manuscript. The commands should be run within a Stata do-file.

Bagos BMC Genetics 2011, 12:8
http://www.biomedcentral.com/1471-2156/12/8

Page 13 of 16

http://www.biomedcentral.com/content/supplementary/1471-2156-12-8-S1.DOC


Acknowledgements
The author would like to thank the two anonymous reviewers for their
valuable comments that improved the quality of the manuscript.

Authors’ contributions
PGB conceived the study, performed the analyses and wrote the manuscript.

Received: 1 July 2010 Accepted: 19 January 2011
Published: 19 January 2011

References
1. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive

review of genetic association studies. Genet Med 2002, 4(2):45-61.
2. Becker KG, Barnes KC, Bright TJ, Wang SA: The genetic association

database. Nat Genet 2004, 36(5):431-432.
3. Normand SL: Meta-analysis: formulating, evaluating, combining, and

reporting. Stat Med 1999, 18(3):321-359.
4. Petiti DB: Meta-analysis Decision Analysis and Cost-Effectiveness Analysis.

Oxford University Press; 199424.
5. Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP: Meta-analysis methods.

Adv Genet 2008, 60:311-334.
6. Glass G: Primary, secondary and meta-analysis of research. Educ Res 1976,

5:3-8.
7. Greenland S: Meta-analysis. In Modern Epidemiology. Edited by: Rothman KJ,

Greenland S. Lippincott Williams 1998:643-673.
8. Chalmers TC, Berrier J, Sacks HS, Levin H, Reitman D, Nagalingam R: Meta-

analysis of clinical trials as a scientific discipline. II: Replicate variability
and comparison of studies that agree and disagree. Stat Med 1987,
6(7):733-744.

9. Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC: Meta-analyses
of randomized controlled trials. N Engl J Med 1987, 316(8):450-455.

10. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D,
Becker BJ, Sipe TA, Thacker SB: Meta-analysis of observational studies in
epidemiology: a proposal for reporting. Meta-analysis Of Observational
Studies in Epidemiology (MOOSE) group. Jama 2000, 283(15):2008-2012.

11. Salanti G, Higgins JP, Trikalinos TA, Ioannidis JP: Bayesian meta-analysis
and meta-regression for gene-disease associations and deviations from
Hardy-Weinberg equilibrium. Stat Med 2007, 26(3):553-567.

12. Bagos PG: A unification of multivariate methods for meta-analysis of
genetic association studies. Stat Appl Genet Mol Biol 2008, 7, Article31.

13. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J: A method for meta-
analysis of molecular association studies. Stat Med 2005, 24(9):1291-1306.

14. Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J: The choice of a
genetic model in the meta-analysis of molecular association studies. Int
J Epidemiol 2005, 34(6):1319-1328.

15. Minelli C, Thompson JR, Tobin MD, Abrams KR: An integrated approach to
the meta-analysis of genetic association studies using Mendelian
randomization. Am J Epidemiol 2004, 160(5):445-452.

16. Bagos PG, Nikolopoulos GK: A method for meta-analysis of case-control
genetic association studies using logistic regression. Stat Appl Genet Mol
Biol 2007, 6, Article17.

17. Salanti G, Higgins JP: Meta-analysis of genetic association studies under
different inheritance models using data reported as merged genotypes.
Stat Med 2008, 27(5):764-777.

18. Salanti G, Higgins JP, White IR: Bayesian synthesis of epidemiological
evidence with different combinations of exposure groups: application to
a gene-gene-environment interaction. Stat Med 2006, 25(24):4147-4163.

19. Zondervan KT, Cardon LR: The complex interplay among factors that
influence allelic association. Nat Rev Genet 2004, 5(2):89-100.

20. Kaplan N, Morris R: Issues concerning association studies for fine
mapping a susceptibility gene for a complex disease. Genet Epidemiol
2001, 20(4):432-457.

21. Liu N, Zhang K, Zhao H: Haplotype-association analysis. Adv Genet 2008,
60:335-405.

22. Schaid DJ: Evaluating associations of haplotypes with traits. Genet
Epidemiol 2004, 27(4):348-364.

23. Clark AG: The role of haplotypes in candidate gene studies. Genet
Epidemiol 2004, 27(4):321-333.

24. Morris RW, Kaplan NL: On the advantage of haplotype analysis in the
presence of multiple disease susceptibility alleles. Genet Epidemiol 2002,
23(3):221-233.

25. Akey J, Jin L, Xiong M: Haplotypes vs single marker linkage disequilibrium
tests: what do we gain? Eur J Hum Genet 2001, 9(4):291-300.

26. Levenstien MA, Ott J, Gordon D: Are molecular haplotypes worth the
time and expense? A cost-effective method for applying molecular
haplotypes. PLoS Genet 2006, 2(8):e127.

27. Marchini J, Cutler D, Patterson N, Stephens M, Eskin E, Halperin E, Lin S,
Qin ZS, Munro HM, Abecasis GR, et al: A comparison of phasing
algorithms for trios and unrelated individuals. Am J Hum Genet 2006,
78(3):437-450.

28. Xu H, Wu X, Spitz MR, Shete S: Comparison of haplotype inference
methods using genotypic data from unrelated individuals. Hum Hered
2004, 58(2):63-68.

29. Niu T: Algorithms for inferring haplotypes. Genet Epidemiol 2004,
27(4):334-347.

30. Lin DY, Huang BE: The use of inferred haplotypes in downstream
analyses. Am J Hum Genet 2007, 80(3):577-579.

31. HapMap: The International HapMap Project. Nature 2003,
426(6968):789-796.

32. Attia J, Thakkinstian A, D’Este C: Meta-analyses of molecular association
studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol
2003, 56(4):297-303.

33. Thompson SG, Sharp SJ: Explaining heterogeneity in meta-analysis: a
comparison of methods. Stat Med 1999, 18(20):2693-2708.

34. Higgins JP, Whitehead A: Borrowing strength from external trials in a
meta-analysis. Stat Med 1996, 15(24):2733-2749.

35. Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG: Meta-
analysis of continuous outcome data from individual patients. Stat Med
2001, 20(15):2219-2241.

36. Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG: A multilevel
model framework for meta-analysis of clinical trials with binary
outcomes. Stat Med 2000, 19(24):3417-3432.

37. van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-
analysis: multivariate approach and meta-regression. Stat Med 2002,
21(4):589-624.

38. Wallenstein S, Hodge SE, Weston A: Logistic regression model for
analyzing extended haplotype data. Genet Epidemiol 1998, 15(2):173-181.

39. McCullagh P, Nelder JA: Generalized Linear Models. London: Chapman &
Hall; 1989.

40. Chen YH, Kao JT: Multinomial logistic regression approach to haplotype
association analysis in population-based case-control studies. BMC Genet
2006, 7:43.

41. Haber M: Log-Linear Models for Linked Loci. Biometrics 1984,
40(1):189-198.

42. Weir BS, Wilson SR: Log-linear models for linked loci. Biometrics 1986,
42(3):665-670.

43. Tiret L, Amouyel P, Rakotovao R, Cambien F, Ducimetiere P: Testing for
association between disease and linked marker loci: a log-linear-model
analysis. Am J Hum Genet 1991, 48(5):926-934.

44. Mander AP: Haplotype analysis in population-based association studies.
The Stata Journal 2001, 1(1):58-75.

45. Agresti A: Categorical Data Analysis. John Wiley & Sons;, 2 2002.
46. Chen HY: A note on the prospective analysis of outcome-dependent

samples. J Roy Soc B 2003, 65(2):575-584.
47. Prentice RL, Pyke R: Logistic disease incidence models and case-control

studies. Biometrika 1979, 66(3):403-411.
48. Umbach DM, Weinberg CR: Designing and analysing case-control studies

to exploit independence of genotype and exposure. Stat Med 1997,
16(15):1731-1743.

49. French B, Lumley T, Monks SA, Rice KM, Hindorff LA, Reiner AP, Psaty BM:
Simple estimates of haplotype relative risks in case-control data. Genet
Epidemiol 2006, 30(6):485-494.

50. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG:
Testing association of statistically inferred haplotypes with discrete and
continuous traits in samples of unrelated individuals. Hum Hered 2002,
53(2):79-91.

51. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for
association between traits and haplotypes when linkage phase is
ambiguous. Am J Hum Genet 2002, 70(2):425-434.

52. Epstein MP, Satten GA: Inference on haplotype effects in case-control
studies using unphased genotype data. Am J Hum Genet 2003,
73(6):1316-1329.

Bagos BMC Genetics 2011, 12:8
http://www.biomedcentral.com/1471-2156/12/8

Page 14 of 16

http://www.ncbi.nlm.nih.gov/pubmed/11882781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11882781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15118671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15118671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18358326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3423497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3423497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3423497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3807986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3807986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10789670?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10789670?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10789670?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16685693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16685693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16685693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18976227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18976227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15568190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15568190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16115824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16115824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15321841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15321841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15321841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11319784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11319784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18358327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15543638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15368617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12384975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12384975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11313774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11313774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16933998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16933998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16933998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15711085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15711085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15368348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17380613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17380613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14685227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12767405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12767405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10521860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11468761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11468761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11122505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11122505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11122505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11836738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11836738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9554554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9554554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16907993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16907993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3567299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9265696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9265696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11791212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11791212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11791212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14631556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14631556?dopt=Abstract


53. Chen X, Li Z: Inference of haplotype effects in case-control studies
using unphased genotype and environmental data. Biom J 2008,
50(2):270-282.

54. Satten GA, Epstein MP: Comparison of prospective and retrospective
methods for haplotype inference in case-control studies. Genet Epidemiol
2004, 27(3):192-201.

55. Thomas A: Characterizing allelic associations from unphased diploid data
by graphical modeling. Genet Epidemiol 2005, 29(1):23-35.

56. Baker SG: A simple loglinear model for haplotype effects in a case-
control study involving two unphased genotypes. Stat Appl Genet Mol
Biol 2005, 4, Article14.

57. Lin DY, Zeng D, Millikan R: Maximum likelihood estimation of haplotype
effects and haplotype-environment interactions in association studies.
Genet Epidemiol 2005, 29(4):299-312.

58. DerSimonian R, Laird N: Meta-analysis in clinical trials. Controlled Clinical
Trials 1986, 7:177-188.

59. Becker T, Cichon S, Jonson E, Knapp M: Multiple testing in the context of
haplotype analysis revisited: application to case-control data. Ann Hum
Genet 2005, 69(Pt 6):747-756.

60. Becker T, Knapp M: A powerful strategy to account for multiple testing in
the context of haplotype analysis. Am J Hum Genet 2004, 75(4):561-570.

61. Matthews AG, Haynes C, Liu C, Ott J: Collapsing SNP genotypes in case-
control genome-wide association studies increases the type I error rate
and power. Stat Appl Genet Mol Biol 2008, 7(1), Article23.

62. Berkey CS, Hoaglin DC, Antczak-Bouckoms A, Mosteller F, Colditz GA: Meta-
analysis of multiple outcomes by regression with random effects. Stat
Med 1998, 17(22):2537-2550.

63. White IR: Multivariate random-effects meta-analysis. Stata Journal 2009,
9:40-56.

64. Jackson D, White IR, Thompson SG: Extending DerSimonian and Laird’s
methodology to perform multivariate random effects meta-analyses. Stat
Med 29(12):1282-1297.

65. Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee T-C: The Theory and
Practice of Econometrics. New York: John Wiley & Sons;, 2 1985.

66. Berndt SI, Potter JD, Hazra A, Yeager M, Thomas G, Makar KW, Welch R,
Cross AJ, Huang WY, Schoen RE, et al: Pooled analysis of genetic variation
at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet 2008,
17(17):2665-2672.

67. Setiawan VW, Doherty JA, Shu XO, Akbari MR, Chen C, De Vivo I,
Demichele A, Garcia-Closas M, Goodman MT, Haiman CA, et al: Two
estrogen-related variants in CYP19A1 and endometrial cancer risk: a
pooled analysis in the Epidemiology of Endometrial Cancer Consortium.
Cancer Epidemiol Biomarkers Prev 2009, 18(1):242-247.

68. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F,
Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I, et al: VEGF is a
modifier of amyotrophic lateral sclerosis in mice and humans and
protects motoneurons against ischemic death. Nat Genet 2003,
34(4):383-394.

69. Uitterlinden AG, Ralston SH, Brandi ML, Carey AH, Grinberg D, Langdahl BL,
Lips P, Lorenc R, Obermayer-Pietsch B, Reeve J, et al: The association
between common vitamin D receptor gene variations and osteoporosis:
a participant-level meta-analysis. Ann Intern Med 2006, 145(4):255-264.

70. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency
in meta-analyses. Bmj 2003, 327(7414):557-560.

71. Skrondal A, Rabe-Hesketh S: Multilevel logistic regression for polytomous
data and rankings. Psychometrika 2003, 68(2):267-287.

72. Mickey RM, Elashoff R: A generalization of the Mantel-Haenszel estimator
of partial association for 2 × J × K tables. Biometrics 1985, 41(3):623-635.

73. Heyman ER, Koch GG: Average Partial Association in Three-Way
Contingency Tables: A Review and Discussion of Alternative Tests.
International Statistical Review 1978, 46:237-254.

74. Darroch JN: Interactions in multifactor contingency tables. J Roy Statist
Soc B 1962, 24(1):251-263.

75. Berrington ADG, Cox DR: Interpretation of interaction: A review. Ann Appl
Stat 2007, 1(2):371-385.

76. Mickey RM: Assessment of three way interaction in 2 × J × K tables.
Computational Statistics & Data Analysis 1987, 5(1):23-30.

77. Zintzaras E, Koufakis T, Ziakas PD, Rodopoulou P, Giannouli S, Voulgarelis M:
A meta-analysis of genotypes and haplotypes of
methylenetetrahydrofolate reductase gene polymorphisms in acute
lymphoblastic leukemia. Eur J Epidemiol 2006, 21(7):501-510.

78. Thakkinstian A, D’Este C, Attia J: Haplotype analysis of VDR gene
polymorphisms: a meta-analysis. Osteoporos Int 2004, 15(9):729-734.

79. Lu G, Ades AE: Combination of direct and indirect evidence in mixed
treatment comparisons. Stat Med 2004, 23(20):3105-3124.

80. Minelli C, Thompson JR, Abrams KR, Lambert PC: Bayesian implementation
of a genetic model-free approach to the meta-analysis of genetic
association studies. Stat Med 2005, 24(24):3845-3861.

81. Riley RD, Abrams KR, Lambert PC, Sutton AJ, Thompson JR: An evaluation
of bivariate random-effects meta-analysis for the joint synthesis of two
correlated outcomes. Stat Med 2007, 26(1):78-97.

82. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR: Bivariate
random-effects meta-analysis and the estimation of between-study
correlation. BMC Med Res Methodol 2007, 7:3.

83. Rabe-Hesketh S, Skrondal A, Pickles A: Reliable estimation of generalized
linear mixed models using adaptive quadrature. The Stata Journal 2002,
2:1-21.

84. Rabe-Hesketh S, Skrondal A, Pickles A: Maximum likelihood estimation of
limited and discrete dependent variable models with nested random
effects. Journal of Econometrics 2005, 128(2):301-323.

85. Ioannidis JP, Ntzani EE, Trikalinos TA: ’Racial’ differences in genetic effects
for complex diseases. Nat Genet 2004, 36(12):1312-1318.

86. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication
validity of genetic association studies. Nat Genet 2001, 29(3):306-309.

87. Ioannidis JP, Trikalinos TA: Early extreme contradictory estimates may
appear in published research: the Proteus phenomenon in molecular
genetics research and randomized trials. J Clin Epidemiol 2005,
58(6):543-549.

88. Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG: Genetic
associations in large versus small studies: an empirical assessment.
Lancet 2003, 361(9357):567-571.

89. Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG, Ioannidis JP:
Establishment of genetic associations for complex diseases is
independent of early study findings. Eur J Hum Genet 2004, 12(9):762-769.

90. Danforth KN, Hayes RB, Rodriguez C, Yu K, Sakoda LC, Huang WY, Chen BE,
Chen J, Andriole GL, Calle EE, et al: Polymorphic variants in PTGS2 and
prostate cancer risk: results from two large nested case-control studies.
Carcinogenesis 2008, 29(3):568-572.

91. Danforth KN, Rodriguez C, Hayes RB, Sakoda LC, Huang WY, Yu K, Calle EE,
Jacobs EJ, Chen BE, Andriole GL, et al: TNF polymorphisms and prostate
cancer risk. Prostate 2008, 68(4):400-407.

92. Sareneva I, Koskinen LL, Korponay-Szabo IR, Kaukinen K, Kurppa K,
Ziberna F, Vatta S, Not T, Ventura A, Adany R, et al: Linkage and
association study of FcgammaR polymorphisms in celiac disease. Tissue
Antigens 2009, 73(1):54-58.

93. Kedda MA, Duffy DL, Bradley B, O’Hehir RE, Thompson PJ: ADAM33
haplotypes are associated with asthma in a large Australian population.
Eur J Hum Genet 2006, 14(9):1027-1036.

94. Kavvoura FK, Akamizu T, Awata T, Ban Y, Chistiakov DA, Frydecka I,
Ghaderi A, Gough SC, Hiromatsu Y, Ploski R, et al: Cytotoxic T-lymphocyte
associated antigen 4 gene polymorphisms and autoimmune thyroid
disease: a meta-analysis. J Clin Endocrinol Metab 2007, 92(8):3162-3170.

95. Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, Wiman B, de Faire U,
Cairns NJ, Wilcock GK, Brookes AJ, et al: Haplotypes extending across ACE
are associated with Alzheimer’s disease. Hum Mol Genet 2003,
12(8):859-867.

96. Ma J, Qin W, Wang XY, Guo TW, Bian L, Duan SW, Li XW, Zou FG, Fang YR,
Fang JX, et al: Further evidence for the association between G72/G30
genes and schizophrenia in two ethnically distinct populations. Mol
Psychiatry 2006, 11(5):479-487.

97. Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey Hayes M, Dina C,
Froguel P, Wayne Towers G, Fischer S, Temelkova-Kurktschiev T, Rietzsch H,
et al: Association of the calpain-10 gene with type 2 diabetes in
Europeans: results of pooled and meta-analyses. Mol Genet Metab 2006,
89(1-2):174-184.

98. Hollis-Moffatt JE, Rowley KA, Phipps-Green AJ, Merriman ME, Dalbeth N,
Gow P, Harrison AA, Highton J, Jones PB, Stamp LK, et al: The ITGAV
rs3738919 variant and susceptibility to rheumatoid arthritis in four
Caucasian sample sets. Arthritis Res Ther 2009, 11(5):R152.

99. Apostolakis S, Amanatidou V, Papadakis EG, Spandidos DA: Genetic
diversity of CX3CR1 gene and coronary artery disease: new insights
through a meta-analysis. Atherosclerosis 2009, 207(1):8-15.

Bagos BMC Genetics 2011, 12:8
http://www.biomedcentral.com/1471-2156/12/8

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/18217697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18217697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15372619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15372619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16240443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16240443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3802833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16266412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16266412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15290652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15290652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18673292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18673292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18673292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9839346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9839346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19408255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19408255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18535017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19124504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19124504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19124504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12847526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12847526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12847526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12958120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12958120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16897583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15057510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15057510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15449338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15449338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16526010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16526010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16526010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17222330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17222330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17222330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15543147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15543147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11600885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11600885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15878467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15878467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15878467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12598142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12598142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15213707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15213707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17999989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17999989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18196539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18196539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19140833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19140833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16773130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16773130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12668609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12668609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16402132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16402132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439304?dopt=Abstract


100. Song Y, Niu T, Manson JE, Kwiatkowski DJ, Liu S: Are variants in the
CAPN10 gene related to risk of type 2 diabetes? A quantitative
assessment of population and family-based association studies. Am J
Hum Genet 2004, 74(2):208-222.

101. Berkey CS, Hoaglin DC, Mosteller F, Colditz GA: A random-effects
regression model for meta-analysis. Stat Med 1995, 14(4):395-411.

102. Thompson SG, Turner RM, Warn DE: Multilevel models for meta-analysis,
and their application to absolute risk differences. Stat Methods Med Res
2001, 10(6):375-392.

103. van Houwelingen HC, Zwinderman KH, Stijnen T: A bivariate approach to
meta-analysis. Stat Med 1993, 12(24):2273-2284.

104. Fiocco M, Putter H, van Houwelingen JC: Meta-analysis of pairs of survival
curves under heterogeneity: a Poisson correlated gamma-frailty
approach. Stat Med 2009, 28(30):3782-3797.

105. Bagos PG, Nikolopoulos GK: Mixed-effects poisson regression models for
meta-analysis of follow-up studies with constant or varying durations.
International Journal of Biostatistics 2009, 5, Article21.

106. Ioannidis JP: Genetic associations: false or true? Trends Mol Med 2003,
9(4):135-138.

107. Ioannidis JP: Why most published research findings are false. PLoS Med
2005, 2(8):e124.

108. Weston A, Pan CF, Ksieski HB, Wallenstein S, Berkowitz GS, Tartter PI,
Bleiweiss IJ, Brower ST, Senie RT, Wolff MS: p53 haplotype determination
in breast cancer. Cancer Epidemiol Biomarkers Prev 1997, 6(2):105-112.

109. Nunokawa A, Watanabe Y, Kaneko N, Sugai T, Yazaki S, Arinami T, Ujike H,
Inada T, Iwata N, Kunugi H, et al: The dopamine D3 receptor (DRD3) gene
and risk of schizophrenia: case-control studies and an updated meta-
analysis. Schizophr Res 2010, 116(1):61-67.

110. Moxley G, Meulenbelt I, Chapman K, van Diujn CM, Eline Slagboom P,
Neale MC, Smith AJ, Carr AJ, Loughlin J: Interleukin-1 region meta-analysis
with osteoarthritis phenotypes. Osteoarthritis Cartilage 2010, 18(2):200-207.

111. Evangelou E, Chapman K, Meulenbelt I, Karassa FB, Loughlin J, Carr A,
Doherty M, Doherty S, Gomez-Reino JJ, Gonzalez A, et al: Large-scale
analysis of association between GDF5 and FRZB variants and
osteoarthritis of the hip, knee, and hand. Arthritis Rheum 2009,
60(6):1710-1721.

112. Zintzaras E, Rodopoulou P, Sakellaridis N: Variants of the arachidonate 5-
lipoxygenase-activating protein (ALOX5AP) gene and risk of stroke: a
HuGE gene-disease association review and meta-analysis. Am J Epidemiol
2009, 169(5):523-532.

113. Auburn S, Diakite M, Fry AE, Ghansah A, Campino S, Richardson A,
Jallow M, Sisay-Joof F, Pinder M, Griffiths MJ, et al: Association of the GNAS
locus with severe malaria. Hum Genet 2008, 124(5):499-506.

114. Shi J, Badner JA, Liu C: PDLIM5 and susceptibility to bipolar disorder: a
family-based association study and meta-analysis. Psychiatr Genet 2008,
18(3):116-121.

115. Bevan S, Dichgans M, Gschwendtner A, Kuhlenbaumer G, Ringelstein EB,
Markus HS: Variation in the PDE4D gene and ischemic stroke risk: a
systematic review and meta-analysis on 5200 cases and 6600 controls.
Stroke 2008, 39(7):1966-1971.

116. Thakkinstian A, Dmitrienko S, Gerbase-Delima M, McDaniel DO, Inigo P,
Chow KM, McEvoy M, Ingsathit A, Trevillian P, Barber WH, et al: Association
between cytokine gene polymorphisms and outcomes in renal
transplantation: a meta-analysis of individual patient data. Nephrol Dial
Transplant 2008, 23(9):3017-3023.

117. Schunkert H, Gotz A, Braund P, McGinnis R, Tregouet DA, Mangino M,
Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, et al: Repeated
replication and a prospective meta-analysis of the association between
chromosome 9p21.3 and coronary artery disease. Circulation 2008,
117(13):1675-1684.

118. Castano-Rodriguez N, Diaz-Gallo LM, Pineda-Tamayo R, Rojas-Villarraga A,
Anaya JM: Meta-analysis of HLA-DRB1 and HLA-DQB1 polymorphisms in
Latin American patients with systemic lupus erythematosus. Autoimmun
Rev 2008, 7(4):322-330.

119. Lyon HN, Florez JC, Bersaglieri T, Saxena R, Winckler W, Almgren P,
Lindblad U, Tuomi T, Gaudet D, Zhu X, et al: Common variants in the
ENPP1 gene are not reproducibly associated with diabetes or obesity.
Diabetes 2006, 55(11):3180-3184.

120. Li D, Collier DA, He L: Meta-analysis shows strong positive association of
the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 2006,
15(12):1995-2002.

121. Talkowski ME, Seltman H, Bassett AS, Brzustowicz LM, Chen X, Chowdari KV,
Collier DA, Cordeiro Q, Corvin AP, Deshpande SN, et al: Evaluation of a
susceptibility gene for schizophrenia: genotype based meta-analysis of
RGS4 polymorphisms from thirteen independent samples. Biol Psychiatry
2006, 60(2):152-162.

122. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D,
Thompson J, Hall I, Kaufman J, Leung TF, et al: Systematic review and
meta-analysis of the association between {beta}2-adrenoceptor
polymorphisms and asthma: a HuGE review. Am J Epidemiol 2005,
162(3):201-211.

123. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB,
Langdahl B, van Meurs JB, Mosekilde L, Scollen S, et al: Differential genetic
effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA
2004, 292(17):2105-2114.

124. Johansson M, McKay JD, Wiklund F, Rinaldi S, Verheus M, van Gils CH,
Hallmans G, Balter K, Adami HO, Gronberg H, et al: Implications for
prostate cancer of insulin-like growth factor-I (IGF-I) genetic variation
and circulating IGF-I levels. J Clin Endocrinol Metab 2007, 92(12):4820-4826.

125. De Gaetano M, Quacquaruccio G, Pezzini A, Latella MC, A DIC, Del Zotto E,
Padovani A, Lichy C, Grond-Ginsbach C, Gattone M, et al: Tissue factor
gene polymorphisms and haplotypes and the risk of ischemic vascular
events: four studies and a meta-analysis. J Thromb Haemost 2009,
7(9):1465-1471.

126. Orozco G, Abelson AK, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D,
Garcia A, Fernandez-Gutierrez B, Petersson I, Pons-Estel B, Eimon A, et al:
Study of functional variants of the BANK1 gene in rheumatoid arthritis.
Arthritis Rheum 2009, 60(2):372-379.

127. Brunner EJ, Kivimaki M, Witte DR, Lawlor DA, Davey Smith G, Cooper JA,
Miller M, Lowe GD, Rumley A, Casas JP, et al: Inflammation, insulin
resistance, and diabetes–Mendelian randomization using CRP
haplotypes points upstream. PLoS Med 2008, 5(8):e155.

128. Lee KM, Kang D, Clapper ML, Ingelman-Sundberg M, Ono-Kihara M,
Kiyohara C, Min S, Lan Q, Le Marchand L, Lin P, et al: CYP1A1, GSTM1, and
GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled
analysis among Asian populations. Cancer Epidemiol Biomarkers Prev 2008,
17(5):1120-1126.

129. McGrath M, Lee IM, Hankinson SE, Kraft P, Hunter DJ, Buring J, De Vivo I:
Androgen receptor polymorphisms and endometrial cancer risk. Int J
Cancer 2006, 118(5):1261-1268.

130. Huang WY, Olshan AF, Schwartz SM, Berndt SI, Chen C, Llaca V, Chanock SJ,
Fraumeni JF Jr, Hayes RB: Selected genetic polymorphisms in MGMT,
XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled
analysis. Cancer Epidemiol Biomarkers Prev 2005, 14(7):1747-1753.

131. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R,
Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, et al: Collaborative
analysis of alpha-synuclein gene promoter variability and Parkinson
disease. JAMA 2006, 296(6):661-670.

doi:10.1186/1471-2156-12-8
Cite this article as: Bagos: Meta-analysis of haplotype-association
studies: comparison of methods and empirical evaluation of the
literature. BMC Genetics 2011 12:8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Bagos BMC Genetics 2011, 12:8
http://www.biomedcentral.com/1471-2156/12/8

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/14730479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7746979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7746979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11763548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11763548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7907813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7907813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19899066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19899066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19899066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12727138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16060722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9037561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9037561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19897343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19897343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19897343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19733643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19733643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19479880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19479880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19479880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18951142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18951142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18496208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18496208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18420948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18420948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18408074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18362232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18362232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18362232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17065359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17065359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16687441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16687441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16631129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16631129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16631129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17911177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17911177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17911177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19583819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19583819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19583819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19180476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18700811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18700811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18700811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16161040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16030112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16030112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16030112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16896109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16896109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16896109?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Methods for haplotype association
	Methods for meta-analysis of haplotype association
	Meta-analysis using summary-data
	Meta-analysis using binary data
	Logistic regression
	Multinomial logistic regression
	Poisson regression

	Continuous traits
	Implementation

	Results
	Discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	References

