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Abstract

Background: In genetic association study, especially in GWAS, gene- or region-based methods have been more
popular to detect the association between multiple SNPs and diseases (or traits). Kernel principal component
analysis combined with logistic regression test (KPCA-LRT) has been successfully used in classifying gene expression
data. Nevertheless, the purpose of association study is to detect the correlation between genetic variations and
disease rather than to classify the sample, and the genomic data is categorical rather than numerical. Recently,
although the kernel-based logistic regression model in association study has been proposed by projecting the
nonlinear original SNPs data into a linear feature space, it is still impacted by multicolinearity between the
projections, which may lead to loss of power. We, therefore, proposed a KPCA-LRT model to avoid the
multicolinearity.

Results: Simulation results showed that KPCA-LRT was always more powerful than principal component analysis
combined with logistic regression test (PCA-LRT) at different sample sizes, different significant levels and different
relative risks, especially at the genewide level (1E-5) and lower relative risks (RR = 1.2, 1.3). Application to the four
gene regions of rheumatoid arthritis (RA) data from Genetic Analysis Workshop16 (GAW16) indicated that KPCA-LRT
had better performance than single-locus test and PCA-LRT.

Conclusions: KPCA-LRT is a valid and powerful gene- or region-based method for the analysis of GWAS data set,
especially under lower relative risks and lower significant levels.

Background
It is commonly believed that genetic factors play an
important role in the etiology of common diseases and
traits. With rapid improvements in high-throughout gen-
otyping techniques and the growing number of available
markers, genome-wide association studies (GWAS) have
been promising approaches for identifying common
genetic variants. The first successful wave of GWAS has
reproducibly identified hundreds of associations of com-
mon genetic variants with more than 100 diseases and
traits, including age-related macular degenerative dis-
eases [1], Parkinson’s disease [2] and type 2 diabetes
[3,4]. Recently GWAS meta-analysis, which combines the
evidence for association from individual studies with
appropriate weights, is becoming an increasingly impor-
tant method to identify new loci of complex disease and

traits [5-7]. Although this has improved our understand-
ing of the genetic basis of these complex diseases and
traits, and has provided valuable clues to their allelic
architecture, there are still many analytic and interpreta-
tion challenges in GWAS [8-11]. For both GWAS and
GWAS meta-analysis, it is customary to run single-locus
association tests in the whole genome to identify causal
or associated single nucleotide polymorphisms (SNPs)
with strong marginal effects on disease or traits. How-
ever, such a SNP-by-SNP analysis leads to computational
burden and the well-known multiplicity problem, with a
highly inflated risk of type I error and decreased ability to
detect modest effects. One way to deal with these and
related challenges is to consider higher units for the ana-
lysis such as genes or regions. Several studies have shown
that treating gene or region instead of SNP as the unit of
association may alleviate the problems of intensive com-
putation and multiple testing [8,10], lead to more stable
results and higher interpretability [12,13], be regarded as
good standards for subsequent replication studies [14]
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and suit for network (or pathway) approaches to interpret
the finds from GWAS [15].
However, given the SNPs allocated into genes or

regions, the issue of how to evaluate genetic association
for each candidate gene or genome region remains. To
examine whether multiple SNPs in the candidate gene
or region are associated with disease or trait, several
multi-marker analysis methods have been developed,
including haplotype-based methods [16,17], Hotelling’s
T2 test [18,19], principal component analysis (PCA)-
based methods [20-23], and P-value combination meth-
ods [11,24,25]. Especially, the PCA-based methods have
been shown to be as or more powerful than standard
joint SNP or haplotype-based tests [23]. PCA can cap-
ture linkage disequilibrium information within a candi-
date gene/region, but is less computationally demanding
compared to haplotype-based analysis. It also avoids
multicolinearity between SNPs, for the principal compo-
nents (PCs) are orthogonal.
However, one cannot assert that linear PCA will always

detect all structure in a given genomic data set. If the
genomic data contains nonlinear structure, PCA will not
be able to detect it [26]. Furthermore, it is well known that
PCA can not accurately represent non-Gaussian distribu-
tions. Up to now, many researchers have introduced
appropriate nonlinear process into PCA and developed
nonlinear PCA algorithms [27-31]. Among these modified
PCA methods, the kernel PCA (KPCA) is the most well
known and widely adopted [27-30], which has several
advantages than other methods: (1) it does not require
nonlinear optimization, but just the solution of an eigenva-
lue problem; (2) it provides a better understanding of what
kind of nonlinear features are extracted: they are principal
components in a feature space which is fixed a priori by
choosing a kernel function; (3) it comprises a fairly general
class of nonlinearities by the possibility to use different
kernels.
KPCA has been studied intensively in the last several

years in the field of machine learning, face recognition and
data classification, and has been claimed success in many
applications [27-30]. Especially, for classifying tumour
samples, Liu et al proposed to combine KPCA with logistic
regression test (KPCA-LRT) by gene expression data [30].
Nevertheless, the purpose of association study is to detect
the correlation between genetic variations and disease
rather than to classify the sample, and the genomic data
is categorical rather than numerical. Recently, Wu et al
proposed a kernel-based logistic regression model to
detect the association between multiple SNPs and disease
by projecting the nonlinear original SNPs data into a linear
feature space [32]. However, the logistic model is still
impacted by multicolinearity between the projections,
which may lead to loss of power. We, therefore, propose a
KPCA-LRT model to avoid the multicolinearity. The

algorithm conducts KPCA first to account for the non-
linear relationship between SNPs in a candidate region,
and then apply LRT to test the association between kernel
principal components (KPCs) scores and diseases. Simula-
tions and real data application are conducted to evaluate
its performance in association study.

Methods
PCA
As a traditional multivariable statistical technique, PCA
has been widely applied in genetic analysis, both for
reduction of redundant information and interpretation
of multiple SNPs. The basic idea of PCA is to efficiently
represent the data by decomposing a data space into a
linear combination of a small collection of bases consist-
ing of orthogonal axes that maximally decorrelate the
data. Assuming that M SNPs in a candidate gene or spe-
cific genome region of interests have coded values {xi Î
RM | i = 1,2,...,N}, where N represents sample size giving
a genetic model (assuming additive model here). PCA
diagonalizes the covariance matrix of the centered

observations xi,
N∑
i=1

xi = 0, defined as

C =
1
N

N∑
i=1

xixTi (1)

To do this, one has to solve the following eigenvalue
problem:

Cv = λv (2)

where ν are the eigenvectors of C, and l are the corre-

sponding eigenvalues. As Cv =
1
N

N∑
i=1

(xi · v) xi, all solu-

tions ν must lie in the span of {xi Î RM | i = 1,2,...,N},
hence (2) is equivalent to

λ (xi · v) = xi · Cv for all i = 1, 2, ..., N,

where the dot product of two vectors a = (a1, a2, ...,
aN) and b = (b1, b2, ..., bN) is defined as

a · b =
N∑
i=1

aibi = a1b1+a2b2 + · · · + aNbN.

KPCA
Given the observations, we first map the data nonli-
nearly into a feature space F by

� : RM → F

x → X.

Again, we make the assumption that our data mapped
into feature space, F(x1),...,F(xN), is centered, i.e.
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C̄ =
1
N

N∑
i=1

�(xi) �(xi)T. To do PCA for the covariance

matrix

C̄ =
1
N

N∑
i=1

�(xi) �(xi)T

we have to find eigenvalues l ≥ 0 and eigenvectors ν
Î F\{0} satisfying

Cv = λv. (3)

By the same argument as above, the solutions ν lie in
the span of F(x1),...,F(xN). This implies that we may
consider the equivalent equation

λ (� (xi) · v) = (
�(xi) · C̄v) for all i = 1, 2, ..., N (4)

and that there exist coefficients ai (i = 1,...,N) such
that

v =
N∑
i=1

αi�(xi). (5)

Substituting (3) and (5) into (4), we arrive at

K2α = NλKα (6)

where a denotes the column vector with entries a1, ...,
aN, and K is a symmetric N × N matrix defined by

Kij := (�(xi) · �(xj)), (7)

It has a set of eigenvectors which spans the whole
space, thus

Kα = Nλα (8)

gives all solutions a of equation (6).
Assume l1 ≤ l2 ≤ ... ≤ lN represent the eigenvalues

for the matrix K with a1, a2, ..., aN being the corre-
sponding complete set of eigenvectors. lp is the first
nonzero eigenvalue. We do the normalization for the
solutions ap, ..., aN by requiring that the corresponding
vectors in F be normalized, i.e. νk · νk = 1 for all k = p,
p + 1, ..., N. Based on (5), (6) and (8), this translates into

1 =
∑

αk
i α

k
j

(
�(xi) · �

(
xj

))

=
(
αk · Kαk

)

= λk

(
αk · αk

)
(9)

We need to compute projections on the eigenvectors
νk in F to do principal component extraction. Suppose x
is the SNP set within previously defined gene or genome
region of an individual, with an image F(x) in F, then

(vk · �(x)) =
N∑
i=1

αk
i (�(xi) · �(x)) (10)

are its nonlinear principal components corresponding
to F.
Note that neither (7) nor (10) requires F(xi) in explicit

form - they are only needed in dot products. We, there-
fore, are able to use kernel functions for computing
these dot products without actually performing the map
F: for some choices of a kernel k(xi, xj), by methods of
functional analysis, it can be shown that there exists a
map F into some dot product space F (possibly of infi-
nite dimension) such that k(xi, xj) can compute the dot
product in F. This property is often called “kernel trick”
in the literature.
Theoretically, a proper function can be created for each

data set based on the Mercer’s theorem of functional
analysis [29]. The most common kernel functions include
linear kernel, polynomial kernel, radial basis function
(RBF) kernel, sigmoid kernel [30], IBS kernel and
weighted IBS kernel [32]. In particular, KPCA with linear
kernel is the same as standard linear PCA. It is worth
noting that in general, the above kernel functions show
similar performance if appropriate parameters are cho-
sen. In present work, we chose the RBF kernel owing to
its flexibility in choosing the associated parameter [33].
There are two widely used approaches for the selection

of parameters for a certain kernel function. The first
method chooses a series of candidate values for the con-
cerned kernel parameter empirically, performs the learning
algorithm using each candidate value, and finally assigns
the value based on the best performance to the kernel
parameter. As is well-known to us, the second one is
the cross-validation. However, both approaches are time-
consuming and with high computation burden [34]. For
RBF kernel applied in present study, there is a popular
way of choosing the bandwidth parameter s, which is to
set it to the median of all pairwise Euclidean distances
||xi - xj|| in the set {xk Î RM | k = 1, 2, ..., N} for all 1 ≤ i <j
≤ N [35-37].

Models
To test the associations between multiple SNPs and dis-
ease, the PCA-LRT and KPCA-LRT models are defined
as follows:

Logit[Pr(D = 1|PC1, PC2, . . . , PCL)]

= β0 + β1PC1 + · · · + βLPCL
(11)

Logit[Pr(D = 1|KPC1, KPC2, . . . , KPCL)]

= β0 + β1KPC1 + · · · + βLKPCL
(12)
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where PCs and KPCs are the first Lth linear and non-
linear (kernel) principal component scores of the SNPs,
respectively. The value of L can be chosen such that the
cumulative contributing proportion of the total variabil-
ity explained by the first L PCs (l1 + l2 + ···+ lL)/(l1 +
l2 + ··· + lM) exceeds some threshold. For comparison,
we set the same threshold of 80% in both PCA-LRT and
KPCA-LRT as Gauderman et al [34].

Data simulation
To assess the performance of KPCA-LRT and compare
it with PCA-LRT, we apply a statistical simulation based
on HapMap data under the null hypothesis (H0) and
alternative hypothesis (H1). The corresponding steps for
the simulation are as follows:
Step 1. Download the phased haplotype data of a gen-

ome region from the HapMap web site (http://snp.cshl.
org): we select the Protein tyrosine phosphatase, non-
receptor type 22 (PTPN22) gene region to generate the
simulating genotype data of CEU population using
HapMap Phase 1& 2 full dataset. This region is located at
Chr 1: 114168639..114197803, including 11 SNPs. Figure 1
shows their pair-wise R2 structure and minor allele fre-
quencies (MAF).
Step 2. Based on the HapMap phased haplotype data, we

generate large samples with 100 000 cases and 100 000
controls as CEU populations using the software HAPGEN
[38]. To investigate the performance of the two methods
on different causal SNPs with different MAF and different

LD patterns, each of the 11 SNPs was defined as the causal
variant. We remove the causal SNP in the simulation to
assess the indirect association with disease via correlated
markers,. Under H0, we set the relative risk per allele as
1.0 to assess the type I error. Under H1, different levels of
relative risks are set (1.1, 1.2, 1.3, 1.4 and 1.5 per allele) to
assess the power. The SNPs in this region are coded
according to the additive genetic model.
Step 3. From the remained SNPs, we sample the simu-

lation data and perform the PCA-LRT and KPCA-LRT
under different sample sizes N (N/2 cases and N/2
controls, N = 1000, 2000, ..., 12000) using the R
packages kernlab (http://cran.r-project.org/web/
packages/kernlab/index.html) and Design (http://cran.r-
project.org/web/packages/Design/index.html). Under H0,
we repeat 10 000 simulations at two significant levels
(0.05 and 0.01). Under H1, for each model with a given
relative risk, we repeat 10 000 simulations at four signif-
icant levels (0.05, 0.01, 1E-5 and 1E-7).

Application
The proposed method is applied to rheumatoid arthritis
(RA) data from GAW16 Problem 1. The data consists of
2062 Illumina 550 k SNP chips from 868 RA patients
and 1194 normal controls collected by the North Amer-
ican Rheumatoid Arthritis Consortium (NARAC) [39].
At present study, only 1493 females (641 cases and 852
controls) are analyzed to avoid potential bias with the
fact that rheumatoid arthritis is two to three times more
common in women than in men [40].
To illustrate the performance of PCA-LRT and KPCA-

LRT, we mainly focus on four special regions in chromo-
some 1, within the genes PTPN22, ANKRD35, DUSP23,
RNF186 involved, respectively. The reasons are as follows:
1) Both the PTPN22 gene (R620W, rs2476601) and
ANKRD35 gene have been reported to be associated with
RA [41-43]; 2) DUSP23 can activate mitogen-activated
protein kinase kinase [43], which may regulate a pathway
in rheumatoid arthritis [44,45]; 3) RNF186 involves a
ulcerative colitis-risk loci (rs3806308) [44], and RA may be
associated with ulcerative colitis [45].

Results
Data simulation
Type I error
Simulation results under H0 are shown in Table 1, which
indicates that the type I error rates of both PCA-LRT and
KPCA-LRT are very close to given nominal values (a =
0.01, a = 0.05) under different sample sizes. This suggests
that both the models perform well under null hypothesis.
Power
When defining the 6th SNP (rs1746853) as the causal
variant, Figure 2 shows the powers of the two models
under different significant levels at the given relative

Figure 1 Pairwise R2 among the 11 SNPs in the selected
region. The 11 SNPs are: rs7555634, rs2476600, rs1217395,
rs2797415, rs1970559, rs1746853, rs2185827, rs1217406, rs1217407,
rs3765598, rs1217408. The triangles mark the three haplotype blocks
within this region. The value in each diamond is the R2 value and
the shading indicates the level of LD between a given pair of SNPs.
The values to the right of the 11 dbSNP IDs (rs# IDs) are the
corresponding minor allele frequencies.
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risk of 1.3 and sample size of 3000. It is clear that
KPCA-LRT is always much more powerful than PCA-
LRT, especially at the significant level of 1E-5 (the sug-
gested genewide level in Neale and Sham [14]). In the
following, only the results at the significant level of 1E-5
are presented.
With the same causal variant as above, Figure 3 shows

the powers of the two models under different sample
sizes at the given relative risk of 1.3, while Figure 4 shows
the powers under different relative risks at the given sam-
ple size of 3000. As expected, the powers are monotoni-
cally increasing functions of sample sizes and the relative

risk levels for both models. Furthermore, the powers of
KPCA-LRT are much higher than PCA-LRT when the
sample size is not less than 3000 (Figure 3). Both models
are less powerful when RR is less than 1.2. At higher rela-
tive risks, KPCA-LRT also shows greater power than

Table 1 Type I error of PCA-LRT and KPCA-LRT

Sample size PCA-LRT KPCA-LRT

a = 0.05 a = 0.01 a = 0.05 a = 0.01

1000 0.052 0.011 0.049 0.012

2000 0.051 0.010 0.054 0.011

3000 0.056 0.011 0.052 0.012

4000 0.048 0.014 0.051 0.011

5000 0.053 0.012 0.050 0.010

6000 0.048 0.011 0.050 0.009

7000 0.051 0.009 0.052 0.011

8000 0.051 0.012 0.050 0.012

9000 0.051 0.008 0.051 0.012

10000 0.051 0.011 0.052 0.012

11000 0.050 0.011 0.051 0.011

12000 0.051 0.009 0.051 0.009
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Figure 2 The powers of PCA-LRT and KPCA-LRT under different
significant levels at the given relative risk of 1.3 and sample
size of 3000. The horizontal axis denotes the significant levels and
the vertical axis denotes the powers of PCA-LRT and KPCA-LRT.
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denotes the sample sizes and the vertical axis denotes the powers
of PCA-LRT and KPCA-LRT.
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PCA-LRT. Especially at the relative risks of 1.3, the
power of PCA-LRT is close to zero while it is about 0.6
for KPCA-LRT (Figure 4). Figure 5 shows the powers of
both models at the given sample size of 3000 and relative
risk of 1.3 when each of the 11 SNPs is set as the causal
variant. Interestingly, KPCA-LRT is always more power-
ful than PCA-LRT in each case.
These simulation results indicate that the powers of

KPCA-LRT are always higher than PCA-LRT at given sig-
nificant levels, sample sizes and relative risks. Particularly,
under lower relative risk (1.2 and 1.3) and smaller signifi-
cant levels (1E-5 and 1E-7), KPCA-LRT is more powerful
than PCA-LRT.

Application
Table 2 shows the information of the selected four
regions and the performances of PCA-LRT, KPCA-
LRT and single-locus test. For region 1, the statistical
significances at the given nominal level (1E-5) were
detected by all the three methods. For region 2, the
same significance was found by both single-locus test
and KPCA-LRT, while PCA-LRT did not identify this
region. Only the KPCA-LRT detected the significance
for region 3, and both PCA-LRT and KPCA-LRT iden-
tified significance for region 4. These results suggested
that KPCA-LRT performs the best among the three
methods.

Discussion
In genetic association study, especially in GWAS, in
order to avoid the collinearity among SNPs and reduce
the false positive rate caused by multiple testing, several
groups have proposed PCA-based methods and found
that these methods are typically as or more powerful
than both single locus test and haplotype-based test
[20-23]. However, it is not enough to just consider the
linear relationship between SNPs, and the PCA-based
methods will lose power when the nonlinear relationship
exists in the genome. In this paper, based on the ideas of
Wu et al [32] and Liu et al [32], we combined KPCA
with LRT to propose the KPCA-LRT model for detecting
the association between multiple SNPs and diseases. The
simulation results (Table 1, Figure 2 to Figure 5) showed
that KPCA-LRT performed well under null hypothesis,
and all the powers of KPCA-LRT were higher than PCA-
LRT at given significant levels, sample sizes and relative
risks, especially under lower relative risk (1.2 and 1.3)
with smaller significant levels (1E-5 and 1E-7). Specifi-
cally, we set five low levels of relative risks (1.1-1.5)
because the great majority of the identified risk marker
alleles conferred very small relative risks [46]. Our simu-
lation results show that KPCA-LRT is much more
powerful than PCA-LRT when the sample size is not less
than 3000 (Figure 3). Both models are less powerful
when RR is lower than 1.2. At higher relative risks,
KPCA-LRT also shows greater power than PCA-LRT.
Especially at the relative risks of 1.3, the power of PCA-
LRT is close to zero while it is about 0.6 for KPCA-LRT
(Figure 4). To investigate the performance of the two
methods on different causal SNPs with different MAF
and different LD patterns, each of the 11 SNPs is defined
as the causal variant. In each case, KPCA-LRT is more
powerful than PCA-LRT (Figure 5).
To compare the three methods (single-locus test, PCA-

LRT and KPCA-LRT), the four regions from the RA data
in GAW16 Problem 1 (Table 2) are considered in this
paper. For region 1, the statistical significances at the
given nominal level (1E-5) were detected by all three
methods. For region 2, the same significance is found by
both single-locus test and KPCA-LRT, while PCA-LRT
did not identify this region. There are no reports on the
association of region 3 and region 4, but in this paper the
results of KPCA-LRT show that there may be susceptible
locus in the two regions, and the result of PCA-LRT on
region 4 coincided with KPCA-LRT. In conclusion,
KPCA-LRT performed the best among the three methods.
The four genes involved in the regions for real data

analysis are selected based on prior researches and Gene
Ontology [47]. The definition of “region” is very broad,
such as a single SNP, a haplotype, a gene set, or interval
of constant copy number [8]. To be easily interpreted,
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genes or genome regions are often defined based on the
biological knowledge, such as Gene Ontology and KEGG
[48]. For large genes or regions, it is hard to fine map the
causal SNPs or associated markers even if association
between the whole genes or regions could be detected.
Recently sliding-window scan approaches have been
widely used to partition the large genes or regions into
many overlapping/non-overlapping regions [49,50]. Then
the proposed gene- or region-based methods can be used
in each region.
There are several limitations about the proposed

method. First, only one causal SNP is considered in pre-
sent work. Second, how to fix the kernel function with
appropriate parameters for each data is still a theoretical
problem. Third, when the effect size is smaller (relative
risk per allele = 1.1, see Figure 3), both PCA-LRT and
KPCA-LRT are less powerful. Fourth, all the frequencies
of the causal SNPs are higher than 0.05, so it is hard to
decide whether the proposed method is powerful for rare
variants. The last, the proposed KPCA-LRT is based on
logistic regression, so it could not deal with quantitative
traits. To do this, KPCA-based methods could be com-
bined with e.g. multivariate regression analysis or partial
least squares (PLS) [51]. Further work to solve such pro-
blems will certainly be warranted.

Conclusions
In present study, we have proposed a KPCA-LRT model
for testing associations between a candidate gene or gen-
ome region with diseases (or traits). Results from both
simulation studies and application to real data show that
KPCA-LRT with appropriate parameters is always as or
more powerful than PCA-LRT, especially under lower
relative risks and significant levels.

Acknowledgements
This work was supported by the grant from National Natural Science
Foundation of China (30871392). We thank NARAC for providing us with the
data.

Author details
1Department of Epidemiology and Health Statistics, School of Public Health,
Shandong University, Jinan 250012, China. 2CAS-MPG Partner Institute for
Computational Biology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai 200031, China. 3Key Laboratory of

Computational Biology, CAS-MPG Partner Institute for Computational
Biology, Chinese Academy of Sciences, Shanghai 200031, China. 4MRC
Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital,
Cambridge, UK.

Authors’ contributions
QSG, YGH, ZSY, JHZ, BBZ and FZX conceptualized the study, acquired and
analyzed the data and prepared for the manuscript. All authors approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 8 May 2011 Accepted: 26 August 2011
Published: 26 August 2011

References
1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK,

SanGiovanni JP, Mane SM, Mayne ST, et al: Complement factor H
polymorphism in age-related macular degeneration. Science 2005,
308(5720):385-389.

2. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA,
Pant PV, Frazer KA, Cox DR, Ballinger DG: High-resolution whole-genome
association study of Parkinson disease. Am J Hum Genet 2005, 77(5):685-693.

3. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ,
Kathiresan S, Hirschhorn JN, Daly MJ, et al: Genome-wide association
analysis identifies loci for type 2 diabetes and triglyceride levels. Science
2007, 316(5829):1331-1336.

4. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H,
Timpson NJ, Perry JR, Rayner NW, Freathy RM, et al: Replication of
genome-wide association signals in UK samples reveals risk loci for type
2 diabetes. Science 2007, 316(5829):1336-1341.

5. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF:
Practical aspects of imputation-driven meta-analysis of genome-wide
association studies. Hum Mol Genet 2008, 17(R2):R122-128.

6. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L,
Speliotes EK, Thorleifsson G, Willer CJ, Herrera BM: Genome-wide
association scan meta-analysis identifies three Loci influencing adiposity
and fat distribution. PLoS genetics 2009, 5(6):e1000508.

7. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y,
Kurreeman FAS, Zhernakova A, Hinks A: Genome-wide association study
meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature
genetics 2010, 42(6):508-514.

8. Beyene J, Tritchler D, Asimit JL, Hamid JS: Gene- or region-based analysis
of genome-wide association studies. Genet Epidemiol 2009, 33(Suppl 1):
S105-110.

9. Kraft P, Hunter D: Genetic risk prediction–are we there yet? New Engl J
Med 2009, 360(17):1701.

10. Buil A, Martinez-Perez A, Perera-Lluna A, Rib L, Caminal P, Soria J: A new
gene-based association test for genome-wide association studies. 2009,
BioMed Central Ltd: S130..

11. Yang HC, Liang YJ, Chung CM, Chen JW, Pan WH: Genome-wide gene-
based association study. BMC Proc 2009, 3(Suppl 7):S135.

12. Lo S, Chernoff H, Cong L, Ding Y, Zheng T: Discovering interactions
among BRCA1 and other candidate genes associated with sporadic
breast cancer. Proceedings of the National Academy of Sciences 2008,
105(34):12387.

Table 2 The performances of single-locus test, PCA-LRT and KPCA-LRT

Region # of SNPs Physical location Gene involved Results

Single** PCA KPCA

Region 1 12 114030646-114132504 PTPN22 2.30E-8* 4.63E-9* 3.14E-9*

Region 2 8 143025126-143050638 ANKRD35 1.94E-6* 0.837 4.25E-6*

Region 3 13 156523590-156572131 DUSP23 2.47E-4 6.01E-3 7.82E-6*

Region 4 15 19880889-19929909 RNF186 2.05E-4 5.33E-6* 2.54E-6*

*significant at the level of 1E-5.

**the most significant p value in the corresponding region.

Gao et al. BMC Genetics 2011, 12:75
http://www.biomedcentral.com/1471-2156/12/75

Page 7 of 8

http://www.ncbi.nlm.nih.gov/pubmed/15761122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15761122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16252231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16252231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18852200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18852200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19557161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19557161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19557161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20453842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20453842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19924708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19924708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018002?dopt=Abstract


13. Qiao B, Huang CH, Cong L, Xie J, Lo SH, Zheng T: Genome-wide gene-
based analysis of rheumatoid arthritis-associated interaction with
PTPN22 and HLA-DRB1. BMC Proc 2009, 3(Suppl 7):S132.

14. Neale BM, Sham PC: The future of association studies: gene-based
analysis and replication. Am J Hum Genet 2004, 75(3):353-362.

15. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM,
Hayward NK, Montgomery GW, Visscher PM, Martin NG, et al: A versatile
gene-based test for genome-wide association studies. Am J Hum Genet
2010, 87(1):139-145.

16. Hauser E, Cremer N, Hein R, Deshmukh H: Haplotype-based analysis: a
summary of GAW16 Group 4 analysis. Genet Epidemiol 2009, 33(Suppl 1):
S24-28.

17. Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME,
Hayes BJ: A validated genome-wide association study in 2 dairy cattle
breeds for milk production and fertility traits using variable length
haplotypes. J Dairy Sci 2010, 93(7):3331-3345.

18. Xiong M, Zhao J, Boerwinkle E: Generalized T2 test for genome
association studies. Am J Hum Genet 2002, 70(5):1257-1268.

19. Fan R, Knapp M: Genome association studies of complex diseases by
case-control designs. Am J Hum Genet 2003, 72(4):850-868.

20. Peng Q, Zhao J, Xue F: PCA-based bootstrap confidence interval tests for
gene-disease association involving multiple SNPs. BMC Genet 2010, 11:6.

21. Wang K, Abbott D: A principal components regression approach to
multilocus genetic association studies. Genet Epidemiol 2008,
32(2):108-118.

22. Wang X, Qin H, Sha Q: Incorporating multiple-marker information to
detect risk loci for rheumatoid arthritis. BMC Proc 2009, 3(Suppl 7):S28.

23. Gauderman WJ, Murcray C, Gilliland F, Conti DV: Testing association
between disease and multiple SNPs in a candidate gene. Genetic
Epidemiology 2007, 31(5):450-450.

24. Yang HC, Lin CY, Fann CS: A sliding-window weighted linkage
disequilibrium test. Genet Epidemiol 2006, 30(6):531-545.

25. Yang HC, Hsieh HY, Fann CS: Kernel-based association test. Genetics 2008,
179(2):1057-1068.

26. Silva S, Botelho C, De Bem R, Almeida L, Mata M: C-NLPCA: Extracting
Non-Linear Principal Components of Image Datasets..

27. Mika S, Schlkopf B, Smola A, Müller K, Scholz M, Rtsch G: Kernel PCA and
de-noising in feature spaces. Advances in neural information processing
systems 1999, 11(1):536-542.

28. Schlkopf B, Smola A, Müller K: Kernel principal component analysis.
Artificial Neural Networks¡ªICANN’97 1997, 583-588.

29. Scholkopf B, Smola A, Muller KR: Nonlinear component analysis as a
kernel eigenvalue problem. Neural Comput 1998, 10(5):1299-1319.

30. Liu Z, Chen D, Bensmail H: Gene expression data classification with
Kernel principal component analysis. J Biomed Biotechnol 2005,
2005(2):155-159.

31. Kramer MA: Nonlinear Principal Component Analysis Using
Autoassociative Neural Networks. Aiche J 1991, 37(2):233-243.

32. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X:
Powerful SNP-set analysis for case-control genome-wide association
studies. Am J Hum Genet 2010, 86(6):929-942.

33. Nguyen VH, Golinval JC: Fault detection based on Kernel Principal
Component Analysis. Eng Struct 2010, 32(11):3683-3691.

34. Zhang DQ, Zhou ZH: Adaptive kernel principal component analysis with
unsupervised learning of kernels. Ieee Data Mining 2006, 1178-1182.

35. Kwok JT, Tsang IW: Learning with idealized kernels. 2003, 400.
36. Jaakkola T, Diekhans M, Haussler D: Using the Fisher kernel method to

detect remote protein homologies. 1999, 149-158.
37. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M,

Haussler D: Knowledge-based analysis of microarray gene expression
data by using support vector machines. Proceedings of the National
Academy of Sciences of the United States of America 2000, 97(1):262.

38. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint
method for genome-wide association studies by imputation of
genotypes. Nat Genet 2007, 39(7):906-913.

39. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A,
Khalili H, Chandrasekaran A, Davies LRL, et al: TRAF1-C5 as a risk locus for
rheumatoid arthritis - A genomewide study. New Engl J Med 2007,
357(12):1199-1209.

40. Firestein GS: Evolving concepts of rheumatoid arthritis. Nature 2003,
423(6937):356-361.

41. Begovich A, Carlton V, Honigberg L, Schrodi S, Chokkalingam A,
Alexander H, Ardlie K, Huang Q, Smith A, Spoerke J: A missense single-
nucleotide polymorphism in a gene encoding a protein tyrosine
phosphatase (PTPN22) is associated with rheumatoid arthritis. The
American Journal of Human Genetics 2004, 75(2):330-337.

42. Carlton V, Hu X, Chokkalingam A, Schrodi S, Brandon R, Alexander H,
Chang M, Catanese J, Leong D, Ardlie K: PTPN22 genetic variation:
evidence for multiple variants associated with rheumatoid arthritis. The
American Journal of Human Genetics 2005, 77(4):567-581.

43. Källberg H, Padyukov L, Plenge R, Rnnelid J, Gregersen P, van der Helm-van
Mil A, Toes R, Huizinga T, Klareskog L, Alfredsson L: Gene-gene and gene-
environment interactions involving HLA-DRB1, PTPN22, and smoking in
two subsets of rheumatoid arthritis. The American Journal of Human
Genetics 2007, 80(5):867-875.

44. Silverberg MS, Cho JH, Rioux JD, McGovern DPB, Wu J, Annese V, Achkar JP,
Goyette P, Scott R, Xu W: Ulcerative colitis-risk loci on chromosomes
1p36 and 12q15 found by genome-wide association study. Nat Genet
2009, 41(2):216-220.

45. Boyer F, Fontanges E, Miossec P: Rheumatoid arthritis associated with
ulcerative colitis: a case with severe flare of both diseases after delivery.
Ann Rheum Dis 2001, 60(9):901-901.

46. Manolio T, Brooks L, Collins F: A HapMap harvest of insights into the
genetics of common disease. The Journal of clinical investigation 2008,
118(5):1590.

47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 2000,
25(1):25-29.

48. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28(1):27-30.

49. Sha Q, Tang R, Zhang S: Detecting susceptibility genes for rheumatoid
arthritis based on a novel sliding-window approach. BMC Proc 2009,
3(Suppl 7):S14.

50. Tang R, Feng T, Sha Q, Zhang S: A variable-sized sliding-window
approach for genetic association studies via principal component
analysis. Ann Hum Genet 2009, 73(Pt 6):631-637.

51. Wold H: Partial least squares. 1985.

doi:10.1186/1471-2156-12-75
Cite this article as: Gao et al.: Gene- or region-based association study
via kernel principal component analysis. BMC Genetics 2011 12:75.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Gao et al. BMC Genetics 2011, 12:75
http://www.biomedcentral.com/1471-2156/12/75

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/20017999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15272419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15272419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20598278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20598278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19924718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19924718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20630249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20630249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20630249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11923914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11923914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12647259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12647259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17849491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17849491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16830340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16830340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18558654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21861111?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20560208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20560208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10618406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10618406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17572673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17572673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17572673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12748655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19122664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19122664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11534510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11534510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19735491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19735491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19735491?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	PCA
	KPCA
	Models
	Data simulation
	Application

	Results
	Data simulation
	Type I error
	Power

	Application

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

