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Abstract

Background: There is increasing evidence that the ability to adapt to seawater in teleost fish is modulated by
genetic factors. Most studies have involved the comparison of species or strains and little is known about the
genetic architecture of the trait. To address this question, we searched for QTL affecting osmoregulation capacities
after transfer to saline water in a nonmigratory captive-bred population of rainbow trout.

Results: A QTL design (5 full-sib families, about 200 F2 progeny each) was produced from a cross between FO
grand-parents previously selected during two generations for a high or a low cortisol response after a standardized
confinement stress. When fish were about 18 months old (near 204 g body weight), individual progeny were
submitted to two successive hyper-osmotic challenges (30 ppt salinity) 14 days apart. Plasma chloride and sodium
concentrations were recorded 24 h after each transfer. After the second challenge, fish were sacrificed and a gill
index (weight of total gill arches corrected for body weight) was recorded. The genome scan was performed with
196 microsatellites and 85 SNP markers. Unitrait and multiple-trait QTL analyses were carried out on the whole
dataset (5 families) through interval mapping methods with the QTLMap software. For post-challenge plasma ion
concentrations, significant QTL (P < 0.05) were found on six different linkage groups and highly suggestive ones (P
< 0.10) on two additional linkage groups. Most QTL affected concentrations of both chloride and sodium during
both challenges, but some were specific to either chloride (2 QTL) or sodium (1 QTL) concentrations. Six QTL (4
significant, 2 suggestive) affecting gill index were discovered. Two were specific to the trait, while the others were
also identified as QTL for post-challenge ion concentrations. Altogether, allelic effects were consistent for QTL
affecting chloride and sodium concentrations but inconsistent for QTL affecting ion concentrations and gill
morphology. There was no systematic lineage effect (grand-parental origin of QTL alleles) on the recorded traits.

Conclusions: For the first time, genomic loci associated with effects on major physiological components of
osmotic adaptation to seawater in a nonmigratory fish were revealed. The results pave the way for further

deciphering of the complex regulatory mechanisms underlying seawater adaptation and genes involved in

osmoregulatory physiology in rainbow trout and other euryhaline fishes.
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Background

The expansion of intensive aquaculture for salmonids in
seawater net pens in Europe and western North Amer-
ica has heightened interest in genetic studies of a num-
ber of production traits in these species. Particularly
well studied are aquacultured species such as rainbow
trout (Oncorhynchus mykiss) which, in their wild state,
include both migratory (steelhead trout) and nonmigra-
tory (rainbow trout) forms.

Various studies have shown that rainbow trout reared
in the marine environment (estuarine or coastal areas)
show better growth compared to fish reared in fresh-
water [1-3]. Strains that naturally smoltify, a complex
physiological and behavioural change that pre-adapts
the fish to a high salinity environment, can be used for
such purposes. However, nonmigratory populations can
also be successfully adapted to, and reared in, seawater.

The ability of rainbow trout to adapt to seawater (SW)
depends on the development of branchial ionoregulatory
mechanisms. In a hyperosmotic environment (SW), tele-
ost fish lose water through osmosis and gain ions
(essentially Na™ and CI") through diffusion. Maintenance
of a stable hydromineral balance mainly relies on inges-
tion of SW coupled with active excretion of Na* and Cl°
. In freshwater (FW), the reverse mechanisms occur (see
review by Evans et al. [4]). Numerous studies have
investigated the activity of ion-transporters during accli-
mation to SW, particularly at the gill epithelium where
Na® and CI are actively excreted in order to regulate
plasma Na" and Cl levels. These effluxes rely on bran-
chial epithelial transporters such as Na*/K*-ATPase and
Na*-K*-2Cl™ for Na® and CFTR for CI” (see reviews
Evans et al. [4]; Hwang and Lee [5]).

Several studies have clearly shown that the size of the
fish and conditions of transfer (for example the salinity
gradient) from FW to SW are key parameters for suc-
cessful adaptation of rainbow trout to hyperosmotic
environment [3,6]. Genetic factors can also contribute
to the ability of fish to adapt to SW environment. Dif-
ferences between two reciprocal interspecific hybrid bass
populations (white bass Morone chrysops x striped bass
Morone saxatilis) were shown for plasma osmolality
during acclimation to salinity [7]. Differences between
lagoon and marine sea bass (Dicentrarchus labrax)
before and after freshwater acclimation have also been
reported by Allegrucci et al. [8]. The inheritance of
smoltification has been examined in several salmonid
species including steelhead trout (the migratory form of
rainbow trout) [9-11]. These studies suggest that both
the timing and propensity to smoltification are under
genetic control. Similar findings have been reported for
migratory (anadromous) and nonmigratory populations
of Atlantic salmon (Salmo salar). Surveys of landlocked
Atlantic salmon from North America and Europe, and
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of landlocked and anadromous populations have shown
differences in the capacity of these strains to adapt to
SW [12-16] and the analysis of osmoregulatory mechan-
isms at the level of gill has shown that differential
expression of gill Na"/K*-ATPase -ala, -a1b and -a.3
isoforms associated with Na"/K*-ATPase activity may
account for these differences in osmoregulatory perfor-
mance [17].

The recent development of genetic resources in rain-
bow trout, including genetic markers and medium den-
sity genetic maps [18-21] provides the foundation for
deeper biological understanding of the genetic basis of
phenotypic patterns of importance for aquaculture. The
identification of QTL (Quantitative Trait Loci) paves the
way for a precise investigation of the molecular genetic
basis of traits. While many QTL studies have already
been implemented for a range of traits, including growth
[22], disease resistance [23-26], temperature tolerance
[27], cortisol responsiveness [28] and early maturation
[29], very little has been done regarding osmoregulation
capacities in rainbow trout. Nichols et al. [10] per-
formed a QTL study for smoltification-related traits
using a cross between nonmigratory (rainbow) and
migratory (steelhead) trout lines. However, the study
mainly focused on growth and morphological traits
(body shape, skin reflectance) while no significant QTL
was detected for the gill Na*/K"-ATPase activity, a key
branchial epithelial Na* transporter.

In this study, we transferred rainbow trout from FW
to SW and performed a QTL analysis for plasma Na*
and Cl" levels, which are the standard physiological
parameters used to characterize the ability of fish to
adapt to a hyperosmotic environment [30-32]. In addi-
tion, we were also interested in gill size which could be
a factor in salinity adaptation. A QTL design was pro-
duced using rainbow trout lines previously selected for
high (HR) or low (LR) cortisol responsiveness to an
acute confinement stressor [33]. Cortisol is a major hor-
mone regulating stress responses but also a major
osmoregulatory hormone. Though mechanisms induced
by confinement and salinity stressors may not be the
same, the HR and LR lines differ in the responsiveness
of the corticotrope axis and thus represented highly
relevant biological material for this QTL experimental
design.

Methods

Experimental design and fish rearing conditions
Grand-parental brood stock belonged to two O. mykiss
lines (HR and LR), previously selected for divergent
plasma cortisol responsiveness to a standardized con-
finement stressor [33,34]. F1 parents were produced by
mating single individuals within the second generation
of selected HR and LR individuals, one from each line.
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The next generation, five F1 males and five F1 females
were single pair mated in order to produce the five F2
full sib families used for QTL detection (denoted X3,
X4, X8, X14 and X17). All fish (FO, F1 and F2 families)
were maintained at the CEH (Centre for Ecology &
Hydrology) experimental fish facilities (Windermere,
UK).

Fertilization was performed in January, 2006, employ-
ing standard stripping and fertilization methods. When
the fish were about 11 months old, 215 individuals per
family were randomly sampled, individually tagged with
passive integrated transponders (PIT; Trovan ID100A),
fin clipped for further DNA extraction and distributed
into ten holding tanks (1000 litres), with each family
held in two tanks. Each tank was supplied with a con-
stant flow of lake water (25 L/min) at ambient tempera-
ture. The fish were monitored closely and fed approx
2% body weight, 3 days per week (Skretting Standard
Expanded 40). As part of the EU Aquafirst project, fish
were submitted to two successive confinement stressors
when they were about 15 months old. At the end of the
confinement challenge, each family was distributed into
holding tanks at a similar density (around 40 to 50 fish
per tank, i.e. 5 to 6 tanks per family depending on the
family size). Fish were allowed to recover until the com-
mencement of the osmotic challenge (18 months old).

The experimental work at CEH Windermere was car-
ried out under the UK Animals (Scientific Procedures)
Act 1986, Project Licence no. 40/2600.

Osmotic challenge and measurements
Each fish was tested twice with 14 days between chal-
lenges. Exposure to salt water was carried out in a series
of 20 plastic tanks that were filled with 150 litres of lake
water containing 4500 g Red Sea Coral Reef Salt (30
ppt) and continuously aerated and fitted with an opaque
lid. The contents of a single holding tank (40 to 50 fish)
were accommodated in four salinity test tanks allowing
the contents of four holding tanks to be tested on each
working day. The fish were transferred on day 1 and, as
osmotic stress acclimation is a temporal process, they
were sampled exactly 24 h later, on day 2, correspond-
ing to the time required for the maximum acclimatory
response. Fish were netted from the salinity test tanks
and anaesthetized in buckets containing 2-phenoxyetha-
nol (1:2000) before being blood sampled and identified
by PIT tag. Blood was collected from the Cuverian sinus
into heparinised syringes and plasma was stored frozen
until required for determination of plasma chloride and
sodium concentrations. Fish were returned to their
holding tanks to recover. During the first test, body
weight and fork length were recorded for each fish.
Plasma sodium and chloride levels were measured by
flame photometry (VWR international, Fontenay-sous-
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bois, France) and by colorimetry (chlorure LDM
SOBIODA®) [35] respectively. Plasma samples were
diluted 1:400 and 1:2 with distilled water for the analysis
of sodium and chloride respectively and analyses were
performed in duplicate and triplicate respectively.
Sodium values from the first and second challenge were
identified as Na*1 and Na'2 respectively, and the corre-
sponding chloride values were denoted ClI'1 and CI"2.

Fish were sacrificed about 2 months after the end of
the second challenge. At that time, the whole body
weight, the weight of gill archs (including gill filaments
and cartilage) and sex (macroscopic examination of the
gonads) were recorded for the remaining individuals. An
index of relative gill weight, named gill index (gill weight
corrected for body weight used as covariable) was
included in the present study, with the intention of
investigating possible links between gill size and osmor-
egulation capacities. Indeed, a preliminary survey of gill
morphology in 40 fish from HR and LR lines revealed
that LR individuals had larger gill arches in term of
weight and surface area. It was assumed that the indivi-
dual relative gill weight remains stable across short peri-
ods of time and at the time of terminal sampling was
still representative of the morphology at the time of
osmotic challenge.

Genotyping and genetic map

The genome scan was performed using microsatellites
and SNP markers. Microsatellites were chosen from the
INRA reference linkage maps [19]. In a first step, 201
microsatellites chosen on the basis of their map position
were screened for polymorphism in the original HR and
LR lines, and a sub-set of 138 was retained for further
genotyping. In a second step, in order to improve the
genome coverage within every family, additional markers
were selected in genomic regions still poorly covered
and were tested for polymorphism in the five QTL
families. In the end, a set of 196 microsatellites, includ-
ing 13 duplicated markers, was used. Among those, 49
were genotyped by LABOGENA (Jouy-en-Josas, France)
while the others were genotyped at INRA-GABI. SNP
markers designed by Krieg et al. (in preparation) were
screened for polymorphism in the QTL families and 85
(see GenBank dbSNP submission numbers in Additional
file 1) were retained for the genome scan and genotyped
by Genoscope using SNPlex Genotyping System
(Applied Biosystem). The overall polymorphism infor-
mation content (PIC) of markers was 0.51 for microsa-
tellites and 0.30 for SNP. The mean PIC per linkage
group ranged from 0.32 to 0.65.

The genetic consensus linkage map was rebuilt for the
families of the QTL design including the whole set of
markers and using the CarthaGeéne software ([36],
http://www.inra.fr/internet/Departements/MIA/T//
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CarthaGene/). The total length of the map was 3182
cM, so that the mean overall spacing for genome cover-
age was about 16 ¢cM (3 to 16 markers per linkage
group; 179 to 206 informative markers per family). Link-
age groups were named according to Guyomard et al.
[19], with correspondence with physical chromosomes
according to Phillips et al. [20] indicated in tables and
figures.

Statistical analyses

Description of traits

We first provided some description of the raw data for
the five traits of interest (Na‘1, Na*2, CI'1, CI'2 and gill
index) and determined whether the rank of challenge
(first vs second challenge) on one hand and the different
families on the other hand significantly affected the
traits. The significance of these two factors was tested
using the GLM procedure, SAS version 9 [37] at the P <
0.05 level.

Sources of variability

In order to choose a model for further analyses, the
effects of several fixed effects and co-factors were
tested for every trait. The GLM procedure, SAS ver-
sion 9 [37] was applied to an overall model which
included tested factors and the full-sib family effect.
For plasma ion values (Na*1l, Na*2, CI'1, CI'2) the
overall model was:

Yijmn = p+Sex;+Datej+F llank(date)ik+Clank1+Crossm +Brxweight+ S xlength+ejjkmn ( 1 )

where

Yijjiamn is the progeny phenotype (plasma ion values)

u is the general mean of the model

Sex; is the fixed effect of sex i with 2 levels (male
and female)

Date; is the fixed effect of the date j of challenge (6
levels)

Htank(date);i is the fixed effect of the holding tank k
within date j (21 levels)

Ctank; is the fixed effect of the challenge tank I (20
levels)

Cross,, is the fixed effect of the full-sib family m (5
levels)

weight is the body weight at the first challenge con-
sidered as a covariable

length is the fork length at the first challenge con-
sidered as a covariable

and ejjimn is the residual of the model supposed
normally distributed with a mean 0 and a variance

2
G .

For gill weight, the model was adapted to take into
account further changes in the management of fish

Page 4 of 14

between the end of challenge and measurements of sex
and gill weight.

Yijim = i + Sex; + Group; + Htanky + Cross + B1 * weight + 8, * length + ejjim (2)

where

Yjjiam is the progeny gill weight value

u is the general mean of the model

Sex; is the fixed effect of sex i with 2 levels (male
and female)

Groupj is the fixed effect of the date j at weighing (2
levels, as after challenge 2, fish were redistributed in
2 groups that were terminally sampled with several
weeks delay)

Htank, if the fixed effect of the holding tank k (12
levels)

Cross is the fixed effect of the full-sib family 1 (5
levels)

weight is the body weight at the date of measure-
ment considered as a covariable

length is the fork length at the date of measurement
considered as a covariable

and ejum is the residual of the model supposed nor-
mally distributed with a mean 0 and a variance c.”.

Factors having a P-value equal to or less than 0.2 in
these pre-analyses were kept in the final models. Model
(1) for ion plasma concentrations revealed that all
effects but sex and fork length were significant at the
0.20 level. Model (2) for gill weight indicated that body
weight, sex (males having heavier gills than females) and
Group were significant at the 0.20 level. Thus, the final
models used in further analyses were as follows:

For plasma ion concentrations (both challenges):

Yiju = p + date; + Htank(date);; + Ctanky + 1 * weight + e (3)
For gill index:

Yij = 1 + sex; + Groupi + B1 x weight + e (4)

Phenotypic correlations

Models (3) and (4) were applied to adjust raw data for
fixed effects and co-factors using the SAS GLM proce-
dure. The Pearson coefficients of correlation were then
determined with the CORR procedure, SAS version 9
[37] applied on residual values of these models (pheno-
typic correlations).

QTL detection

QTLMap software [38] was used for QTL detection, scan-
ning for QTL every 1 cM in the genome. An interval map-
ping method described by Elsen et al. [39] was applied
considering a set of non-related full-sib families design
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and making no assumption about allele numbers or allele
frequencies at QTL within founder populations. QTL
effects are thus estimated, for each sire and each dam, as
the allelic substitution effects. The statistical test used to
compare the hypotheses of the presence of one QTL (H1)
vs no QTL (HO) at one location was an approximate likeli-
hood ratio test (LRT) [40]. The empirical distribution of
LRT was obtained from 1000 simulations under the null
hypothesis, with a trait heritability fixed to 0.5, for each
trait and each linkage group. Thresholds of HO rejection at
the chromosome-wide level (P-values = 0.005, 0.01, 0.05
and 0.10) were then estimated with the method described
by Harrel and Davis [41]. A QTL with a P-value < 0.10 at
the chromosome-wide level was retained as suggestive,
and a QTL with a P-value < 0.05 at the chromosome-wide
level was retained as significant [42]. The widely used “one
LOD drop-off method” was applied to obtain 95% confi-
dence intervals of the QTL location [43]. Finally, the status
of the sires and dams for QTL (heterozygous vs homozy-
gous) was tested using a t-test (P < 0.05). As grand-parents
had been genotyped, the lineage origin, i.e. HR or LR, of
each QTL allele of heterozygous parent could be deduced.

In a first step, univariate analyses were carried out
trait by trait. Multiple-trait QTL analyses were per-
formed in a second step. We applied a multivariate
model with a multinormal penetrance distribution,
which is the most powerful and accurate method [44].
In both unitrait and multiple-trait analyses, the phenoty-
pic models (3) and (4) were given as input of the
QTLMap software for the analysis of raw data.

Results

Traits description

The number of recorded individuals, family means,
overall means and standard deviations of the different
traits (raw data) are given in Table 1.
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Figure 1 illustrates the effect of the challenge (first vs
second challenge), with a marked increase of plasma
sodium concentrations during the second challenge rela-
tive to the first (+8.5% in average, P < 0.01, from +5.7 to
+10.7% depending on the family) whereas chloride con-
centrations were lower during the second challenge
(-1.2% in average, P < 0.05, from -10% to +5% depend-
ing on the family) than during the first. Significant
family differences (P < 0.01) were found only for gill
index and Na'2. For other plasma ion concentrations
(Na'l, CI'l and CI2), family effect was not significant
(P > 0.05).

Phenotypic correlations

As shown in Table 2, the phenotypic correlation
between the values of sodium and chloride concentra-
tions at the two challenges was high for sodium (Pear-
son coefficient of correlation R = 0.67) but low for
chloride (R = 0.08). Within challenge, the phenotypic
correlation between sodium and chloride concentrations
was moderate (R = 0.21). No significant phenotypic cor-
relation was detected between gill index and any of the
plasma ion concentrations.

QTL detection

Results of unitrait analyses

Unitrait analyses highlighted the existence of seven sig-
nificant (P < 0.05) and seven suggestive (P < 0.10) QTL.
Ten QTL affected plasma ion concentrations (six sug-
gestive and four significant) and four affected gill index
(one suggestive and three significant, Table 3).

The four significant QTL for plasma ion concentra-
tions were distributed on four different linkage groups
(RT10, RT14, RT25 and RT26). Linkage group RT14
accommodated QTL for Na*2 (P < 0.05) and probably
for Na*1 also (P < 0.10), but there was no overlap

Table 1 Mean body traits and ion plasma concentrations at the two successive osmotic challenges

Traits Unit Family mean Overall mean sD n
X3 X4 X8 X14 X17

Na'1 mmol.L” 185 195 209 186 191 193 27 932
Na*2 204 207 221 206 200 208 35 900

cn 147 144 156 140 139 145 17 931
cl2 147 142 141 148 138 143 15 894
Body weight at challenge 1 g 203 200 210 190 214 204 9 932
Fork length at challenge 1 cm 266 257 265 26.2 267 263 04 932
Final gill weight g 108 10 108 9.6 1.0 104 26 787

Final body weight 423 382 433 381 434 411 98 791

Na*1, Na*2: plasma sodium concentration at first and second challenge respectively.

CI"1, CI"2: plasma chloride concentration at first and second challenge respectively.

Final gill weight and body weight measured 2 months after the end of the second challenge.

SD: overall standard deviation; n: total number of individual records.



Le Bras et al. BMC Genetics 2011, 12:46
http://www.biomedcentral.com/1471-2156/12/46

Page 6 of 14

210 @ 146
. 208 145.5
mmol.L 206 145 mmol.L-!
204 144.5
202 144
200
143.5
198
196 143 o Mean
142.5
194 I:I Meantstandard error
192 142
190 141.5 I Mean+1.96 * standard error
sodiuml sodium2 chloridel chloride2

Figure 1 Boxplot representation of sodium (A) and chloride™ (B) plasma concentrations at the two successive osmotic challenges.

between the QTL locations, indicating that the QTL
involved in the first challenge, if confirmed, may not
have been the same as in the second challenge. Two
QTL were associated with CI'1 (RT25 and RT26), and
one QTL was associated with CI'2 (RT10). The QTL
located on RT10 was the most significant (P < 0.01). No
common QTL between the two successive challenges
was detected for either CI” or Na* concentrations. Over-
all, QTL for sodium and chloride concentrations were
localized in different regions of the genome. Yet, at the
second challenge, suggestive QTL detected on RT19 for
Na*2 and CI'2 overlapped suggesting the existence of a
QTL possibly affecting both traits.

Significant QTL for plasma ion concentrations segre-
gated in at least 3 families of the design, and up to 7
heterozygous parents were detected for some QTL.
Most often, the QTL allele that increased sodium or
chloride concentrations originated from the LR grand-

Table 2 Pairwise coefficients of phenotypic correlation
among the different traits

Traits gill index a2 an Na*2
Na*1 R 0.00 0.03 0.21 0.67
P 0.98 031 <0.0001 <0.0001
n 776 862 901 871
Na*2 R 0.06 0.22 0.13
P 0.12 <0.0001 0.0001
n 771 865 867
cn R 0.01 0.08
P 0.69 0.02
n 772 858
an R 004
P 0.24
n 762

R: Pearson coefficient of correlation between individual records corrected for
fixed effects and co-factors; P: associated P-value; n: number of individual
records.

parent (16 cases out of 23 significant allelic contrasts for
RT10, RT14, RT25 and RT26, see Table 3). The QTL
alleles that increased gill index were equally distributed
among the LR and HR genetic lineage (Table 3), though
the lineage effect may differ according to the locus
(increasing effect of HR alleles at RT9 and RT15 and
decreasing effect on RT26 and RT27).

Most QTL for gill index were found on linkage groups
different from those harbouring QTL for plasma ion
concentrations, with the exception of RT26 where a
QTL for CI'1 overlapped the QTL for gill index. In the
only parent where the comparison was possible, the
same QTL allele increased both gill index and CI'1
plasma concentration.

Mean QTL effects ranged from 0.29 to 0.55 phenoty-
pic standard deviation. The largest allelic effects were
identified for chloride concentrations (more than 0.8
phenotypic SD in some families).

Results of multiple-trait analyses
Altogether, multiple-trait analyses detected six signifi-
cant QTL and eleven suggestive ones (Table 4).

For ionic concentrations, multiple-trait analyses con-
firmed the existence and location of several of the QTL
previously detected in unitrait analysis (RT10, RT26,
RT19). It evidenced that those QTL steadily affected the
target trait in the two successive challenges or consis-
tently affected both sodium and chloride concentrations.
Thus, the highly significant QTL on RT10 for chloride
concentration at the second challenge was confirmed at
the first challenge (CI'1-Cl'2 multiple-trait analysis,
Table 4), and multiple-trait analysis also revealed an
effect of this QTL on sodium concentration at both
challenges (Na"2-Cl"2 and 4-traits analysis of plasma
ions). In the 2-traits analysis for challenge 2, this QTL
was significant at the genome-wide level (P < 0.05).
Similarly, the effect of the QTL on RT19 on both chlor-
ide and sodium concentrations was underlined. While in
unitrait analyses, this QTL was suggestive for the two
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Table 3 QTL detected after unitrait analyses for gill index and ion plasma concentrations 24 h after an osmotic

challenge at 30 ppt salinity

Trait LG (Chr)® Max LRT? Position © cd QTL effect © ny'
mean min-max LR HR
Na™1 RT14 (Omy19) 221 66 60-72 033 0.26-047 4 1
RT29 (Omy17) 233 55 52-60 0.34 0.22-0.55 4 1
RT31 (Omys3) 22.8 0-14 0.31 0.22-0.49 4 2
Na*2 RT14 (Omy19) 28.9* 0-10 045 0.24-0.64 2 1
RT19 (Omy11) 22.3 119 115-119 0.30 0.21-0.38 5 2
an RT25 (Omy29) 25.1%* 12 6-19 0.29 0.20-043 5 2
RT26 (Omy24) 22.8* 43 27-55 0.30 0.20-048 6 0
cr2 RT10 (Omy6) 371.2%* 21 18-24 041 0.21-0.83 3 4
RT19 (Omy11) 227 12 88-119 0.34 0.26-0.56 4 2
RT21 (Omy9) 217 32 0-44 047 0.29-0.57 2 1
Gill index RT9 (Omy12) 28.6%* 75 70-80 045 0.28-0.58 1 3
RT15 (Omy21) 23.2*% 51 40-51 033 0.20-0.49 1 4
RT26 (Omy24) 24.7* 43 35-50 0.55 0.38-0.89 3 0
RT27 (Omy2) 224 6 0-20 0.31 0.22-0.53 4 2

a
b
c
d

: confidence interval of the position estimated with the ‘drop off’ method.
e

recorded among families with significant QTL effect at P < 0.05.

: linkage groups according to Guyomard et al. [19] and corresponding physical chromosomes (Chr) according to Phillips et al. [20].
: maximum likelihood test value (LRT) and corresponding chromosome-wide significance level (no indication: P < 0.10; *: P < 0.05; **: P < 0.01).
: position on the consensus linkage group rebuilt with the families of the design.

: QTL substitution effect (in phenotypic standard deviation of the trait). Mean, min and max refer respectively to the mean, minimum and maximum QTL effects

f. ny is the number of F1 parent segregating for the QTL. LR and HR indicate the line having transmitted the allele with an increasing effect on the trait.

traits at the second challenge, it became significant in
the 2-traits analysis, and the 4-traits analysis also sug-
gested it may be involved at the first challenge. The
QTL for chloride concentration on RT26, which was
detected in unitrait analysis for the first challenge only,
was found again (P < 0.10) for both CI'1 and CI"2 in
multiple-trait analysis. For those three QTL (RT10,
RT19 and RT26), locations of the QTL revealed in the
different analyses were quite consistent (Table 3).
Results of multiple-trait analysis also confirmed that
RT14 harbours QTL affecting sodium concentrations at
both challenges. However, locations did not support the
hypothesis of a single QTL for all traits (two QTL at 0
and 66 cM in unitrait analysis, and one QTL at 27 cM
in multiple-trait analysis, with no overlap). Further test-
ing for the presence of 2 QTL vs 1 QTL on the linkage
group did not support the presence of 2 distinct QTL
(data not shown).

Novel QTL affecting plasma ion concentrations were
discovered (RT4, RT5, RT7, RT9, RT23) though most of
them, with the exception of QTL on RT4, were sugges-
tive only (P < 0.10). Nevertheless, two of them were
detected in several multiple-trait analyses at very consis-
tent locations (RT5, RT23). All newly discovered QTL
affected concentrations of both ions (sodium and chlor-
ide). Two of them were specific to the challenge (QTL
on RT7 for challenge 1 and QTL on RT9 for challenge
2), but were significant at P < 0.10 only.

In summary, considering both significance levels and
consistency of the different analyses, QTL for plasma
ion concentrations were detected on the linkage groups
RT4, RT10 and RT19 (both chloride and sodium con-
centrations at both challenges), RT26 (chloride concen-
tration at both challenges), RT25 (chloride
concentration at the first challenge) and RT14 (sodium
concentration at both challenges) though no consistent
QTL location could be found on that linkage group.

Allelic effects at the different QTL tended to be con-
sistent for both ions, i.e. an allele that increased chloride
concentration also increased sodium concentration, but
opposite were also observed (often for an allelic effect
near the significance threshold). For the three significant
QTL affecting both ion concentrations (RT4, RT10,
RT19), QTL allelic effects were consistent for both ions
in 13 out of the 16 cases where the comparison was
possible. Allelic effects on plasma ion concentrations
also varied according to QTL and genetic lineage. While
HR alleles tended to decrease chloride and sodium con-
centrations at QTL on linkage groups RT19 and RT26
as previously observed in unitrait analysis, they tended
to be mostly associated with higher plasma concentra-
tions at QTL on RT5, RT9 and RT23. Mean allelic
effects were in the same range as in unitrait analyses
(0.3-0.35 phenotypic SD). Again, the highest values were
recorded for chloride concentrations (around 0.8 SD in
some families, data not shown).
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Table 4 QTL detected after multiple-trait analyses for gill index and ion plasma concentrations 24 h after an osmotic

challenge at 30 ppt salinity

Analysis  Traits® LG (Chr)® Max LRT®  Position ¢ (el QTL effect ny?
Na*1  Na*2 CI'1  CI2 Gill index LR HR
Significant QTL

2 traits cr RT4 (Omy25) 326 % 14 2-25 051 029 5 3
RT10 (Omy6) 37.1% 21 14-27 026 041 4 2

Challenge 2 RT10 (Omyo6) 46.5 *** 21 16-28 0.29 045 6 4

RT19 (Omy11) 394 * 119 105-119 0.28 0.31 8 3

4 traits Plasma ions RT10 (Omy6) 654 * 20 18-28 0.27 043 0.26 041 4 9
5 traits All traits RT10 (Omy6) 768 * 26 20-37 0.25 031 023 033 032 9(4) 6

Suggestive QTL

2 traits Na* RT14 (Omy19) 346 27 20-34 0.30 0.35 6 4
cr RT5 (Omy22) 331 30 0-34 036 029 0 7

RT23 (Omy8) 358 114 103-123 037 052 5 7

RT26 (Omy24) 326 55 42-55 035 026 7 1

Challenge 1 RT7 (Omy15) 37.1 0 0-10 045 0.38 7 3

Challenge 2 RT9 (Omy12) 36.1 17 8-25 045 049 3 6

RT23 (Omy8) 36.2 108 90-128 041 0.53 3 8

4 traits Plasma ions RT5 (Omy22) 60.2 30 0-34 0.32 031 037 0.29 4 8
RT19 (Omy11) 63.8 119 93-119 036 0.29 029 030 11 4
5 traits All traits RT4 (Omy 25) 64.9 10 0-11 0.23 033 054 033 039 1320 202
RT19 (Omy11) 765 119 83-119 034 0.36 026 031 0.29 13(1) 41

# Challenge 1,2: multiple-trait analysis for respectively (Na*1,CI"1) and (Na*2, CI"2); Na*, CI": multiple-trait analysis for respectively (Na*1, Na*2) and (CI'1, CI"2);

Plasma ions: multivariate analysis for (Na*1, Na*2, CI'1, Cl2).

P : linkage group, according to Guyomard et al. [19] and corresponding physical chromosomes (Chr) according to Phillips et al. [20].
< maximum likelihood test value (LRT) and corresponding chromosome-wide significance level (no indication: P < 0.10; *: P < 0.05; ***: P < 0.005); *** also

indicates a genome-wide significance level at P < 0.05.

9. position on the consensus linkage group rebuilt with the families of the design.

€: confidence interval of the position estimated with the ‘drop off’ method.

f. mean QTL substitution effect (in phenotypic standard deviation of the trait) in the families with significant QTL effect (P < 0.05).
9: nH is the total number of F1 parent segregating for the QTL (in brackets: number of parents for gill index). LR and HR indicate the line having transmitted the

allele with an increasing effect on the trait.

Considering the gill index, multiple-trait analyses
detected three QTL (one significant and two suggestive)
that were not found with unitrait analysis (5-traits analy-
sis, Table 4). Those new QTL were also consistently
involved in the control of plasma ion concentrations in
both challenges (RT4, RT10 and RT19). Linkage group
RT9 that was identified as the location of QTL for gill
index in unitrait analysis (Table 3) was also identified as
accommodating a suggestive QTL for ionic concentra-
tions at the second challenge in the multiple-trait analy-
sis (Table 4) but differences in relative position
indicated that these were unlikely to be the same QTL.

There was no evidence of any lineage effect on the
value of gill index. Moreover, there was no consistency
between QTL allelic effects on gill index and on ionic
concentrations, i.e. an allele increasing relative gill
weight may be associated with either an increase or a
decrease of post-challenge ionic concentrations in the
plasma, depending on the parent and QTL (data not
shown).

Figure 2 summarizes the major results of QTL detec-
tion. Altogether, considering both unitrait and multiple-
trait analyses, six significant QTL were found for post-
challenge ion concentrations in the rainbow trout gen-
ome (RT4, RT10, RT14, RT19, RT25, RT26). Two addi-
tional QTL that were consistently found in several
analyses can be retained as highly suggestive (RT5,
RT23). Five affected both sodium and chloride concen-
trations (RT4, RT5, RT10, RT19, RT23), two affected
chloride concentrations only (RT25, RT26) and one
affected sodium concentration only (RT14). Six QTL
affecting gill index were discovered. Two were specific
to the trait (RT9, RT15), while the others were also
identified as QTL for post-challenge ion concentrations.

Discussion

In this study, we have identified several genomic regions
associated with the variability of response to a hyperos-
motic challenge in rainbow trout. To our knowledge,
this is the first description of QTL affecting plasma
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Figure 2 QTL detected in the rainbow trout genome from unitrait and multiple-trait analyses for gill index and sodium and chloride
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indicators of the hydromineral balance after an osmotic
challenge in a euryhaline fish. Our results strengthen
and extend previous studies which suggested that
genetic factors are likely to influence the ability to adapt
to high salinity in teleost fish. These studies were based
on the comparison of different species and their hybrids
(as in sea bass [7] or in tilapia [45]) or on the compari-
son of different strains or populations in teleost fish on
striped bass [8], salmon [13,14,16,17,46] and artic charr
(Salvelinus alpinus) [15]. The discovery of QTL asso-
ciated with osmoregulatory ability in rainbow trout
paves the way for further understanding of the genetic
basis of the regulatory mechanisms and physiological
pathways involved in the control of hydromineral bal-
ance in this species.

We identified several QTL contributing to the varia-
tion of plasma ion concentrations after exposure to the
salinity challenge. The plasma levels of chloride and
sodium, the two main ions responsible for plasma osmo-
tic pressure, are key indicators of the regulation of
hydromineral balance and consequently were chosen to
monitor the adaptation to 30 ppt salinity in the QTL
progenies.

Two significant QTL (on RT10 and RT19) and four
suggestive QTL (on RT4, RT5, RT9 and RT23) were
found to control the variation of both ions during the
two successive challenges. Moreover, in most cases, the
QTL affected both concentrations in the same direction.
There are no data about the value of the genetic correla-
tion between the two ion concentrations in the plasma
and the genetic structure of our sample (5 full-sib
families) did not allow a reliable estimate of it. Nonethe-
less, this result is consistent with our observation that the
individual plasma values of Na* and Cl” are significantly
correlated within each challenge. It is also consistent
with our present understanding of the hypoosmoregula-
tory mechanisms in seawater which indicate that the
extrusion of Na* and Cl is accomplished by distinct but
coupled mechanisms. The current model for NaCl extru-
sion at the gill epithelium proposes a basolateral co-
transport of Na” and Cl” down the electrochemical gradi-
ent produced by NKCC co-transporter. This co-transport
is coupled with an apical extrusion of Cl” via a low con-
ductance anion channel and a paracellular extrusion of
Na® through Na"-K*-ATPase transporter and diffusion
towards the external medium down its electrochemical
gradient (see reviews Evans et al. [4]; Hwang and Lee
[5]). The morpho-functional modification of the gill
epithelium characterized by the development of leaky
junctions and also accessory cells are fundamental for
efficient extrusion of Cl” and Na" in the gill [47].
Whether these common QTL correspond to genes
encoding major regulators of these cellular changes
would be an interesting hypothesis to test.

Page 10 of 14

We also found QTL affecting the concentration of one
only of the two ions. For sodium, the most significant
QTL affected ionic concentration at the second chal-
lenge (P < 0.05), and was located on RT14. For chloride,
one QTL was consistently found on RT26, and an addi-
tional QTL may be located on RT25 (P < 0.05, in uni-
trait analysis only). Taken together, the levels of
significance of those QTL remain moderate and the
power of our design may have impeded the detection of
some effect on the alternative ion. Nevertheless, this
result may also indicate that the regulation of plasma
sodium and chloride relies in part on ion-specific
mechanisms. Based on the present knowledge of the cel-
lular mechanisms responsible for Na™ and CI” extrusion
in hyperosmotic environment (see review Marshall and
Bellamy [48]), one may hypothesise an association
between QTL and one of the ion transporters character-
ized at the level of the gill epithelium. Additional infor-
mation may have come from the genes in which the
SNP used for the genome scan have been detected
although examination of the known biological function
of these genes (Gene Ontology) did not suggest any
gene relevant for its involvement in ion or water
exchange at the level of transporting epithelia.

The QTL families were F2 progenies from two diver-
gent grand-parental lines (HR and LR) previously
selected for plasma cortisol response to an acute con-
finement stress [33,34]. It is well established that cortisol
plays an important role in the success of the adaptive
osmoregulation process after transfer to a saline envir-
onment [49]. Cortisol represents a major endocrine
actor in the regulation of ionic homeostasis, particularly
after environmental salinity change, by regulating some
seawater specific ion transporters such as Na*-K
“-ATPase isoforms, NKCC and CFTR [49-56]. By its
actions on gill chloride cells number and activity, corti-
sol acts in synergy with IGF-1 and GH to increase over-
all salinity tolerance (see review by McCormick [51]).
Yet, altogether, our QTL results do not support evi-
dence of a unidirectional association between the HR vs
LR origin of QTL alleles and their effect on ion concen-
trations in the plasma. They rather suggest that the role
of grand-parental alleles depends on the loci, a result
that highlights the functional complexity of underlying
mechanisms and is in agreement with the present
knowledge that different stressors (as confinement or
salinity stressors) have distinct effects on the physiologi-
cal mechanisms regulated by cortisol [57]. However, by
introducing a valuable source of additional variability in
comparison to a standard within-population QTL
design, the HR and LR fish provide a valuable tool with
which to obtain a better understanding of the complex
hormonal control of hypo-osmoregulatory mechanisms.
An increasing amount of attention is paid to welfare
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and robustness traits in aquaculture, and many studies
on the genetic control of cortisol response to stressors
have been carried out, ultimately concerned with redu-
cing stress in farmed fish [28,57,59-62]. Thus, a better
understanding of the relationship between cortisol
responsiveness to acute stress and osmoregulation capa-
cities is a key requirement prior to the adoption of any
selection programme designed to manage the cortisol
response to stress in aquacultured fish.

Preliminary observations had suggested that LR indivi-
duals had relatively larger gill arches than HR indivi-
duals. The QTL design was thus appropriate to search
for QTL for gill relative development. Four significant
and two suggestive QTL were detected for gill weight
relative to body weight. This result is in agreement with
other studies that have identified the existence of
numerous QTL for body traits in fish [62-64]. Four of
those QTL are also involved in the regulation of plasma
Na" and Cl concentration after the osmotic challenge,
which raises the question of the possible role of gill size
and morphology on osmoregulatory capacities. To our
knowledge there are no published data indicating any
genetic correlation between gill size and tolerance to
high salinity, and the genetic structure of the QTL data
set (5 full sib families) did not allow a reliable estimate
to be calculated. However, we observed that the QTL
alleles associated with a larger gill also affected ionic
concentrations in the plasma in different directions
(increase as decrease). The total weight of gill arches is
not directly representative of the relative development
of the gill epithelium, which is the active site for ionic
and water exchange and it is therefore unlikely that
there is a direct ‘mechanical’ effect of gill size, through
an increase of the branchial ion-exchange surface. This
is also in agreement with the lack of correlation between
individual values for gill index and any of the plasma ion
concentrations in the different challenges. The most
likely hypothesis is that QTL harbour multiple syntenic
genes regulating the morphological trait (gill size) and
physiological traits (ionic concentrations).

Up to now, very few studies have investigated the
genetic architecture of osmoregulation capacity or asso-
ciated traits in salmonids. To our knowledge, only Nichols
et al. [10] have searched for QTL associated with migra-
tory capacities (smoltification) in trout O. mykiss. Using a
cross between nonmigratory rainbow trout and migratory
steelhead trout line, they discovered 14 genomic regions
(on 14 different linkage groups) associated with smoltifica-
tion-related morphological traits (growth, condition factor,
body coloration, morphology). The genome scan in this
study was performed using AFLP markers, but at least one
microsatellite per linkage group was genotyped and can be
used to establish synteny with other rainbow trout maps.
Interestingly, several QTL discovered in the two studies
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co-localize on the same rainbow trout linkage groups.
This is the case for the QTL on linkage groups RT9, RT14
and RT23 for which we could establish the synteny with
respectively OC9, OC14 and OC23 in Nichols et al. Ambi-
guity remains for the QTL located respectively on OC3 in
Nichols et al. and RT25 in this study. In Nichols et al.,
OC3 is identified by One8ASC and Ogo2. These two mar-
kers belong to a region homologous to RT25, as attested
by several shared duplicated loci, including Ogo2 [19,21].
This suggests that the two aforementioned QTLs could be
under control of two homeologous genes. Furthermore,
since the duplicated or non-duplicated status of One8ASC
(as any marker) is difficult to prove and can vary among
populations, the possibility that OC3 and RT25 corre-
spond to the same linkage group in these two particular
studies cannot be ruled out. Two additional QTL sugges-
tive in the present study (RT21 and RT31) also locate on
linkage groups identified in Nichols et al. For RT21, the
synteny can be established from Omy325DU (on OC21 in
the study by Nichols et al.) and Omy325Uo0G (on RT21 in
our linkage map [19]), which correspond in fact to the
same marker (R. Danzmann, personal communication).

On the other hand, it is worth emphasising that in our
study, we do not find any salinity acclimation QTL on
RT20, the linkage group the most strongly associated
with smoltification traits (mostly growth and morpholo-
gical traits) in the study of Nichols et al. As no smoltifi-
cation process occurred in the fish during our survey,
this observation is not surprising. It emphasizes that the
smoltification process and the adaptation to salinity after
a direct transfer to seawater are two different processes.

Overall, there are at least three linkage groups (and
possibly 6) harbouring QTL in both studies. It is very
difficult to compare the location of the QTL discovered
in the two studies on the linkage groups, as genome
scans were performed with a low marker density and
different types of markers were used (AFLP vs microsa-
tellites). Moreover, the traits recorded in the two studies
are quite different (survey of growth and changes in
body colour and morphology over the time course of
smoltification vs plasma indicators of the status of the
hydromineral balance after an osmotic challenge in a
nonmigratory population) and many linkage groups are
found to harbour QTL for the traits examined in the
two studies (10 and 14 in the present study and the one
by Nichols et al. respectively). Although it is thus possi-
ble that common linkage groups are observed by
chance, these observations may also substantiate the
role of those genomic regions in the osmoregulatory
process in trout and corroborates the hypothesis that
some of the key processes for the control of hydromin-
eral balance during adaptation to salinity (as highlighted
by our QTL study) also occur in individuals undergoing
smoltification.
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During this experiment, a large number of individual
fish were submitted twice to the same salinity stressor.
The data set provides additional information on basic
physiological responses of trout during the early (first 24
hours) adaptation to seawater. The mean plasma ion
concentrations were in the same range as those usually
recorded in similar tests with fish of similar sizes. How-
ever, when the fish were exposed twice to the salinity
challenge (24 h at 30 ppt salinity) separated by a 2 week
recovery period, plasma Na* and Cl levels did not
behave similarly: we observed an increase in the mean
plasma Na* levels between the first and second chal-
lenges whereas no major changes were observed in
plasma CI levels (Table 1). It is possible that this differ-
ence is linked to the fact that, in rainbow trout, plasma
Na" level changes after transfer to SW were much more
sensitive than plasma CI" level changes ([30]; Brard et
al., unpublished data) and this requires further investi-
gation. These results also suggest that, at least for Na*,
an acute salinity stressor (24 h exposure to 30 ppt sali-
nity) may lead to permanent modification of the func-
tionality of the Na® osmoregulatory mechanisms
resulting in a change in the capacity to excrete Na*
when the fish is re-exposed to high salinity. To our
knowledge, such a mechanism has never been reported
in the literature.

Conclusions

To summarize, we have identified several regions of the
rainbow trout genome that are associated with the abil-
ity to regulate hydromineral balance after a salinity chal-
lenge. These are first findings that will undoubtedly be
refined in the future as the current development of
genomic tools and markers in rainbow trout will allow
the use of a higher marker density and performance of
genome-wide analyses. Nevertheless, the results high-
light the complexity of physiological and hormonal
mechanisms that underlie these processes and provide
an original insight into the genetic bases of the early
stages of adaptation to seawater. They also lay the foun-
dation for further investigations and a better under-
standing of this complex trait.

Additional material

Additional file 1: GenBank dbSNP submission numbers of the SNP
used in the genome scan.

Acknowledgements

Authors wish to thank a number of persons for their helpful contribution to
the project. David Abel provided technical assistance at CEH (Windermere,
UK). At INRA, Stéphane Mauger, Amandine Launay and Ludivine Laffont
contributed to microsatellite genotyping, Caroline Hervet helped to select
markers, genotype and control genotypes quality and to prepare the linkage

Page 12 of 14

analyses in QTL families, André Neau helped in data management.
Dominique Brunel and Aurélie Bérard (CNG, Centre National de Genotypage,
Evry, France) adjusted the SNPlex technology to trout samples. Tehui Wang
(Scottish Fish Immunology Research Centre, School of Biological Sciences,
University of Aberdeen, UK) supervised the final phenotyping (sex, body and
gill weight) in the Scottish Fish Immunology Research Centre facilites.

This study was funded by the European Commission (project AQUAFIRST,
contract number FP6-STREP-2004-513692), the Natural Environment Research
Council of the United Kingdom, INRA (Institut national de la Recherche
Agronomique, France), la Région Bretagne (Aquagene project, contract
number 2450) and MESR (Ministere de I'Enseignement Supérieur et de la
Recherche, France; contract number 26907-2007)

Author details

"INRA, UR1037 SCRIBE, IFR 140, F-35000 Rennes, France. “INRA, UMR1313
Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France.
Animal Breeding and Genetics Group, Wageningen University, P.O. Box 338,
NL-6700AH, Wageningen, The Netherlands. “Centre for Ecology & Hydrology,
Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK. *INRA,
UMR0598 Génétique Animale, F-35000 Rennes, France. ®Agrocampus Ouest,
UMRO0598 Génétique Animale, F-35000 Rennes, France.

Authors’ contributions

YLB and ND performed the QTL analyses. YLB carried out part of the plasma
assays and drafted the manuscript. FK carried out the whole SNP subset of
the genome scan and participated in the organisation of the overall
genome scan and the generation of linkage maps. OF wrote severals
adaptations of the program for the QTL detection in this protocole. RG
participated in critically analysing genetic maps. MB assisted in the building
of the maps. HB participated in the choice of the QTL family design. TPG
supervised the production and management of fish, carried out the salinity
challenge and sampling. PP designed the salinity test and shared the
drafting of the manuscript. PLR wrote update versions of the QTLMap
software, supervised QTL analyses and participated in drafting the
manuscript. EQ conceived of the whole study, participated in its design and
coordination and was involved in drafting the manuscript. All authors read
and approved the final manuscript.

Received: 3 April 2011 Accepted: 14 May 2011 Published: 14 May 2011

References

1. Sedgwick SD: Rainbow trout farming in Scotland. Farming trout in salt
water. Scott Agric 1970, 49:180-185.

2. Landless PJ: Acclimation of rainbow trout to seawater. Aquaculture 1976,
7:173-179.

3. Johnston CE, Cheverie JC: Comparative analysis of ionoregulation in
rainbow trout (Salmo gairdneri) of different sizes following rapid and
slow salinity adaptation. Can J Fish Aquat Sci 1985, 42:1994-2003.

4. Evans DH, Piermarini PM, Choe KP: The multifunctional fish gill: Dominant
site of gas exchange, osmoregulation, acid-base regulation, and
excretion of nitrogenous waste. Physiol Rev 2005, 85:97-177.

5. Hwang PP, Lee TH: New insights into fish ion regulation and
mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 2007,
148:479-497.

6. Fuentes J, Soengas JL, Buceta M, Otero J, Rey P, Rebolledo E: Kidney
ATPase response in seawater-transferred rainbow trout (Oncorhynchus
mykiss). Effect of salinity and fish size. Rev Esp Fisiol 1996, 52:231-238.

7. Myers JJ, Kohler CC: Acute responses to salinity for sunshine bass and
Palmetto bass. N Am J Aquacult 2000, 62:195-202.

8. Allegrucci G, Caccone A, Cataudella S, Powell JR, Sbordoni V: Acclimation
of the European sea bass to freshwater: monitoring genetic changes by
RAPD polymerase chain reaction to detect DNA polymorphisms. Mar Biol
1995, 121:591-599.

9. Johnsson JI, Clarke WC, Blackburn J: Hybridization with domesticated
rainbow-trout reduces seasonal-variation in seawater adaptability of
steelhead trout (Oncorhynchus mykiss). Aquaculture 1994, 121:73-77.

10.  Nichols KM, Edo AF, Wheeler PA, Thorgaard GH: The genetic basis of
smoltification-related traits in Oncorhynchus mykiss. Genetics 2008,
179:1559-1575.

11. Thrower F, Guthrie C, Nielsen J, Joyce J: A comparison of genetic variation
between an anadromous steelhead, Oncorhynchus mykiss, population


http://www.biomedcentral.com/content/supplementary/1471-2156-12-46-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/15618479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15618479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15618479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17689996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17689996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9144844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9144844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9144844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18562654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18562654?dopt=Abstract

Le Bras et al. BMC Genetics 2011, 12:46
http://www.biomedcentral.com/1471-2156/12/46

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

and seven derived populations sequestered in freshwater for 70 years.
Environ Biol Fishes 2004, 69:111-125.

Birt TP, Green JM, Davidson WS: Contrasts in development and smolting
of genetically distinct sympatric anadromous and nonanadromous
Atlantic salmon, Salmo salar. Can J Zool 1991, 69:2075-2084.

Birt TP, Green JM: Acclimation to seawater of dwarf nonanadromous
Atlantic salmon, Salmo salar. Can J Zool 1993, 71:1912-1916.

Staurnes M, Lysfjord G, Berg OK: Parr-smolt transformation of a
nonanadromous population of Atlantic salmon (Salmo salar) in Norway.
Can J Zool 1992, 70:197-199.

Schmitz M: Seasonal changes in hypoosmoregulatory ability in
landlocked and anadromous populations of Arctic charr, Salvelinus
alpinus, and Atlantic salmon, Salmo salar. Environ Biol Fishes 1995,
42:401-412.

Nilsen TO, Ebbesson LOE, Stefanson SO: Smolting in anadromous and
landlocked strains of Atlantic salmon (Salmo salar). Aquaculture 2003,
222:71-82.

Nilsen TO, Ebbesson LOE, Madsen SS, McCormick SD, Andersson E,
Bjornsson BT, et al: Differential expression of gill Na+K+-ATPase {alpha}-
and {beta}-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel
in juvenile anadromous and landlocked Atlantic salmon Salmo salar.

J Exp Biol 2007, 210:2885-2896.

Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M,
Phillips RB, Bentzen P, Spies |, Knudsen K, Allendorf FW, Cunningham BM,
Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA,

Thorgaard GH: A consolidated linkage map for rainbow trout
(Oncorhynchus mykiss). Anim Genet 2003, 34:102-115.

Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F,
Quillet E: A type | and type Il microsatellite linkage map of rainbow trout
(Oncorhynchus mykiss) with presumptive coverage of all chromosome
arms. BMC Genomics 2006, 7:30.

Phillips RB, Nichols KM, DeKoning JJ, Morasch MR, Keatley KA, Rexroad C,
Gahr SA, Danzmann RG, Drew RE, Thorgaard GH: Assignment of rainbow
trout linkage groups to specific chromosomes. Genetics 2006, 174:1661-1670.
Rexroad C, Palti Y, Gahr S, Vallejo R: A second generation genetic map for
rainbow trout (Oncorhynchus mykiss). BMC Genetics 2008, 9:74.

Wringe BF, Devlin RH, Ferguson MM, Moghadam HK, Sakhrani D,
Danzmann RG: Growth-related quantitative trait loci in domestic and
wild rainbow trout (Oncorhynchus mykiss). BMC Genetics 2010, 11:63.
Zimmerman A, Evenhuis J, Thorgaard G, Ristow S: A single major
chromosomal region controls natural killer cell-like activity in rainbow
trout. Immunogenetics 2004, 55:825-835.

Rodriguez MF, LaPatra S, Williams S, Famula T, May B: Genetic markers
associated with resistance to infectious hematopoietic necrosis in
rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses.
Aquaculture 2004, 241:93-115.

Khoo SK, Ozaki A, Nakamura F, Arakawa T, Ishimoto S, Nickolov R,
Sakamoto T, Akutsu T, Mochizuki M, Denda |, Okamoto N: Identification of
a novel chromosomal region associated with infectious hematopoietic
necrosis (IHN) resistance in rainbow trout Oncorhynchus mykiss. Fish
Pathol 2004, 39:95-101.

Ozaki A, Khoo SK, Yoshiura Y, Ototake M, Sakamoto T, Dijkstra JM,
Okamoto N: Identification of additional Quantitative Trait Loci (QTL)
responsible for susceptibility to infectious pancreatic necrosis virus in
rainbow trout. Fish Pathol 2007, 42:131-140.

Perry GML, Ferguson MM, Sakamoto T, Danzmann RG: Sex-linked
Quantitative Trait Loci for thermotolerance and length in the rainbow
trout. J Hered 2005, 96:97-107.

Drew RE, Schwabl H, Wheeler PA, Thorgaard GH: Detection of QTL
influencing cortisol levels in rainbow trout (Oncorhynchus mykiss).
Aquaculture 2007, 272:5183-5194.

Haidle L, Janssen JE, Gharbi K, Moghadam HK, Ferguson MM,

Danzmann RG: Determination of quantitative trait loci (QTL) for early
maturation in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol (NY)
2008, 10:579-592.

Hoar WS: Osmotic and ionic regulation. In General and comparative
physiology. Edited by: Hoar WS. Prentice-Hall New Jersey (USA);
1983:627-658.

Prunet P, Boeuf G, Houdebine LM: Plasma and pituitary prolactin levels in
rainbow trout during adaptation to different salinities. J Exp Zool 1985,
235:187-19.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

Page 13 of 14

Tanguy JM, Ombredane D, Bagliniére JL, Prunet P: Aspects of parr-smolt
transformation in anadromous and resident forms of brown trout
(Salmo trutta) in comparison with Atlantic salmon (Salmo salar).
Aquaculture 1994, 121:51-63.

Pottinger TG, Carrick TR: Modification of the plasma cortisol response to
stress in rainbow trout by selective breeding. Gen Comp Endocrinol 1999,
116:122-132.

Overli O, Winberg S, Pottinger TG: Behavioral and neuroendocrine
correlates of selection for stress responsiveness in rainbow trout: a
review. Integr Comp Biol 2005, 45:463-474.

Schoenfeld RG, Lerveller CV: Colorimetric method for determination of
serum chloride. Clin Chem 1964, 10:553.

de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T: CARTHAGENE:
multipopulation integrated genetic and radiation hybrid mapping.
Bioinformatics 2005, 21:1703-1704.

The SAS Institute: SAS/STAT User’s Guide, Version 9. Cary, NC, SAS Institute
Inc; 2002.

Filangi O, Moreno C, Gilbert H, Legarra A, Le Roy P, Elsen JM: QTLMap, a
software for QTL detection in outbred populations. Proceedings of the 9th
World Congress on Genetics Applied to Livestock Production:1-6 August; Leipzig
2010, n°787.

Elsen JM, Mangin B, Goffinet B, Boichard D, Le Roy P: Alternative models
for QTL detection in livestock. I. General introduction. Genet Sel Evol
1999, 31:213-224.

Le Roy P, Elsen JM, Boichard D, Mangin B, Bidanel JP, Goffinet B: An
algorithm for QTL detection in mixture of full and half sib families.
Proceedings of the 6th World Congress on Genetics Applied to Livestock
Production; Armidale 1998, 257-260.

Harrel FE, Davis CE: A new distribution-free quantile estimator. Biometrika
1982, 69:635-640.

Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results. Nat Genet 1995, 11:241-247.
Lander ES, Botstein D: Mapping Mendelian factors underlying
quantitative traits using RFLP linkage maps. Genetics 1989, 121:185-199.
Gilbert H, Le Roy P: Comparison of three multitrait methods for QTL
detection. Genet Sel Evol 2003, 35:281-304.

Yan B, Wang Z: Growth, salinity tolerance and microsatellite analysis of
the F, reciprocal hybrids of Oreochromis niloticus x Sarotherodon
galilaeus at different salinities. Aquac Res 2010, 41:336-344.

Handeland SO, Bjornsson BTh, Arnesen AM, Stefansson SO: Seawater
adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of
wild and farmed strains. Aquaculture 2003, 220:367-384.

Kaneko T, Watanabe S, Lee KM: Functional morphology of mitochondrion-
rich cells in euryhaline and stenohaline teleosts. Aqua-BioSci Monogr
2008, 1:1-62.

Marshall WS, Bellamy D: The 50 year evolution of in vitro systems to
reveal salt transport functions of teleost fish gills. Comp Biochem Physiol
A Mol Integr Physiol 2010, 155:275-280.

McCormick SD, Regish A, O'Dea MF, Shrimpton JM: Are we missing a
mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone
and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and
isoform mRNA levels in Atlantic salmon. Gen Comp Endocr 2008,
157:35-40.

Lin H, Pfeiffer D, Vogl A, Pan J, Randall D: Immunolocalization of H
*-ATPase in the gill epithelia of rainbow trout. J Exp Biol 1994,
195:169-183.

McCormick SD: Endocrine control of osmoregulation in teleost fish. Am
Zool 2001, 41:781-794.

Kiilerich P, Kristiansen K, Madsen SS: Cortisol regulation of ion transporter
mRNA in Atlantic salmon gill and the effect of salinity on the signaling
pathway. J Endocrinol 2007, 194:417-427.

McCormick SD, Bern HA: In vitro stimulation of Na+-K+-ATPase activity
and ouabain binding by cortisol in coho salmon gill. Am J Physiol 1989,
256:R707-R715.

Tipsmark CK, Madsen SS, Seidelin M, Christensen AS, Cutler CP, Cramb G:
Dynamics of Na(+),K(+),2CI(-) cotransporter and Na(+),K(+)-ATPase
expression in the branchial epithelium of brown trout (Salmo trutta) and
Atlantic salmon (Salmo salar). J Exp Zool 2002, 293:106-118.

Shrimpton JM, McCormick SD: Responsiveness of gill Na+/K+-ATPase to
cortisol is related to gill corticosteroid receptor concentration in juvenile
rainbow trout. J Exp Biol 1999, 202:987-995.


http://www.ncbi.nlm.nih.gov/pubmed/17690237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17690237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17690237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12648093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12648093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16503968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16503968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16503968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16951085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16951085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19019240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19019240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20609225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20609225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4056689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4056689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10525368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10525368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15598829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15598829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7581446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7581446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12729550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12729550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19945541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19945541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9317571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9317571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9317571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17641289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17641289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17641289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2538086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2538086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12115907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12115907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12115907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10085271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10085271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10085271?dopt=Abstract

Le Bras et al. BMC Genetics 2011, 12:46
http://www.biomedcentral.com/1471-2156/12/46

56.

57.

58.

59.

60.

61.

62.

63.

64.

Deane EE, Woo NYS: Differential gene expression associated with
euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp
Physiol 2004, 287:R1054-R1063.

Wendelaar Bonga SE: The stress response in fish. Physiol Rev 1997,
77:591-625.

Kettunen A, Serenius T, Fjalestad KT: Three statistical approaches for
genetic analysis of disease resistance to vibriosis in Atlantic cod (Gadus
morhua L.). J Anim Sci 2007, 85:305-313.

Weber GM, Silverstein JT: Evaluation of a stress response for use in a
selective breeding program for improved growth and disease resistance
in rainbow trout. N Am J Aquacult 2007, 69:69-79.

Weber GM, Vallejo RL, Lankford SE, Silverstein JT, Welch TJ: Cortisol
response to a crowding stress: Heritability and association with disease
resistance to Yersinia ruckeri in rainbow trout. N Am J Aquacult 2008,
70:425-433.

Vallejo RL, Rexroad CE lll, Silverstein JT, Janss LL, Weber GM: Evidence of
major genes affecting stress response in rainbow trout using Bayesian
methods of complex segregation analysis. J Anim Sci 2009, 87:3490-3505.
Massault C, Hellemans B, Louro B, Batargias C, Van Houdt JK, Canario A,
Volckaert FAM, Bovenhuis H, Haley C, De Koning DJ: QTL for body weight,
morphometric traits and stress response in European sea bass
Dicentrarchus labrax. Anim Genet 2010, 41:337-345.

Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM: QTL for body
weight and condition factor in Atlantic salmon (Salmo salar):
comparative analysis with rainbow trout (Oncorhynchus mykiss) and
Arctic charr (Salvelinus alpinus). Heredity 2005, 94:166-172.

Moghadam H, Poissant J, Fotherby H, Haidle L, Ferguson M, Danzmann R:
Quantitative trait loci for body weight, condition factor and age at
sexual maturation in Arctic charr (Salvelinus alpinus): comparative
analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon
(Salmo salar). Mol Genet Genomics 2007, 277.:647-661.

doi:10.1186/1471-2156-12-46

Cite this article as: Le Bras et al: Detection of QTL with effects on
osmoregulation capacities in the rainbow trout (Oncorhynchus mykiss).
BMC Genetics 2011 12:46.

Page 14 of 14

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/15242828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15242828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9234959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17235017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17235017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17235017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20028379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20028379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20028379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15483654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308931?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Experimental design and fish rearing conditions
	Osmotic challenge and measurements
	Genotyping and genetic map
	Statistical analyses
	Description of traits
	Sources of variability
	Phenotypic correlations
	QTL detection


	Results
	Traits description
	Phenotypic correlations
	QTL detection
	Results of unitrait analyses
	Results of multiple-trait analyses


	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

