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Abstract

Background: Stress fractures are a significant problem among athletes and soldiers and may result in devastating
complications or even permanent handicap. Genetic factors may increase the risk, but no major susceptibility
genes have been identified. The purpose of this study was to search for possible genetic factors predisposing
military conscripts to femoral neck stress fractures.

Results: Eight genes involved in bone metabolism or pathology (COL1A1, COL1A2, OPG, ESR1, VDR, CTR, LRP5, IL-6)
were examined in 72 military conscripts with a femoral neck stress fracture and 120 controls. The risk of femoral
neck stress fracture was significantly higher in subjects with low weight and body mass index (BMI). An interaction
between the CTR (rs1801197) minor allele C and the VDR C-A haplotype was observed, and subjects lacking the C
allele in CTR and/or the C-A haplotype in VDR had a 3-fold higher risk of stress fracture than subjects carrying both
(OR = 3.22, 95% CI 1.38-7.49, p = 0.007). In addition, the LRP5 haplotype A-G-G-C alone and in combination with
the VDR haplotype C-A was associated with stress fractures through reduced body weight and BMI.

Conclusions: Our findings suggest that genetic factors play a role in the development of stress fractures in
individuals subjected to heavy exercise and mechanical loading. The present results can be applied to the design
of future studies that will further elucidate the genetics of stress fractures.

Background
Stress fractures are common and potentially serious
exertion injuries, especially among athletes and military
conscripts [1,2]. Repetitive activities such as running
and marching are among the most frequently reported
causes, and the approximate incidence of stress fractures
in military conscripts ranges from 0.9 to 12.3% [3,4].
Stress fractures occur most commonly in the lower
extremities e.g. in the tibia, metatarsals, femur or pelvis,
and they manifest as localised pain that increases during
exercise.
Femoral neck fractures are one of the most serious

high-risk stress fractures, because displaced fatigue frac-
tures of the femoral neck lead to long-term morbidity in
a high percentage of patients [5,6]. If the fracture is
detected quickly and no dislocation has occurred, the

recovery rate is usually good, but displaced femoral neck
stress fractures can result in devastating complications
or even permanent handicap [5,7].
The pathophysiology of stress fractures is thought to be

related to cyclic mechanical loading of the bone, which
stimulates an incomplete remodeling response [8]. Bone
is continuously degraded and renewed, and inadequate
adaptation to mechanical change leads to an imbalance
between microdamage and remodeling, and gradually to
a fracture. There are numerous risk factors for stress
fractures; a Finnish study of male military conscripts
reported that tall stature, poor physical fitness, and
decreased bone mineral content and bone mineral den-
sity (BMD) are factors associated with a greater risk [9].
Several observations suggest that genetic factors con-

tribute to stress fracture susceptibility. Singer and co-
workers described multiple identical stress fractures at
the same anatomic sites in monozygotic twins after the
sixth week of basic training in the army [10], and multi-
ple lower limb stress fractures in the same individual
have also been reported [11]. The occurrence of many
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stress fractures may also indicate a defective overall
bone composition due to genetic factors [12]. Findings
in twins and their families suggest that differences in
such traits as bone size, shape, and BMD between indi-
viduals are largely attributable to genetic differences and
not to environmental effects [13].
Mutations or allelic variants in the genes leading to a

variety of bone pathologies that increase bone fragility,
such as collagen I, (COL1A1 and COL1A2) [14,15], vita-
min D receptor (VDR) [16], osteoprotegerin (OPG) [17],
calcitonin receptor (CTR) [18], estrogen receptor (ESR)
[19], low density lipoprotein receptor-related protein 5
(LRP5) [20], and interleukin 6 (IL-6) [21] may also
increase the risk of stress fractures. Sequence variations
in these genes are associated with a low peak bone
mass, osteoporosis, osteogenesis imperfecta, osteoporo-
sis-pseudoglioma syndrome, and high bone mass, but
their role in predisposing to stress fracture is not clear
[14-21]. Here we aimed to elucidate the possible role
and significance of sequence variations in certain bone-
related genes in the development of femoral neck stress
fractures.

Methods
Subjects
Femoral neck stress fractures were studied because of
the severity and potential consequences of these frac-
tures [5,6]. All military conscripts who had suffered
from femoral neck stress fractures and had been treated
at the Finnish Defence Forces’ military hospitals from
1970 to 1995 were invited to participate in a follow-up
examination in 2002 or 2003. A total of 72 subjects
were available for this follow-up. The diagnosis of stress
fracture was originally based on accepted radiographic,
scintigraphic, or MRI criteria [22,23]. The control
group, collected also in the early 2000s, consisted of 120
Finnish conscripts who had not had stress fractures
before or during military service, based on their military
medical records and a questionnaire. The clinical char-
acteristics of all the subjects are described in Table 1.
Finnish men become eligible for compulsory military

service at the age of 18 years, and the duration of
required service ranges from 6 to 12 months. Basic

training lasts for 6 months and comprises a variety of
exercises, ranging from marching, jogging, and cycling
to drill and combat training, which involves heavy physi-
cal loading.
Information on the background variables was collected

from the military medical records, including age, sex,
height, weight, and smoking habit. The body mass index
(BMI) of each conscript was calculated by dividing the
body weight in kilograms by the square of the height in
meters (kg/m2). Blood samples were collected from all
subjects and controls. All the subjects were males
between 18 and 27 years of age at the age of onset. The
study was approved by the local ethics committee (Fin-
nish Defence Forces, Helsinki, Finland), and signed
informed consent was obtained from each subject.

Scan for mutations in the coding regions of 5 candidate
genes
Genomic DNA was isolated from the blood samples by
standard procedures. Polymerase chain reaction amplifi-
cation of 51 exons of COL1A1, 52 exons of COL1A2, and
23 exons of LRP5 was performed from 72 cases and 120
controls as previously described [14,20]. Primers were
designed to amplify the 8 exons of OPG and the 5 exons
of ESR1 (available on request). The polymerase chain
reaction products were scanned for sequence variations
by conformation-sensitive gel electrophoresis (CSGE)
[14] and products that contained heteroduplexes were
sequenced using an ABI PRISM 377 or 3100 Sequencer
and the ABI PRISM BigDye Terminator Cycle Sequen-
cing Ready Kit (Applied Biosystems, Foster City, CA).

Genotyping of 15 SNPs in the VDR, CTR, IL-6, COL1A1,
COL1A2, and LRP5 genes
The NCBI GenBank reference numbers and detection
methods for each single nucleotide polymorphism (SNP)
are shown in Table 2. Genotyping of the VDR, CTR,
and IL-6 variations was performed as described pre-
viously [16,18,21,24,25]. Genes that have shown evidence
of biological interactions were chosen as candidates for
gene-gene interaction analysis [26,27], but only interac-
tion combinations where sample size was large enough
were evaluated.

Statistical analysis
The potential deviation from the Hardy-Weinberg equi-
librium was tested using the chi-square test. Disease
association studies were performed on alleles and geno-
types using the likelihood ratio chi-square test. Variables
that differed between the cases and controls and were
associated with the polymorphisms were included as
covariables in multivariate analyses. Dominant, additive,
recessive, and general genetic models were defined and
tested for all of the polymorphisms. Haplotype

Table 1 Characteristics of cases and controls

Characteristics Cases
n = 72

Controls
n = 120

p-value

Age 20.3 ± 1.6 18.9 ± 0.5 0.0005

Height 177.1 ± 6.0 179.6 ± 6.2 0.006

Weight 68.9 ± 9.6 77.3 ± 13.1 0.0005

BMI 22.0 ± 2.9 23.9 ± 3.5 0.0005

Smoking (N and % smokers) 29 (42.0%) 67 (56.8%) 0.069

Data are presented as mean ± SD
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frequencies and pair-wise linkage disequilibrium (D’)
and correlation coefficient (r2) values were established
using Haploview software (MIT/Harvard Broad Institute
Cambridge, MA) [28]. The haplotypes were recon-
structed statistically from population genotype data
using the PHASE program with the Markov chain

method for haplotype assignment [29]. Potential risk or
protective haplotypes were identified by comparing hap-
lotype frequencies between the cases and controls using
Fisher’s exact probability test or the chi-square test. The
robustness of the associations was evaluated with per-
mutation tests (100 permutations).

Table 2 SNP allele frequencies between cases and controls

Gene Sequence variation Detection method Allele Allele frequencies (%) p-value

Controls Cases

VDR c.2T > C, Met1Thr
(rs10735810)

FokI C 153 (64) 90 (62)

T 87 (36) 54 (37) NS

c.1024+283G > A
(rs1544410)

BsmI A 90 (38) 45 (31)

G 150 (63) 99 (69) NS

c.1056T > C, Ile352Ile
(rs731236)

TaqI C 88 (37) 45 (31)

T 152 (63) 99 (69) NS

IL6 -174G > C
(rs1800795)

NlaIII C 126 (52.5) 72 (50)

G 114 (47.5) 72 (50) NS

CTR c.1377C > T, Pro463Leu
(rs1801197)

AluI C 73 (30) 35 (24)

T 167 (70) 109 (76) NS

COL1A1 c.101+1024G > T
(rs1800012)

Sequencing G 204 (85) 123 (85)

T 36 (15) 21 (15) NS

c.1930-14T > C
(rs2696247)

CSGE C 41 (17) 28 (19)

T 199 (83) 116 (81) NS

c.3261C > T
(rs2586488)

Eco57I C 158 (66) 87 (60)

T 82 (34) 57 (40) NS

COL1A2 c.280-68A > G
(rs406226)

CSGE A 206 (86) 120 (83)

G 34 (14) 24 (17) NS

c.1666-41G > A
(rs2301643)

MslI A 32 (13) 24 (17)

G 208 (87) 120 (83) NS

c.2350-89ins38bp
(rs3216902)

CSGE insertion 151 (63) 96 (67)

no ins. 89 (37) 48 (33) NS

LRP5 c.2007G > A, E644E
(rs2277268)

Sequencing G 231 (96) 131 (91)

A 9 (4) 13 (9) 0.0311

c.2074G > A, V667M
(rs4988321)

Sequencing G 235 (98) 137 (95)

A 5 (2) 7 (5) NS

c.3432A > G, V1119V
(rs556442)

Sequencing A 200 (83) 112 (78)

G 40 (17) 32 (22) NS

c.4064C > T, A1330V
(rs3736228)

Sequencing C 227 (95) 134 (93)

T 13 (5) 10 (7) NS

NS = not significant; GenBank Accession numbers COL1A1 NM_000088, COL1A2 NM_000089, VDR NM_000376, LRP5 NM_002335, CTR NM_001742; 1NS
permutation p-value, p = 0.21.
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Crude and adjusted odds ratios and their 95% confi-
dence intervals (CIs) were calculated using the SPSS sta-
tistical package (SPSS, Chicago, IL), and interactions
between the polymorphisms were investigated by strati-
fication and logistic regression analysis. The statistical
significance of a p-value was defined as the 5% level.

Results
Clinical findings
The basic characteristics of the cases and controls were
compared and are shown on Table 1. The results indi-
cated that the cases were smaller in size than the con-
trols; i.e., they were shorter and had lower body weight
and BMI. As the control group data were collected at a
later time than those for the stress fracture patients, the
height, weight, and BMI were also compared to those of
healthy contemporaries of the cases. The findings were
the same in that body weight and BMI were lower in
cases than in their healthy contemporaries, indicating
that the time discrepancy between controls and cases
did not account for the differences in these parameters
(data not shown). Unfortunately, DNA was not available
for genetic analyses of the contemporary subjects. The
risk of femoral neck stress fractures was significantly
higher in subjects with low body weight and low BMI.
The control group differed from the cases in regard to
age, but no statistically significant association between
age and BMI or BMI and smoking between control
group and cases was detected (data not shown).

Candidate gene analysis
Because sequence variations in COL1A1, COL1A2,
LRP5, OPG, and ESR1 increase the risk of low bone
mass or osteoporotic fractures, we first examined their
possible role in the pathogenesis of stress fractures by
scanning all their exons and exon boundaries in the 72
subjects and the 120 controls for mutations using CSGE
[14,15,17,20]. The analysis revealed no putative disease-
causing mutations. Several sequence variations were
observed in these genes, but none of them was novel (as
verified from the NCBI GenBank), and they were all
detected in both stress fracture subjects and controls
(data not shown).

Association analyses of SNPs
To test for possible allelic associations, a total of 15
SNPs in 6 genes (COL1A1, COL1A2, CTR, IL-6, VDR,
and LRP5) were genotyped. The genotype frequencies
for 15 SNPs were all in Hardy-Weinberg equilibrium. A
comparison of the resulting allele frequencies between
the cases and controls (Table 2) suggested that the fre-
quency of the LRP5 rs2277268 minor allele A was mar-
ginally elevated in the cases. The same allele was
significantly associated with both low body weight (A:

68.6 ± 9.0 kg vs. G: 74.5 ± 12.7 kg, p = 0.036) and low
BMI (A: 21.5 ± 2.5 kg/m2 vs. G: 23.3 ± 3.4 kg/m2, p =
0.017). In addition, the LRP5 rs4988321 minor allele A
was associated with lower height (A: 175.6 ± 4.6 cm vs.
G: 178.8 ± 6.2 cm, p = 0.025), and the VDR BsmI minor
allele A was associated with higher BMI (A: 23.7 ± 3.7
kg/m2 vs. G: 22.9 ± 3.2 kg/m2, p = 0.04). Because
neither of the polymorphisms was associated with either
age or smoking, only BMI was included as a covariate in
the subsequent analyses.
The COL1A1 rs2586488 and COL1A2 rs3216902 SNPs

were associated with stress fractures in a recessive
model (Table 3), and the risk was increased in carriers
of the LRP5 rs2277268 minor allele in comparison with
non-carriers (OR = 2.72; 95% CI 1.10-6.73, p = 0.03).
After adjusting for BMI, however, the observed associa-
tions lost their statistical significance. VDR, CTR, and
IL-6 SNPs, did not significantly associate with stress
fracture in any genetic model (Table 3).

Linkage disequilibrium, haplotype and interaction
analyses
The pairwise linkage disequilibrium between the SNPs
within each gene was estimated in terms of D’ and r2. A
linkage disequilibrium plot for the VDR, COL1A1,
COL1A2, and LRP5 SNPs is presented in Figures 1A-D.
The SNPs within the COL1A1 and COL1A2 genes were
in linkage disequilibrium (Figure 1). Of the eight
COL1A2 haplotypes derived from the analysis, three
were common in both cases and controls, but four rare
haplotypes were detected only in controls. The COL1A2
haplotype frequencies were marginally different between
the cases and controls (p = 0.0197, data not shown).
The association of the phenotype with the COL1A1 hap-
lotypes was not significant. In the case of the VDR gene,
the FokI (rs10735810) and the TaqI-BsmI (rs731236 &
rs1544410) SNPs were located in two different haplotype
blocks. No association between the VDR haplotypes and
stress fractures was detected.
Seven haplotypes were detected in the LRP5 gene. The

A-G-G-C haplotype frequency was higher among cases
than among controls (p = 0.031), and the risk of stress
fractures was higher among its carriers than in non-car-
riers (OR 2.72; 95% CI 1.10 - 6.73). On the other hand,
the A-G-G-C haplotype increased the risk of low BMI
(OR 2.50; 95 % CI 1.03-6.07, p = 0.04), so the associa-
tion between haplotype and stress fracture lost its statis-
tical significance after adjusting for BMI (OR 2.04; 95%
CI 0.79 - 5.22), suggesting that BMI mediates this
association.
Interactions between the CTR-VDR, VDR-LRP5 and

CTR-VDR-LRP5 genes were examined. Their contribu-
tion to the risk for stress fractures revealed an interac-
tion between the LRP5 haplotype A-G-G-C and the
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VDR haplotype C-A (Table 4); i.e., the risk of femoral
neck fracture was marginally increased in subjects with-
out the C-A haplotype (OR 1.78; 95% CI 0.96 - 3.30),
and increased 3.85-fold (95% CI: 1.16-12.84) in carriers
of both the A-G-G-C and C-A haplotypes compared

with carriers of only the C-A haplotype. The associa-
tions were attenuated after adjustment for BMI (OR
3.10; 95% CI 0.87-11.1 for a joint effect of haplotypes)
suggesting, that BMI at least partly mediates the joint
effect of the A-G-G-C and C-A haplotypes on stress

Table 3 Genotype distributions, odds ratios (OR), and their 95% confidence intervals (CI) and p-values for the genetic
models

p-value

Gene SNPs ID Genotype Counts
(Controls/Cases)

OR 95% CI General association Dominant Additive Recessive

VDR rs10735810 C/C 41/29 1 0.24 0.57 0.80 0.18

T/C 58/30 0.71 0.38-1.35

T/T 11/10 1.50 0.60-3.78

rs1544410 G/G 46/17 1 0.15 0.08 0.22 0.91

G/A 58/25 0.54 0.28-1.01

A/A 16/10 0.78 0.32-1.91

rs731236 T/T 49/37 1 0.32 0.15 0.30 0.96

T/C 54/25 0.61 0.32-1.16

C/C 17/10 0.78 0.32-1.90

IL6 rs1800795 G/G 35/15 1 0.27 0.20 0.63 0.59

G/C 56/42 1.75 0.85-3.61

C/C 29/15 1.21 0.51-2.88

CTR rs1922295 T/T 59/45 1 0.12 0.07 0.22 0.81

T/C 49/19 0.51 0.25-0.98

C/C 12/8 0.87 0.33-2.32

COL1A1 rs1800012 G/G 85/53 1 0.48 0.68 0.91 0.30

G/T 34/17 0.80 0.41-1.58

T/T 1/2 3.21 0.28-36.25

rs2696247 T/T 189/100 1 0.45 - - -

T/C 123/88 1.27 0.68-2.35

rs2586488 C/C 50/30 1 0.09 1.0 0.30 0.041

C/T 58/27 0.78 0.41-1.48

T/T 12/15 2.08 0.86-5.04

COL1A2 rs406226 A/A 86/50 1 0.14 0.74 0.49 -

A/G 34/20 1.01 0.53-1.94

G/G 0/2 - -

rs2301643 G/G 88/50 1 0.13 0.56 0.35 -

G/A 32/20 1.10 0.57-2.12

A/A 0/2 - -

rs3216902 Ins/Ins 52/29 1 0.05 0.68 0.46 0.032

Ins/NoI 47/38 1.45 0.78-2.71

NoI/NoI 21/5 0.43 0.15-1.25

LRP5 rs2277268 G/G 111/59 1 0.03 - - -

G/A 9/13 2.72 1.10-6.73

rs4988321 G/G 115/65 1 0.13 - - -

G/A 5/7 2.48 0.76-8.12

rs556442 A/A 82/43 1 0.36 0.23 0.17 0.30

A/G 36/26 1.38 0.74-2.57

G/G 2/3 2.86 0.46-17.78

rs3736228 C/C 107/62 1 0.53 - - -

C/T 13/100 1.33 0.55-3.21
1OR = 2.37, 95% CI 1.04-5.40. 2OR = 0.35, 95% CI 0.13-0.98. Body mass index (BMI) was used as a covariate in the analyses.

Korvala et al. BMC Genetics 2010, 11:95
http://www.biomedcentral.com/1471-2156/11/95

Page 5 of 9



fracture. The most significant finding of the present
study was the observed interaction between a CTR
minor allele C and the VDR C-A haplotype, the risk of
fracture being significantly increased in subjects without

the C allele or the C-A haplotype or without either one
(OR = 3.22, 95% CI 1.38-7.49, p = 0.007) in comparison
with carriers of both.

Discussion
The significance of physical and mechanical risk factors
in the development of stress fractures is well established
[9]. The present findings indicate that genetic factors
may also play a role in the development of femoral neck
stress fractures. We found an interaction between the
CTR C allele and the VDR C-A haplotype, and the risk
of stress fractures was 3-fold higher in military con-
scripts lacking either one or both compared to carriers
of both. In addition, the LRP5 gene haplotype A-G-G-C
conferred almost a 3-fold increased risk for developing

Table 4 LRP5 A-G-G-C haplotype and VDR C-A haplotype
interaction

LRP5 VDR Controls Cases

A-G-G-C C-A N fr. N fr. OR (95% CI) p-value

- or + - 50 0.383 37 0.444 1.78 (0.96-3.30)1 0.07

- + 65 0.542 27 0.375 1.00

+ + 5 0.042 8 0.111 3.85 (1.16-12.84)2 0.028
11.85 (0.96-3.55) after adjustment for body mass index (BMI)
23.10 (0.87-11.1) after adjustment for body mass index (BMI)

Figure 1 A) Haploview linkage disequilibirum (LD) plot of the VDR SNPs, B) Haploview LD plot of the COL1A1 SNPs, C) Haploview LD
plot of the COL1A2 SNPs, and D) Haploview LD plot of the LRP5 SNPs. D’ values are indicated in the figure.
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femoral neck stress fractures, and a 4-fold increased risk
in combination with the VDR C-A haplotype, although
these associations were mediated by low body weight
and BMI and require further investigation.
Because of the important role of CTR in bone home-

ostasis, polymorphisms of this gene have been studied
with regard to common bone parameters and disorders.
Several studies report an association between the CTR
polymorphism AluI and lumbar spine and femoral neck
BMD in both men and women, but the reports have
been somewhat contradictory. Studies in postmenopau-
sal women revealed that the CC genotype is more com-
mon in non-osteoporotic women than the TT genotype
[30,31], and that the TT genotype is associated with
lower lumbar spine and femoral neck BMD and
increases the predisposition for osteoporosis [32,33].
The opposite finding was suggested by Braga et al. [34]
who reported that the CC genotype is associated with
decreased BMD and is more common in men with hip
or vertebral fractures than in control subjects [34]. In
our study, the CTR allele C together with a VDR C-A
haplotype appeared to protect subjects from fractures.
Polymorphisms in CTR and VDR are associated with

BMD in Spanish women [35]. The observed interaction
between a CTR minor allele and the VDR C-A haplo-
type and their association with stress fractures may be
explained by the inhibitory effect of these proteins on
parathyroid hormone production. CTR and VDR are
both involved in sustaining normocalcemia by inhibiting
the production of parathyroid hormone [36]. The
observed allele-haplotype interaction may have an effect
on the regulatory role of the proteins and therefore on
control of Ca levels.
VDR also has independent effects on bone biology and

may play a role in bone pathologies such as stress frac-
tures. VDR is essential for 1,25(OH)2D3 to induce the
calcemic and phosphatemic effects that normally result
in bone mineralization and remodelling [37]. VDR geno-
types increase the risk for low BMD and osteoporotic
fractures [16,38] and VDR knock-out mice develop a
low bone mass phenotype with hypocalcemia, hypopho-
sphatemia, and elevated 1,25(OH)2D3 levels [39]. In
addition, reduced serum 25(OH)D levels might predis-
pose young men to stress fractures [40].
The present study indicates that the association of the

LRP5 haplotype and LRP5-VDR interaction with stress
fractures is mediated by low body weight and BMI, but
more research is needed before any definitive conclu-
sions can be drawn from these findings. The function of
LRP5 in bone development, however, is indisputable
[41]; mutations in LRP5 cause various bone disorders
[20,42] and polymorphisms are associated with BMD
and bone mineral content in general [43], but also with
reduced BMD and fractures [44]. Mouse studies

demonstrated that mutations in Lrp5 affect bone forma-
tion sensitivity in response to normal mechanical load-
ing [45,46], and thus the LRP5 haplotype A-G-G-C
might affect bone sensitivity and response to mechanical
loading. It is possible that bone in the lighter-weight
conscripts is initially adjusted to lower load bearing and
when mechanical loading sharply increases in the mili-
tary service, the genetically set response might not
adjust rapidly enough to react to the increased loading,
thus putting lighter weight conscripts at higher risk for
stress fractures. Our results support earlier findings that
low weight (before and/or during military service)
increases the risk of stress fractures [3,47]. Body weight
is an important predictor of BMD [48], and BMI and
obesity have been shown in a family-based analysis to
be associated with LRP5 polymorphisms [49], underlin-
ing the role of LRP5 also in weight regulation.
One limitation of the present study is the discrepancy

in the collection periods of case and control groups.
The most important physical variable was weight,
because reduced weight and BMI mediate the associa-
tion of the LRP5 haplotype and the LRP5-VDR interac-
tion with femoral neck stress fractures. Interestingly,
however, the same difference in weight and BMI was
also observed between the cases and their healthy con-
temporaries, suggesting that the difference was not
time-dependent. This verification is important because
the mean BMI and the number of overweight conscripts
has consistently increased towards the end of 20th cen-
tury, whereas the physical fitness of conscripts has
declined [50]. Unfortunately, other extrinsic factors that
could have changed during the 30 years scale (e.g. in
nutrition or exercise) have not been examined because
of the limited amount of information available. The
results of the study should be interpreted with modera-
tion and replication of the study is needed to confirm
the present findings. For future studies, larger sample
sizes are desirable to gain more statistical power in the
analyses. In addition, functional studies on the present
genetic findings are needed to elucidate the relevance of
these genetic associations to femoral neck stress
fractures.

Conclusions
Our findings suggest that genetic factors may play a role
in the development of stress fractures in individuals sub-
jected to heavy exercise and mechanical loading. The
present results can be applied to the design of future
studies that will further elucidate the genetics of stress
fractures.
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