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Abstract

Background: The genetic etiology of complex diseases in human has been commonly viewed as a complex
process involving both genetic and environmental factors functioning in a complicated manner. Quite often the
interactions among genetic variants play major roles in determining the susceptibility of an individual to a
particular disease. Statistical methods for modeling interactions underlying complex diseases between single
genetic variants (e.g. single nucleotide polymorphisms or SNPs) have been extensively studied. Recently, haplotype-
based analysis has gained its popularity among genetic association studies. When multiple sequence or haplotype
interactions are involved in determining an individual’s susceptibility to a disease, it presents daunting challenges
in statistical modeling and testing of the interaction effects, largely due to the complicated higher order epistatic
complexity.

Results: In this article, we propose a new strategy in modeling haplotype-haplotype interactions under the
penalized logistic regression framework with adaptive L1-penalty. We consider interactions of sequence variants
between haplotype blocks. The adaptive L1-penalty allows simultaneous effect estimation and variable selection in
a single model. We propose a new parameter estimation method which estimates and selects parameters by the
modified Gauss-Seidel method nested within the EM algorithm. Simulation studies show that it has low false
positive rate and reasonable power in detecting haplotype interactions. The method is applied to test haplotype
interactions involved in mother and offspring genome in a small for gestational age (SGA) neonates data set, and
significant interactions between different genomes are detected.

Conclusions: As demonstrated by the simulation studies and real data analysis, the approach developed provides
an efficient tool for the modeling and testing of haplotype interactions. The implementation of the method in
R codes can be freely downloaded from http://www.stt.msu.edu/~cui/software.html.

Background
It has been commonly recognized that most human
diseases are complex involving joint effort of multiple
genes, complicated gene-gene as well as gene-environ-
ment interactions [1]. The identification of disease risk
factors for monogenic diseases has been quite successful
in the past. Due to the small effect of many single
genetic variants on the risk of a disease, the identifica-
tion of disease variants for complex multigenic diseases
has not been very successful [2]. There are multiple rea-
sons for this. First, most complex diseases involve

multiple genetic variants each conferring a small or
moderate effect on a disease risk. Second, the complex-
ity relies on the complicated interactions among disease
variants, on a single-single variants or multiple-multiple
variants basis. Third, but not the last, gene-environment
interaction also plays pivotal roles in determining the
underlying complexity of disease etiology. Studies on
testing gene-gene interactions have been commonly pur-
sued in the past, but little has been achieved, despite its
importance in determining a disease risk (see [3] for a
comprehensive review).
Mapping genetic interactions has been traditionally pur-

sued in model organisms to identify functional relationships
among genes [4-6]. With the seminal work in quantitative
trait loci (QTL) mapping by Lander and Botstein [7], exten-
sive work has been focused on experimental crosses to
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study the genetic architecture of complex traits. Along the
line, methods for mapping QTL interactions have also been
developed [8,9]. The recent development of human Hap-
Map and radical breakthrough in genotyping technology
have enabled us to generate high throughput single nucleo-
tide polymorphisms (SNPs) data which are dense enough
to cover the whole genome [10]. This advancement allows
us to characterize variants at a sequence level that encode a
complex disease phenotype, and opens a prospective future
for disease variants identification [11,12].
Genetic interaction, or termed epistasis, occurs when the

effect of one genetic variant is suppressed or enhanced by
the existence of other genetic variants [13]. In align with
this definition, Mani et al. [14] recently defined two dis-
tinct genetic interactions, namely the synergistic interac-
tion in which extreme phenotype is expected whenever
double mutations are present, and the alleviating interac-
tion where one mutation in one gene masks the effect of
another mutation by impairing the function of relative
pathways. As an important component of the genetic
architecture of many biological traits, the role of epistasis
in shaping an organism’s development has been unani-
mously recognized [15,16]. An increasing number of
empirical studies have also revealed the role of epistasis in
the pathogenesis of most common human diseases, such
as cancer or cardiovascular disease [17,18].
The high-dimensional SNP data present unprecedented

opportunities as well as daunting challenges in statistical
modeling and testing in identifying genetic interactions.
However, for most complex diseases, it remains largely
unknown which combination of genetic variants is causal
to the disease. Given that most traits or diseases are multi-
factorial and genetically complex, it is very unlikely that
the function of a single variant can induce an overt disease
signal without modeling the gene networks or pathways.
Lin and Wu [19] proposed a sequence interaction model
in a linear regression framework for a quantitative pheno-
type. Zhang et al. [20] proposed an entropy-based method
for searching haplotype-haplotype interactions using
unphased genotype data with applications in type I dia-
betes. Musani et al. [21] and Cordell [3] recently gave a
comprehensive review of statistical methods developed for
detecting gene-gene interactions. While most methods are
nonparametric in nature such as the popular multifactor
dimensionality reduction (MDR) method [22], they do not
provide effect estimates for gene-gene interactions. Thus
methods focusing on data reduction ignore the biological
interpretation of the interaction. For instance, if two SNPs
are identified to have interaction, how do they interact in
genetics? What are the modes of gene action?
In Cui et al. [12], a novel approach was proposed to

group haplotypes to detect risk haplotypes associated
with a disease. In an extension to this work, we proposed
a new statistical method to model haplotype-haplotype

interactions responsible for a binary disease phenotype.
We assume a population-based case-control design
where a disease phenotype is assumed dichotomous. Due
to high-order interactions, we propose a penalized logis-
tic regression framework with adaptive L1-penalty, com-
monly termed as the adaptive LASSO [23]. The adaptive
L1-penalty allows effect estimation and variable selection
simultaneously in a single model. Moreover, it preserves
the oracle property of variable selection [23]. Due to the
binary nature of the response, we proposed a modified
Gauss-Seidel method nested within the EM algorithm to
estimate parameters. The model is applied to a real data
set in which significant haplotype interactions are
detected between mother and offspring genomes that
might be responsible for disease risks in pregnancy.

Methods
We first explain our method for a model involving inter-
actions of haplotypes in 2 different haplotype blocks con-
taining 2 SNPs in each. More complex models could be
easily extended. Assume we have a study sample of
n unrelated subjects with n1 cases and n2 controls.
A number of SNPs are genotyped either in a genome-
wide scale or in a candidate gene-based scale. Following
the notation given in Liu et al. [11] and Cui et al. [12],
we construct composite diplotypes by defining a distinct
haplotype termed as “risk” haplotype for each haplotype
block. Assuming two SNPs in each block, there could be
nine possible genotypes, numerically denoted as 11/11,
11/12, 11/22, 12/11, 12/12, 12/22, 22/11, 22/12, 22/22.
Without loss of generality, we assume 11 to be the “risk”
haplotype. We denote the risk haplotype as H and all
other non-risk haplotype as H . In doing so, we can map
the observed genotypes to three possible composite
diplotypes, i.e., HH, HH and HH . Except for the double
heterozygote 12/12 which is phase ambiguous and could
be from two possible composite diplotypes, all other gen-
otypes can be mapped to unique composite diplotypes. A
detailed list of the configuration is given in Table 1.

The epistasis model
We consider two haplotype blocks s and t, each with two
SNPs. There are total 81 possible genotype combinations.
In each block, only the double heterozygote has ambigu-
ous linkage phase, thus 64 genotypes could be mapped to
unique composite diplotypes. Let (H1, H1 ) and (H2, H2 )
be the risk and non-risk haplotypes at blocks s and t,
respectively. Expressed in terms of composite diplotypes,
the four haplotypes can form nine distinct composite
diplotypes expressed as H1H1H2H2 , H H H H1 1 2 2 ,
H H H H1 1 2 2 , H H H H1 1 2 2 , H H H H1 1 2 2 , H H H H1 1 2 2 ,
H H H H1 1 2 2 , H H H H1 1 2 2 and H H H H1 1 2 2 . The effects
of the nine distinct composite diplotypes can be modeled
through the traditional quantitative genetics model.
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Specifically, we use the Cockerham’s orthogonal partition
method [24] in which the genetic mean of an interaction
model between blocks s and t can be expressed as

 st s s t t s s t t
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xt and zt can be defined similarly. With the above defi-
nition, as(t)and ds(t) can be interpreted as the additive
and dominance effects for the risk haplotype at block s
(t); iaa, iad, ida, idd can be interpreted as the additive×ad-
ditive, additive×dominance, dominance×additive, and
dominance×dominance interaction effects between the
two blocks, respectively.
Let yi denote a measured disease trait for subject i,

which is dichotomous taking value 1 or 0, corre-
sponding to affected or unaffected individual, respec-
tively. Let Xg denote a matrix of numerical codes
corresponding to the two composite diplotypes as
well as their interactions, and let Xe denote a matrix
of measured covariates, including the intercept as the
first column. Let xig and xie denote the ith row of Xg

and Xe . Assuming that these factors influence the
mean of a trait, so that their effects can be summar-
ized by a function of linear predictors h = Xgb + Xeg,
where b = [as , at , ds , dt , iaa , iad, ida , idd]

T contain

regression parameters for the genetic effects of com-
posite diplotypes on a disease trait; g contain the
effects of overall mean and the covariates. To simplify
the notations, we also use b =[b1, b2, ...,b8]T for the
genetic effects in the equations below. Given a binary
disease response, we can apply a conditional logistic
model with the form

log
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( | , )
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=
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  (2)

Compared to most non-parametric methods in detecting
gene-gene interactions, such as the multifactor dimension-
ality reduction (MDR) method which only provides an
interaction test [19], the above interaction model allows
one to identify which ones are the risk haplotypes in two
haplotype blocks, and to further quantify the specific
structure and effect size of epistatic interactions between
the two haplotype blocks. We argue that this model-based
epistatic test provides biologically more meaningful results
than a non-parametric method such as MDR.

Likelihood function
We first introduce notations. Let gis and git denote the
observed genotypes in haolotype block s and t respec-
tively for subject i. With the same numerical notation
defined previously, we have gis, git Î {11/11, 11/12, 11/22,
12/11, 12/12, 12/22, 22/11, 22/12, 22/22}. Let Gis and Git

be the underlying composite diplotypes for gis and git,
respectively. We have G H H H H H His ∈{ , , }1 1 1 1 1 1 and
G H H H H H Hit ∈{ , , }2 2 2 2 2 2 . We further define M1, M2,
M3 and M4 as four distinct genotype groups

Table 1 The configuration of two SNP combinations

Observed Genotype Diplotype Composite Diplotype

Configuration Frequency Relative Freq.

11/11 [11][11] p11
2 1 HH

11/12 [11][12] 2 p11p12 1 HH

11/22 [12][12] p12
2 1 HH

12/11 [11][21] 2 p11p21 1 HH

12/12
[ ][ ]

[ ][ ]

11 22

12 21

⎧
⎨
⎩

p p

p p
11 22

12 21
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⎨
⎪
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12/22 [12][22] 2 p12p22 1 HH

22/11 [21][21] p21
2 1 HH

22/12 [21][22] 2 p21p22 1 HH

22/22 [22][22] p22
2 1 HH

Where  = +
p p

p p p p
11 22

11 22 12 21
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corresponding to the classification of phase (un)ambigu-
ous haplotype blocks:
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To construct likelihood function, all three groups, M2,
M3, M4, except group M1, involve phase ambiguity geno-
types, hence need to be modeled with mixture distributions.
Define
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We further define a set of the logistic regression func-
tions for each genotype group as
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Assuming independence between individuals, we con-
struct the joint likelihood function as follows:
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Because the phase ambiguous state csi and cti are not
observable, we treat them as missing data and use EM
algorithm to estimate them iteratively (See below).
Variable selection methods such as LASSO [25] or

adaptive LASSO [23] have been commonly applied
when the number of predictors is large. These methods
can achieve parameter estimation and variable selection
simultaneously and have gained large popularity in
genetic and genomic data analysis. Considering the large
number of genetic parameters to be estimated in the
model, we apply the adaptive LASSO to our model for
its oracle property; namely, it performs variable selection
and parameter estimation as if the true underlying
model is known in advance [23]. Instead of maximizing
the above log likelihood, we estimate the parameters by
maximizing the log likelihood with the adaptive LASSO
penalty.

L L wi i

i

’ | |= − + ∑2   (3)

where l is a tuning parameter for the likelihood and
penalty term, and is chosen by the minimum Bayesian
Information Criterion (BIC); ω = (w1, w2, ..., w8) is a
weight vector for the genetic effects b. When wj = 1 for
every j, this leads to a general LASSO penalty. Although
the general LASSO estimator may not be consistent,
some data dependent weight vector ω is able to warrant
the oracle property for the corresponding adaptive
LASSO estimator. Specifically, one choice of ω is ω = 1/
bOLS, where bOLS is the ordinary least square (OLS) esti-
mator. This makes the adaptive LASSO estimate much
more attractive than the general LASSO estimate [23].

Missing data and the EM algorithm
The phase ambiguous genotypes lead to missing data.
The currently developed algorithms LASSO or adaptive
LASSO estimation can not be directly applied to maxi-
mize the penalized likelihood (3). However, this could
be solved by applying an EM algorithm detailed as
follows:
1) Initialize b, g, and calculate
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exp( )1 1 for subject i;

2) E-step: Estimate csi, cti for subjects with phase
ambiguous genotypes with E(cji) by
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for i Î Mk (k, j) Î {(2, s}, (3,t)}.
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For i Î M4, we have
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3) M-step: Update b,g by maximizing the penalized
log likelihood function (3);
4) Repeat step 1)-3) until convergence.

Computational algorithm for maximizing the penalized log
likelihood
In the M step, parameters b, g are updated by calculat-
ing LASSO estimate. The LASSO regression with con-
tinuous response has been well studied. Some very
efficient algorithms have been proposed, such as the
shooting algorithm and the LARS [26,27]. The estima-
tion has been a challenge for the generalized linear
model due to the non-linearity of the likelihood func-
tion, especially with an adaptive penalty term. No exact
solution exists for parameter estimation in this setting.
Here we propose a computational algorithm using a
Gauss-Seidel method [28] to solve an unconstrained
optimization problem. More detail about this method
can be found in Shevade et al. [29]. To simplify the
notations, we explain our method without environmen-
tal covariates.
We first derive the first order optimality conditions

for the penalized likelihood (3). It is noticed that the
penalized likelihood L’ is piecewise differentiable. Fol-
lowing the notation in Shevade [29], denote Fj = ∂(2 L)/
∂bj. The first order optimality conditions ∂L’/∂bj = 0
could be achieved as follows:
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For the phase known genotypes, Fj will have an expli-
cit form as:
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With the phase ambiguous genotypes, Fj can be calcu-
lated accordingly with the mixture proportion E(csi)and
E(Cti)that are estimated from E-step.

Based on the above conditions, we define

Viol F if j

w F if j

w F if j

j j

j j j

j j j

= =
= − > >
= + < >
=

| |

| | ,

| | ,

max(

0

0 0

0 0

 
 

FF w F w if jj j j j j− − − = >  , , ) ,0 0 0

Therefore, the optimal conditions could be achieved
when Violj = 0 for ∀j. For a given l and wj, j = 1.....p,
we further define Iz = {j: bj = 0, j > 0}; and Inz = {0}∪{j:
bj ≠ 0, j > 0}. The detailed estimation procedure is given
as:
1) Initialize bj = 0, j = 0, 1...... p;
2) While any Violj > 0 in Iz,

Find the maximum violator Vk,
Update bk by optimizing L’;

While any Violj > 0 in Inz,
Find the maximum violator Vl,

Update bl by optimizing L’,
Until no violator exists in Inz;

Until no violator exists in Iz
For computational precision purpose, the condition

Violj > 0 is relaxed to Violj > 10-5 in our computation.
This method is based on the convexity of the likeli-

hood function. The computation procedure updates one
bj at a time until all the optimality conditions are
achieved. The algorithm is relatively efficient because it
does not involve matrix inverse. The convexity condition
warrants one and only one solution for each update (See
additional file 1). Similar algorithm has been used in lin-
ear regression setting, commonly referred to as ‘the
shooting algorithm’ [26], and in logistic regression set-
ting for general LASSO [29]. The asymptotic conver-
gence of this method for non-linear optimization
problem has been proven in [[28], Ch.3Prop 4.1].
Risk haplotype selection
We treat each possible haplotype as a potential “risk”
haplotype. The one with minimum BIC information
defined below is chosen as the “risk” haplotype.

BIC L d n= − +2 log( )

where d is the number of non-zero parameters in the
model and n is the total sample size.

Results
Simulation study
We conducted a series of simulation with various sce-
narios to evaluate the statistical property of the pro-
posed method. Within each block, the minor allele
frequencies of the two SNPs were assumed to be 0.3
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and 0.4 with a linkage disequilibrium D = 0.02. The
simulation was conducted under different sample sizes
(i.e., n = 200, 500, 1000)
Data were simulated by assuming one haplotype was

distinct from the other ones for each block. Haplotypes
were simulated assuming Hardy-Weinberg equilibrium.
A disease status was simulated from a Bernoulli distri-
bution with given genetic effects under different scenar-
ios (Table 2). The intercept was adjusted to make the
sample size ratio between cases and controls at approxi-
mately 1. Scenario S0 assumed no genetic effect at all.
Other scenarios assumed different structure of genetic
effects. Scenario S1 was an extreme case where all para-
meters were significant. The purpose of this simulation
was to compare the selection power of different genetic
parameters. Scenario S2 assumed that only one haplo-
type block has effects; Scenario S3 assumed both blocks
had a genetic contribution to the disease phenotype
without interaction between them; and Scenario S4
assumed both main and interaction effects between the
two blocks. Data simulated with these configurations
were subject to analysis with the proposed method.
Results from 200 Monte Carlo repetitions were
recorded.
Figure 1 showed the results for variable selection

under different simulation scenarios. For each genetic
parameter, the three bars in color correspond to differ-
ent sample sizes (see figure legend). The top figure cor-
responded to Scenario S0, in which the proportion of
selection was equivalent to the false positive (or selec-
tion) rate. It can be seen that the false selection rates
for all parameters were all under the nominal level of
0.05, indicating a good false positive control. For the
other scenarios (S1-S4), the selection power increased as
the sample size increased. Compared to S0, the selection
rates for true negatives increased, but were also under
reasonable control. Also as we expected, the selection
power for the main effects was generally larger than the
interaction effect (S1). Among the four interaction
effects, the dominance×dominance effect performed the
worst (S1 and S4). The simulation results also indicated
that small sample size (n = 200) generally performed
badly given the large number of genetic parameters to
be estimated. Generally, at least 500 samples were

required to achieve reasonable power to detect
interactions.
A case study
We applied our model to a perinatal case-control study
on small for gestational age (SGA) neonates as part of a
large-scale candidate gene-based genetic association stu-
dies of pregnancy complication conducted in Chile. A
total of 991 mother-offspring pairs (406 SGA cases and
585 controls) were genotyped for 1331 SNPs involving
200 genes. Maternal and fetal genome interaction was a
primary genetic resource for SGA neonates. So we
focused our analysis on identifying haplotype interac-
tions between the maternal and fetal genome.
We first excluded SNPs that had a minor allele fre-

quency of less than 5% or that did not satisfy Hardy-
Weinberg equilibrium (HWE) in the combined mother
and offspring control population by a Chi-squares test
with a cut-off p-value of 0.001. We further used the
computer software Haploview [30] to identify haplotype
blocks for SNPs within each gene. Two tag SNPs were
used to represent each block. A sliding window
approach was applied to search for interactions between
two blocks.
We picked two SNPs within each block and applied

our model to study the main effects as well as the hap-
lotype interaction effects between a mother and her off-
spring genome. By fitting our model as described in
previous section and controlling other variables includ-
ing maternal age and BMI, we successfully identified
several SNP haplotypes with interaction effects through
the adaptive LASSO logistic regression model. To
ensure the significance, permutation tests of 1000 runs
were further conducted to assess the significance. In
each permutation test, the phenotypes were permuted
and the model was fitted with different parameter esti-
mate. An empirical p-value for effect j was calculated
which is defined by

p value j
I perm j− =

>∑
_

| , | 0

1000

Results of the real data analysis were summarized in
Table 3. Among the identified pairs, genes HPGD and
MMP9 only showed main block effects. All the other
five showed significant interaction effect. Permutation
p-values confirmed the statistical significance of the
detected effects. We used the maternal-fetal pairs to
show the utility of our method. We could also do the
analysis focusing on the fetal genome only. We
thought an interaction between the maternal and fetal
genome was more interesting, thus used this as an
example.
Our approach conducts the variable selection and

effect estimation simultaneously, which allows us to

Table 2 List of parameter values under different
simulation designs

Scenario as at ds dt iaa iad ida idd

S0 0 0 0 0 0 0 0 0

S1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

S2 0.8 0.8 0 0 0 0 0 0

S3 0.8 0.8 0.8 0.8 0 0 0 0

S4 0.8 0 0.8 0 0.8 0.8 0.8 0.8
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have a direct biological interpretation for the mode of
gene action. Here, we use gene PON1 as an example to
illustrate the implementation of our model. In gene
PON1, the selected risk haplotypes are [TC] for the
mother and [CC] for the offspring. We find significant
additive × dominant haplotype interaction effect. The
two haplotypes separate all the mother-offspring pairs
into three ‘risk’ groups with respect to the development
of SGA:
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Following Eq. (1), we can see that R1 corresponds to
the baseline reference group, R2 corresponds to the risk
group with -1/2 interaction coefficient, and R3 corre-
sponds to the risk group with 1/2 interaction coefficient.
Correspondingly, the log odds of the disease develop-
ment in each ‘risk’ group and the odds ratio (OR)
between groups can be estimated by:
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Other non-parametric methods, such as multifactor
dimensionality reduction (MDR), have been shown to be
successful for the identification of interaction effects in
many studies. Because MDR can only be applied to studies
with balanced case/control design, generalized MDR
(GMDR) has been proposed as an extension to MDR [31].
GMDR maps phenotypic traits into residual scores through
certain link functions under the generalized liner model
setting, and further conducts SNP selection and testing
based on the residual scores. To compare with our method,
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Figure 1 The bar plot of variable selection results under different simulation scenarios. Parameter values are listed in Table 2. The three sets
of colored bars correspond to different sample sizes (Blue:200; Green:500; Red:1000). The horizontal dashed line indicates the nominal level of 0.05.
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we applied GMDR to the data. The mother-offspring
paired genotype data were used as input for GMDR, and a
logistic link was used to calculate the residual scores.
In the example of PON1, SNP 20209376 (C/T) in the

fetal genome was first selected by GMDR (p-value =
0.0107). SNPs were then paired with each other to iden-
tify potential significant pairwise interactions. Only SNP
9508994 (C/T) in the mother genome was found to
interact with SNP 20209376 with marginal significance
(p-value = 0.0547). More complex model were found to
be non-significant (p-value = 0.1719 and p-value =
0.3770 for 3 SNP and 4 SNP model, respectively). Even
though GMDR indicated a maternal-fetal interaction
between these two SNPs, it did not provide an estima-
tion of the genetic effect and the underlying interaction
mechanism between the SNPs.
Model extension
Our method has been illustrated with two SNPs only.
The model can be easily extended to more than two
SNPs. When three or more SNPs are involved in each
haplotype block, Cui et al. [12] gave an explicit deriva-
tion for possible “risk” haplotype structure. In fact no
matter how may SNPs are involved, three possible com-
posite diplotypes can be constructed as illustrated by
Cui et al. [12]. The only challenge for this extension is
to deal with the number of heterozygous loci. For exam-
ple, when three SNPs are considered in a block, there
are a total of seven possible phase-ambiguous genotypes.

In a single block haplotype analysis, there could be four
mixture distributions when constructing the likelihood
function. When we consider interactions between two
blocks, there are a total of 16 possible mixture distribu-
tions in the likelihood function. This will, however, defi-
nitely increase the programming challenge and the
computing burden. Fortunately, the increaes of the mix-
ture components will not affect the number of para-
meters to be estimated. We still have four main effects
and four interactions, as these parameters are defined
based on the “risk” haplotype structure.
Another possible solution to the challenges mentioned

above is to do a sliding window search with each win-
dow covering two SNPs at a time. This is similar to the
sliding window haplotype analysis commonly applied in
some software such as PLINK.

Discussion and Conclusions
Although it has been reported that gene-gene interac-
tion plays a major role in genetic studies of complex
diseases, the detection of gene-gene interaction has been
traditionally pursued on a single SNP level, i.e., focusing
on single SNP interaction. Intuitively, SNP-SNP interac-
tion can not represent gene-gene interaction because
single SNPs cannot capture the total variation of a gene.
Thus, extending the idea of single SNP interaction to
haplotype interaction could potentially gain much in
terms of capturing variations in genes. The proposed

Table 3 List of selected genes, corresponding “risk” haplotype structure, effect estimates and permutation p-values

SNP ID (allele) Gene (region) “Risk” haplotype as ds at dt iaa iad ida idd

9508994
(C/T)

PON1
(intron 1)

[TC]M 0 0 0 0 0 -0.45 0 0

20209376
(C/T)

PON1
(intron 5)

[CC]O p* = 0.001

659435566
(C/T)

NFKB1
(exon 12)

[CC]M 0 0 0 0 -0.33 0 0 0

659435702
(C/G)

NFKB1
(intron 22)

[TC]O p* = 0.001

22767327 (A/T) FLT4
(intron 7)

[AT]M 0 0 0 0 0 -0.30 0 0

22175087 (C/T) FLT4
(intron 8)

[TC]O p* < 0.001

1125300 (G/T) SPARC (intron 3) [TT]M 0 -0.38 0 0 0 0 0 0.245

1125290 (G/T) SPARC (intron 5) [TT]O p* = 0.001 p* < 0.001

634841108 (A/C) TIMP2 (intron 2) [AG]M 0 0 0 0 0 0 0 0.68

634841123 (A/G) TIMP2
(exon 3)

[CG]O p* < 0.001

634018768 (A/G) HPGD (promoter) [AG]M 0 0 0.44 0 0 0 0 0

636105057 (A/G) HPGD (promoter) [GA]O p* < 0.001

17252653 (G/T) MMP9 (intron) [GC]M 0 0 0.53 0 0 0 0 0

17254821 (C/G) MMP9
(exon 10)

[TC]O p* < 0.001

M mother’s “risk” haplotype information; O offspring’s “risk” haplotype information

p* is the permutation p-value.
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method defines gene-gene interaction through haplotype
block interactions and offers an alternative strategy in
finding potential interactions between two genes. We
argue that the definition of haplotype block interaction
could provide additional biological insights into a dis-
ease etiology, compared to a single SNP-based interac-
tion analysis.
One of the advantages of our method is in grouping,

hence reducing data dimension. By mapping genotypes
to composite diplotypes, the data dimension is signifi-
cantly reduced. Then we can use Bayesian information
criterion to select potential “risk” haplotypes [12]. The
selection of “risk” haplotype renders another advantage
of the method. We can identify significant haplotype
structures and further quantify its main and interaction
effects. This greatly enhances our model interpretability
and biological relevance.
Our simulation study showed that our method has

reasonable false positive control and selection power for
the genetic parameters. As we expected, the interaction
effects have lower selection power compared to the
main effects. As sample size increases, we are able to
achieve an optimal power for the interaction effects.
Another novelty of the method is the modeling of the
“risk” haplotype, which leads to the partition of compo-
site diplotypes. No matter how many SNPs are involved,
it always ends up with three types of composite diplo-
types. Thus, the number of genetic parameters is always
fixed regardless of the number of SNPs. The only cost is
the search for possible “risk” haplotypes through a larger
parameter space.
We applied our method to a SGA study data set. Sev-

eral SNP pairs were selected with either main or inter-
action effects. The permutation test confirmed the
statistical significance of the selected effect. Our findings
confirmed other findings of gene selection in the litera-
ture. Gene PON1 was previously reported to be asso-
ciated with preterm birth, which is one of the potential
genetic resources leading to SGA [32]. Gene FLT4 had
been found to be association with the growth of human
fetal endothelia cells and early human development
[33,34]. Gene HPGD was also reported being involved in
human intrauterine growth restriction [35]. Gene MMP9
had been suggested to be related with placenta function
[36]. These evidences strongly indicated the biological
relevance of our method.
We also identified potential interaction effects for sev-

eral additional genes, including NFKB1, SPARC and
TIMP2. To our knowledge, no experimental evidence
has been reported for these genes regarding the biologi-
cal function related to fetal development or SGA. How-
ever, we found that each of these genes had been
suggested to be involved in many biological pathways.
Studies indicated that gene NFKB1 was functionally

related to stress-impaired neurogenesis and depressive
behavior [37], myelin formation [38], and adipose tissue
growth [39]. Gene SPARC had been suggested to be
associated with angiogenesis and tumor growth [40] and
the progression of crescentic glomerulonephritis [41].
Gene TIMP2 was reported to be related to myogenesis
[42] and the progression of cerebral aneurysms [43].
Further replicate studies are needed to confirm the bio-
logical relevance of these genes to SGA.

Additional material

Additional file 1: Strict convexity of the log likelihood function. The
file contains the proof of strict convexity of the log likelihood function.
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