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Abstract

in cattle.

1.5% of the residual variance in tick burden.

Background: Infestations on cattle by the ectoparasite Boophilus (Rhipicephalus) microplus (cattle tick) impact
negatively on animal production systems. Host resistance to tick infestation has a low to moderate heritability in the
range 0.13 - 0.64 in Australia. Previous studies identified a QTL on bovine chromosome 10 (BTA10) linked to tick burden

Results: To confirm these associations, we collected genotypes of 17 SNP from BTA10, including three obtained by
sequencing part of the [TGATT (Integrin alpha 11) gene. Initially, we genotyped 1,055 dairy cattle for the 17 SNP, and
then genotyped 557 Brahman and 216 Tropical Composite beef cattle for 11 of the 17 SNP. In total, 7 of the SNP were
significantly (P < 0.05) associated with tick burden tested in any of the samples. One SNP, ss161109814, was significantly
(P < 0.05) associated with tick burden in both the taurine and the Brahman sample, but the favourable allele was
different. Haplotypes for three and for 10 SNP were more significantly (P < 0.001) associated with tick burden than SNP
analysed individually. Some of the common haplotypes with the largest sample sizes explained between 1.3% and

Conclusions: These analyses confirm the location of a QTL affecting tick burden on BTA10 and position it close to the
ITGAT1 gene. The presence of a significant association in such widely divergent animals suggests that further SNP
discovery in this region to detect causal mutations would be warranted.

Background

Tick infestation has a detrimental impact on animal pro-
duction and ticks are one of the main vectors of patho-
genic micro-organisms of veterinary and zoonotic
importance [1,2]. deCastro [3] estimated global economic
losses caused by tick and tick-borne diseases to the cattle
industry in the range of US$18 billion per year.

Tick burdens are influenced by the genetic constitution
of the host. Heritability (42) estimates of tick burdens due
to the ixodid tick Boophilus (Rhipicephalus) microplus in
Australia range from /42 = 0.13 - 0.64 [4-7] depending
upon the season and breed of cattle analysed. In the ani-
mals used in this study, the heritability was 42 = 0.37 (s.e.
= 0.02) in the taurine animals and /#2 = 0.15 (s.e. = 0.10) in
the Brahman animals [8,9]. Generally animals of zebu
ancestry such as the Brahman carry an order of magni-
tude fewer ticks than animals of pure taurine origin such
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as the Hereford or Charolais [10-12]. Twenty one days
after artificial infestations of 20,000 tick larvae, Brahman
breed cattle will carry around 100 engorged ticks while
taurine cattle will carry between 1-2 thousand engorged
ticks [10].

Previous genetic studies found that the bovine leuco-
cyte antigens (BoLA) were associated with tick burden
[13,14] and these associations have more recently been
confirmed using DNA polymorphisms [15-17], but the
same allele has not always been associated with reduced
tick numbers limiting the use of those markers in differ-
ent populations. Whole genome scans using DNA micro-
satellites in linkage analyses have identified a small
number of QTL associations [18,19] and a low density
genome wide association study (GWAS) identified single
nucleotide polymorphisms (SNP) associated with tick
burden in several regions of the genome [20]. So far, no
DNA marker or haplotype has shown a consistent effect
across different breeds for the number of ticks that ani-
mals carry. Bovine chromosome 10 (BTA10) was found
linked to tick burden in both a microsatellite whole
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genome scan and a low density GWAS [18,20]. In that
GWAS, three SNP (rs29025985, 1rs29025981 and
rs29025982) at approximately 15 Mb in the Btau 4.0
assembly [21] were associated with tick counts.

To determine whether the region on BTA10 (~15 Mb)
showed significant associations to tick burden, two cattle
samples 1) taurine dairy cattle of the dairy tick experi-
ment (DTE) and 2) zebu and zebu-derived beef cattle
from northern Australia in the tick zone, consisting of
Brahman (BRM) and Tropical Composite (COM) cattle
were used. We genotyped 17 SNP in the DTE sample and
11 of them in the BRM and COM samples, including 2
SNP from the GWAS [20] and SNP we identified from
sequencing part of the ITGA11 (Integrin alpha 11) gene.
Our aims were to replicate the association of the BTA 10
region to tick burden in independent samples, determine
whether it was found in different types of cattle, estimate
the size of the genetic effect in a large sample, and narrow
down the region associated with tick burden.

Results

We collected SNP from a variety of databases and
sequenced part of the ITGA11 gene to identify more SNP.
We identified 26 SNP in ITGA11 by sequencing exons 6-9
and adjacent introns in 16 animals from 4 different
breeds. There were no differences in the coding sequence
between taurine animals but there was one synonymous
mutation segregating in BRM animals (Additional file 1).
We chose 3 of the 26 SNP for further analysis based on
their distribution across the sequenced region and minor
allele frequency in all breeds of the panel sequenced.
Some of the SNP from public databases were not poly-
morphic in any individuals in our sample. Of the 16 SNP
used from the genome assembly database ftp://
ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/, 15 were mono-
morphic when genotyped in the DTE, BRM and COM
animals and may be sequencing artefacts [22]. This
resulted in 17 SNP that were genotyped using the DTE
animals and 11 SNP genotyped using the BRM and COM
animals (Table 1). Of these SNP, rs29025980 showed a
highly significant (P < 0.0001) departure from Hardy
Weinberg Equilibrium (HWE) in almost all groups tested
(5 out of 8 breed types). Apart from rs29025980, devia-
tions from HWE occurred at a low rate (14 out of 124
comparisons) and no more than 2 breed types were sig-
nificantly out of HWE.

There were significant allele and haplotype frequency
differences between the DTE, BRM and COM animals.
Allele frequencies for 9 of the 11 SNP were significantly
different (P < 0.05) in the three groups of animals (Figure
1). The average r2 between all SNP in the region was sim-
ilar in all breeds, r2 = 0.16 (DTE), 0.13 (BRM) and 0.15
(COM). The haplotype frequencies were also significantly
(P < 0.05) different between groups. Nevertheless, there
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was some evidence of haplotype blocks in the same
genetic region that contained ITGA11 (Figure 2 and addi-
tional file 2). The size of the haplotype block was smallest
in BRM (< 1 kb) and largest in COM cattle (59 kb).

Four SNP were significantly associated with tick burden
(P < 0.05) in the DTE sample, including both of the SNP
used in the previous GWAS [20] (Table 2, Figure 1). The
distribution of the SNP along BTA10 is shown in Figure 3.
The most significant SNP were rs29025981 (P = 0.0052)
and ss161109814 (P = 0.0188), the latter of these is from
the ITGA11 gene. rs29025981 explained the most resid-
ual variance of R? = 0.9%.

Four of the 11 SNP genotyped in the Brahman and
Tropical Composite cattle were significantly (P < 0.05)
associated with tick scores (Table 2). Two of the SNP
were from the genome assembly and two were from
sequencing the ITGA11 gene. One of these, ss161109814,
had been significantly (P < 0.05) associated with tick
counts in the DTE sample. ss161109814 accounted for
1.2% of the residual variance (R2), another SNP
(rs29023639) accounted for more but this SNP was signif-
icant in a small sample (COM) and was therefore possibly
overestimated in amount of variance explained (Table 2).
However, a different allele for ss161109814 was favour-
able for tick score in the Brahman and Tropical Compos-
ite sample (Table 2) compared to the DTE result.

In all samples of cattle there were highly significant (P <
0.001) associations between haplotypes using either a
haplotype of 10 SNP that includes the ITGA11 gene or for
several of the 3-locus haplotypes that are a subset of the
10 SNP (Table 3 and additional files 3 and 4). The 3-locus
haplotypes that include SNP from the ITGA1I were sig-
nificantly associated with tick burden in the DTE (n = 4)
and in the BRM (n = 6) samples. Many of these associa-
tions remained significant after Bonferroni correction of
the significance threshold. Although many of these highly
significant associations were for relatively rare haplo-
types, where no animal homozygous for the haplotype
was found, in five of the 3-locus haplotypes that were
highly significantly (P < 0.0053) associated with tick bur-
den there were two or more individuals that had two cop-
ies of the haplotype. Three of these comparisons were for
taurine animals and two were for the BRM animals. Four
of these haplotypes also showed some similarity of struc-
ture between samples - they show the allele '1' at the 8
and 9th loci of the haplotypes in the BRM sample and the
same alleles at those positions in the DTE sample. There
was a low genotyping completion of locus 10 in the DTE
sample, so haplotype analyses were run without that SNP
in the DTE sample. The haplotype "h3" formed by the 8, 9
and 11thloci was significantly associated with tick burden
with its significance exceeding the Bonferroni correction
threshold in the DTE and BRM samples. The favourable
haplotype of these 3 loci (8,9,11) was common in BRM
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Table 1: Description of markers tested in dairy and beef cattle samples

Locus Position Btau4.0 Ref! Sample? N3 Po* HWE5
p-value
rs29027392 9844454 BTA DTE 820 0.03 0.0080
(1 breed)
rs41613225 9874407 BTA DTE 820 0.34 0.0103
(1 breed)
rs41664397 11938389 BTA DTE 820 0.15 0.0053
(1 breed)
Ars-BFGL-NGS-70946 14471603 lllumina DTE 819 0.38 0.0173
(1 breed)
rs29025980 14925193 BTA DTE 875 0.23 <0.05
(3 breeds)
BRM 525 0.05 1.34e-38
COM 196 0.27 2.36e-24
rs43616884 14937129 BTB DTE 915 0.28 ns
BRM 546 0.05 0.0277
COM 207 0.20 ns
rs29025985 14943961 BTA (GWAS) DTE 812 0.68 ns
BRM 464 0.09 ns
COM 186 0.37 ns
rs29025981 14944238 BTA (GWAS) DTE 859 0.32 ns
BRM 517 0.91 ns
COM 201 0.63 ns
rs41594962 14979585 BTA DTE 1042 0.29 0.0256
(1 breed)
BRM 545 0.01 ns
COM 207 0.20 ns
ss161109814 14996440 This paper DTE 1037 0.40 ns

BRM 526 0.06 ns
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Table 1: Description of markers tested in dairy and beef cattle samples (Continued)

COM 205 0.24 ns
ss161109807 15002496 This paper DTE 1027 0.28 ns
BRM 525 0.62 ns
COM 210 0.49 ns
$s161109797 15003391 This paper DTE 1032 0.04 0.0337
(1 breed)
BRM 526 0.05 ns
coM 212 0.03 ns
rs29023635 15034937 BTA DTE 914 0.69 ns
BRM 549 0.06 ns
COM 213 0.41 ns
rs29023639 15035100 BTA DTE 296 <0.01 ns
BRM 548 <0.01 ns
COM 181 0.01 ns
rs29014770 15102776 BTA DTE 901 0.68 ns
BRM 544 0.99 ns
coM 202 0.72 ns
rs41657550 17147707 BTA DTE 820 0.68 ns
Ars-BFGL-NGS-25507 18216232 lllumina DTE 819 0.75 <0.05
(2 breeds)

1 Database in which the markers were described, BTA - BCM Interbreed SNP, BTB - BCM Genome Assembly SNP, lllumina - BovineSNP50°, GWAS

- significant markers at the genome wide association study.

2DTE - dairy tick experiment, BRM - Brahman, COM - Tropical Composite.

3 Number of individuals tested.
4Frequency of the allele closer to a in the alphabet.
5 Hardy-Weinberg equilibrium test p-value, ns - not significant.

and rare in DTE cattle. In the DTE sample, the most sig-
nificant 3-locus common haplotype ("6,7,8 hl")
accounted for 1.25% of the residual variance (R?) (Table
3). In the BRM sample, the most significant 3-locus com-
mon haplotype ("8,9,10 h5") accounted for 1.83% of the

residual variance (R?) (Table 3). The significant haplo-
types that are relatively common (i.e. with more than 2
individuals homozygous for the rarer haplotype) in our
samples had haplotype substitution effects of the same,
negative, sign in all cases.
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Figure 1 SNP markers at the ITGA11 gene region: allelic frequency and analyses of marker association with tick burden in the three popu-
rs29025980, 2- rs43616884, 3- rs29025985, 4- 1529025981, 5- rs41594962, 6-ss161109814, 7-ss161109807, 8- 55161109797, 9- rs29023635,
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Figure 2 Linkage Disequilibrium (LD), r2values, between all markers at the ITGA11 gene region. The black arrow on the top represents the rel-
ative position of the ITGAT1 gene.
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Table 2: Significant SNP markers at the ITGA11 gene region associated with tick burden
Locus Sample! N2 Po3 R24 a5 SE6 p-value
rs29025985 DTE 812 0.68 0.0075 -0.131 0.053 0.0135
rs29025981 DTE 859 0.32 0.0091 0.147 0.053 0.0052
ss161109814 DTE 1037 0.40 0.0053 0.109 0.046 0.0188
BRM 526 0.06 0.0115 -0.309 0.125 0.0140
ss161109797 BRM 526 0.05 0.0105 -0.332 0.141 0.0188
rs29023635 DTE 914 0.69 0.0069 -0.127 0.05 0.0119
rs29023639 COM 181 0.01 0.0244 -1.476 0.698 0.0359
rs29014770 BRM 544 0.99 0.0085 0.601 0.279 0.0317

1DTE - dairy tick experiment, BRM - Brahman, COM - Tropical Composite.

2Number of individuals tested.
3 Frequency of the allele closer to A in the alphabet.
4Proportion of residual variance explained.

5 Allele substitution effect in phenotypic standard deviations (tick count for the DTE and tick score for BRM and COM).

6Standard error of a.

Discussion

In this study we have confirmed that there is a QTL
affecting tick burden on BTA10. There were significant (P
< 0.05) single marker associations to tick burden in DTE,
BRM and COM animals which were more significant (P <
0.001) when these markers were analysed as haplotypes.
This included haplotypes that incorporated DNA varia-
tion from the ITGA11 gene. One of the SNP was signifi-
cant (P < 0.05) in both taurine and zebu animals but the
favourable allele was different in effect size and direction.
A different favourable allele in two populations is likely to
be due to either a spurious association between the trait
and the genotypes or due to different patterns of linkage
disequilibrium in the two samples between markers and
the causative mutation.

Where populations are similar and genetically closely
related, different favourable alleles in two samples may be
spurious. However, the ancestors of zebu and taurine cat-
tle were separated for more than half a million years
before domestication [23], so their population haplotypes
are not expected to be similar. Furthermore, an analysis of
LD and haplotype structure in the breed types showed
that allele and haplotype frequencies were very different
between these cattle types in this genetic region. This
suggests that LD relationships would likely be different
between SNP and that the difference in favourable allele

for the SNP ss161109814 could be due to differences in
LD and not due to spurious association. Indeed, it is pos-
sible, with such a large evolutionary distance from the
common ancestor to these two separated groups, for the
causative mutations to be different in these two breed
types. In the haplotype analyses, for the relatively com-
mon haplotypes that were highly significant in the DTE
and BRM cattle samples, haplotypes with the '1" allele at
SNP positions 8, 9, 10 and 11 were significant and showed
a similar favourable effect, of -0.21 and -0.27 phenotypic
standard deviations respectively (Table 3). More impor-
tantly, the favourable form of the haplotype was common
in the BRM sample but rare in the DTE sample, consis-
tent with the relatively low tick numbers on BRM cattle
and high tick numbers of DTE cattle [8-10].

The amount of the variation explained by the markers
(R2), estimated by single SNP or through haplotypes, is
approximately 1% of the residual variance in moderate to
large samples. Some of the rarer haplotypes have effect
sizes of > 1 phenotypic standard deviation, but as these
involve a small number of heterozygous genotypes these
effect sizes have been discounted as likely due to sam-
pling effects. Haplotypes are more likely to reflect the size
of effect of a causal mutation than most single markers
that are in LD to the causal mutation(s), because recom-
bination takes longer to degrade the relationship between
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Figure 3 Genetic map of SNP associations with tick burden in the dairy tick sample (DTE). A) Associations with tick burden (-log P) of SNP
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displayed at the base of each graph.

a causal allele and a haplotype than to a single SNP. Fur-
ther research might determine whether the effect of a
causative mutation is large, as shown for some of the hap-
lotypes or, more likely, are relatively small as shown by
the more frequent haplotypes. Mutations accounting for
a small proportion of the genetic variation (R?) are com-
monly identified in QTL mapping studies in cattle and
other species. However, it is not yet definitively shown
whether causative alleles for these smaller QTL are com-
mon variants that have small effects or are due to a large
number of very rare QTL each of relatively large effect
[24]. Further discovery of new genetic variation will be
needed to identify such putative causative mutations
which appear to be located near the ITGA11 gene.

The adaptive immune system has long been shown to
be important in tick resistance in cattle [25,26], and
ITGA11 is neither a part of the adaptive immune system
nor known to be part of the innate immune system. In
this region the nearest genes that are part of the immune
system are PIAS1 (protein inhibitor of activated STAT, 1,
BTA10:14,721,762) and ANP32A (acidic (leucine rich)
nuclear  phosphoprotein 32  family, member A,
BTA10:15,806,500). In the previous GWAS [20], SNP
near those genes were not significantly associated with

tick burden. Moreover, the significant SNP in this study
are more than 200 kb from PIASI and nearly 1 Mb from
ANP32A. Genotyping of SNP in this study over the 8.4
Mb of this region of BTA10, which includes these genes,
failed to find a signal of association in other parts of the
chromosomal segment at the density we used. Our esti-
mates of LD in this region in these samples show low val-
ues, consistent with other studies of samples with
multiple breeds [27]. Although we cannot categorically
reject the influence of those genes, it is unlikely that the
significant associations that we found is due to LD to
those genes of the adaptive immune system.

Although ITGA11 is not an obvious positional candi-
date gene for tick burdens, because its biological role
appears to be mainly in the control of cellular adhesion
and migration, it cannot be rejected completely based on
its function. Coelho et al. [28] identified ITGAI1 as an
interferon-inducible gene in human fibroblasts. It is pos-
sible that ITGA11 may play a role in modulating cellular
immune responses, by influencing the recruitment and
adhesion of immune cells at sites of infection, or ectopar-
asite infestation. Moreover, the integrity and composition
of the dermis may play a role in an animal's defences
against ticks. Integrins specifically interact with collagen.
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Table 3: Significant haplotypes of markers at the ITGA71 gene region associated with tick burden
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SNP? Code Sample2  NO3 N1 N2 R24 as SES p-value
10snp 110111111-0 DTE 605 17 0 0.0146 -0.738 0.243 0.0025
h10 (48)
10snp 111000111-0 DTE 582 38 2 0.0131 -0.432 0.151 0.0043
h19 (48)
10snp 111010101-0 BRM 419 4 0 0.0422 2.119 0.492 2x 105/
h23 (24)
4,56 ---010----- DTE 808 23 1 0.0082 -0.507 0.194 0.0092
h7 8
BRM 477 8 0 0.0386 1.542 0.350 1x1035A
©)
678 ----- 001 --- DTE 891 124 10 0.0125 -0.297 0.083 0.0003A
h1 @)
789  ------ 011-- DTE 734 156 0 0.0077 -0.231 0.088 0.0087
h2 @)
789  ------ 101 -- BRM 476 42 2 0.0128 0.380 0.147 0.0099/
h7 ©)
89,10  ------- 011 - BRM 477 42 2 0.0128 0.381 0.147 0.0097A
h2 @3)
89,10 ------- 11 - BRM 6 98 417 0.0183 -0.310 0.100 0.0020/
h5 @3)
89,11 ------- 10-1 BRM 513 5 0 0.0261 1.651 0.444 0.0002A
h2 &)
89,11 ------- 11-0 DTE 538 332 8 0.0117 -0.212 0.066 0.0013A
h3 (6)
BRM 8 102 408 0.0150 -0.269 0.096 0.0053A
©)
91011  -------- 011 BRM 537 5 0 0.0233 1.596 0.444 0.0004A7
h2 ©)

TSNP markers used to generate the haplotypes (4- rs29025981, 5- rs41594962, 6- ss161109814, 7- ss161109807, 8- ss161109797, 9-

rs29023635, 10- rs29023639, 11-rs29014770) and haplotype number.

2DTE - dairy tick experiment, BRM - Brahman and number of haplotypes reconstructed.
3NO number of animals with zero copies of the haplotype, N1 number of animals with one copy of the haplotype, N2 number of animals with
two copies of the haplotype.

4Proportion of residual variance explained by the common haplotype.
5Haplotype substitution effect in phenotypic standard deviations (tick count for the DTE and tick score for BRM).

6 Standard error of a.
A Significant after Bonferroni correction.
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Experiments aimed at identifying genes that were differ-
entially expressed in cattle with different tick resistance
phenotypes, found evidence that collagen and other
extracellular matrix genes were differentially expressed in
the skin of cattle that are more resistant to tick infestation
[29,30].

Conclusions

Our analyses confirmed that there is a QTL affecting tick
burden on BTA10. Significant common haplotypes were
found that accounted for 1% of the residual variance and
these haplotypes incorporated DNA variation from the
ITGA1I gene. Whether the effects observed are due to
variation in /TGA11 itself or are due to cis-effects of vari-
ation near /TGA 11 regulating other genes will require in-
depth study of gene expression and function. Further
analyses of SNP and other kinds of DNA variation in this
region would be a first step toward identifying the causal
alleles and elucidating the biological mechanism
involved.

Methods

The analysis in the study follows a specific order. First, a
selection of 32 putative SNP from BTA10 was genotyped
in a collection of dairy taurine cattle, the dairy tick exper-
iment (DTE). Fifteen of these putative SNP were mono-
morphic, which reduced the total available SNP to 17. Of
these 17, 2 SNP were significant in the initial GWAS [20].
Second, 11 of these SNP were then genotyped in Brah-
man (BRM) and tropical composite (COM) beef cattle to
extend and confirm the associations. As part of the analy-
sis, single SNP as well as haplotype analyses were per-
formed.

Tick phenotypes

The animals, tick phenotypes and DNA samples were
described previously [8,9]. In brief, the number of ticks
on these animals (tick burden) was estimated in one of
two ways. The DTE sample had field tick counts of indi-
vidual ticks in the size range of 4.5 - 8 mm in diameter
which represents mature ticks that will fall off the animal
in the next 24 hours [4]. Ticks were counted on one side
of the animal. The BRM and COM sample had tick bur-
den estimates using tick scores. Tick scores are rapid esti-
mates of tick burden of ticks that are > 4.5 mm in
diameter. The tick scores are on a 0 - 5 scale where 0 is no
ticks, 1is < 10 ticks, 2 is 11 - 30 ticks, 3 is 31 - 80 ticks, 4 is
81 - 150 ticks, and 5 > 150 ticks. Although tick scores are
underestimates, are less accurate and they are also less
informative, nevertheless there is a high genetic correla-
tion between the two measurements [31]. Due to the
unavailability of beef cattle with tick counts, we were con-
strained to using existing tick scores to confirm the asso-
ciations that we had observed in the DTE.
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Animal samples

In this experiment we used DNA samples from 1,055
DTE cattle that had > 2 tick counts. Animals were
described in detail elsewhere [8]. In brief, the DTE cattle
were from 16 properties across the tick zone in tropical
and sub-tropical northeastern Australia. The sample con-
sisted of animals of the Australian Red breed (AUR, n =
196), the Brown Swiss breed and its crosses (BSWX, n =
126), the Channel Isle breeds and their crosses (CHA, n =
119), the Holstein breed and its crosses (HOLX, n = 187),
composite taurine cattle (MIXT, n = 424) and composite
taurine cattle with at least one grandparent of zebu ances-
try (ZEBX, n = 3). The previously published principal
component analysis of genotypes of these taurine dairy
cattle of pure and mixed ancestry could not put breeds
into separate clusters or distinguish crossbreds from
purebreds [32] so crossbreds were lumped with appropri-
ate purebreds on the basis of known ancestry as previ-
ously described [8]. The average field tick counts for these
animals was 47.1 ticks per side or an average In(ticks+1)
of 3.03 + 1.29 (s.d.) [8].

To confirm the associations we used 557 BRM and 216
COM animals that together form 773 Cooperative
Research Centre (CRC2) animals with tick score data
[33]. These cattle have been extensively described in a
series of open access articles, see [33]. The COM animals
were 50% Bos taurus indicus, African sanga or other trop-
ically adapted Bos taurus and 50% non-adapted Bos tau-
rus taurus. The animals with tick scores were bred on the
Belmont and Swans Lagoon research stations for the
summer of 2003/4 (December - February) and all were
females with mean age of 34 months [9]. The average field
tick score for BRM was 0.75 (s.d. = 0.74) and for COM
was 2.26 (s.d. = 0.98) [9]. The adjustment of the pheno-
typic data was performed as previously specified [33].

Analysis of tick data

The association between each SNP and tick burden was
assessed by a regression analysis of a residual phenotype
on numbers of copies of a particular allele. To obtain the
residual phenotype, trait values were fitted in a mixed
model using the ASReml software [34] as follows: trait ~
mean + fixed effects + animal + error, with animal and
error fitted as random effects. For the DTE sample, the
fixed effects of property, season and breed type were
modelled as main fixed effects, where season included
the identity of the counter and all tick counts of an animal
were included indexed by season. All available pedigree
information (sire, dam, grandsire and maternal grandsire
identities) was included in the model. The residual effect
of the animal was extracted for SNP regression analysis.
For the CRC2 sample, the trait tick score was modelled
with the fixed effects of breed, herd of origin, cohort,
calving month and their first-degree interactions. Three
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generations of pedigree information was available. Resid-
ual trait values were extracted and used in SNP regression
analyses. These models do not include the effects of DNA
polymorphisms.

SNP markers and genotypes

A panel of SNP markers was genotyped over an 8.4 Mb
region of BTA10. The panel included 2 SNP (rs29025985
and rs29025981) significantly associated to tick burden in
the GWAS [20], 9 SNP from the Baylor College of Medi-
cine (BCM) interbreed database, 2 SNP from the Illu-
mina’ BovineSNP50 and 16 SNP from the BCM bovine
genome assembly database ftp://ftp.hgsc.bcm.tmc.edu/
pub/data/Btaurus/snp/Btau20050310/. To add to the
number of SNP, and based on the SNP that had been sig-
nificant in previous studies (rs29025985, rs29025981 and
rs29025982), we sequenced PCR products of exons of the
ITGAI1I gene and the intronic sequence surrounding
these exons. The cDNA sequence for ITGA11 (Genbank
XM_602058.3) was compared to the cattle genome
sequence using BLAST [35] to determine the splice sites
of the gene. Primers to amplify exons 6 to 9 were
designed, which correspond to the I-Domain of the pro-
tein [36]. Forward and reverse DNA sequence were
obtained from four animals each of four breeds (Angus,
Shorthorn, Holstein and Brahman). SNP were described
using standard nomenclature [37]. SNP were submitted
to dbSNP http://www.ncbi.nlm.nih.gov/snp and assigned
identifiers (Additional file 1). SNP were genotyped using
either GoldenGate” (Illumina Inc., Hayward, California),
SNPlex™ or TagMan" SNP Genotyping Assays (Applied
Biosystems, Foster City, California) following the manu-
facturer's instructions with scoring performed by two
individuals before genotypes were merged with pheno-

types.

Analyses of genotypic data

The SNP genotypes were tested for Hardy-Weinberg
equilibrium (HWE) within breed type using PLINK 1.05
[[38], http://pngu.mgh.harvard.edu/purcell/plink/]. The
linkage disequilibrium (LD) between SNP was estimated
using Haploview 4.1 [39] for DTE, BRM and COM indi-
vidually. The haplotype block structure was obtained
using the confidence interval method [40] implemented
in Haploview 4.1. For association analyses, haplotypes
were obtained using PHASE 2.1.1 [41,42]. We applied the
PHASE algorithm five times for each set of SNP on ani-
mals without missing genotypes for the SNP in the haplo-
type. We also allowed PHASE to interpolate missing data
and then evaluated the associations (Additional file 3).
We evaluated a haplotype of all available SNP as well as a
"sliding window" of haplotypes of three adjacent SNP (3-
locus haplotype), sliding one SNP at a time across the
genomic region. Each 3-locus haplotype was named for
the markers used to generate the haplotype plus the num-
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ber of the haplotype generated by these markers; e.g. hap-
lotype 5,6,7 h1 was generated using the markers 5, 6 and 7
and this is the first haplotype (h1) of this set of markers.
All haplotypes identified in this study are listed in addi-
tional file 4.

Association between each SNP or haplotype was evalu-
ated by regression of the residual tick count or score on
the number of copies of a reference allele. Allele associa-
tions were performed one SNP at a time. Significance was
evaluated using a t-test of the slope of the regression over
its standard error for each marker individually. For each
haplotype, the individuals were scored for the number of
copies of the haplotype they possessed, each haplotype
was considered an independent event, analogous to anal-
yses of DNA microsatellites [43], and the residual tick
counts or scores were regressed on the number of copies
of haplotypes analysed one at a time. A t-test was calcu-
lated by dividing the regression coefficient by its standard
error. For association analyses of haplotypes the signifi-
cance threshold was adjusted for multiple testing by Bon-
ferroni correction, dividing the nominal 5% significance
threshold by the number of haplotypes inferred by
PHASE for a set of SNP [43].

Additional material

Additional file 1 Description of discovered SNP in the ITGAT1 gene.
Table describing the discovered SNP Btau 4.0 positions and dbSNP ss num-
bers.

Additional file 2 Linkage disequilibrium (LD) between markers at the
ITGA11 gene region. Linkage disequilibrium (LD) between markers at the
[TGAT1 gene region.

Additional file 3 Eleven loci haplotype association with tick burden:
interpolated missing data. Eleven loci haplotype association with tick
burden using the interpolated missing data.

Additional file 4 Description of the haplotypes reconstructed using
10 loci and the 3-locus sliding window. Description of the haplotypes
reconstructed using 10 loci and the 3-locus sliding window.
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