
BioMed CentralBMC Genetics

ss
Open AcceResearch article
A simple method for estimating genetic diversity in large 
populations from finite sample sizes
Stanislav Bashalkhanov, Madhav Pandey and Om P Rajora*

Address: Canada Research Chair in Forest and Conservation Genomics and Biotechnology, Canadian Genomics and Conservation Genetics 
Institute, University of New Brunswick, Faculty of Forestry and Environmental Management, 28 Dineen Drive, Fredericton, NB, E3B 6C2, Canada

Email: Stanislav Bashalkhanov - stanislav.bashalkhanov@unb.ca; Madhav Pandey - mpandey@unb.ca; Om P Rajora* - om.rajora@unb.ca

* Corresponding author    

Abstract
Background: Sample size is one of the critical factors affecting the accuracy of the estimation of
population genetic diversity parameters. Small sample sizes often lead to significant errors in
determining the allelic richness, which is one of the most important and commonly used estimators
of genetic diversity in populations. Correct estimation of allelic richness in natural populations is
challenging since they often do not conform to model assumptions. Here, we introduce a simple
and robust approach to estimate the genetic diversity in large natural populations based on the
empirical data for finite sample sizes.

Results: We developed a non-linear regression model to infer genetic diversity estimates in large
natural populations from finite sample sizes. The allelic richness values predicted by our model
were in good agreement with those observed in the simulated data sets and the true allelic richness
observed in the source populations. The model has been validated using simulated population
genetic data sets with different evolutionary scenarios implied in the simulated populations, as well
as large microsatellite and allozyme experimental data sets for four conifer species with contrasting
patterns of inherent genetic diversity and mating systems. Our model was a better predictor for
allelic richness in natural populations than the widely-used Ewens sampling formula, coalescent
approach, and rarefaction algorithm.

Conclusions: Our regression model was capable of accurately estimating allelic richness in natural
populations regardless of the species and marker system. This regression modeling approach is free
from assumptions and can be widely used for population genetic and conservation applications.

Background
Accurate estimation of genetic diversity parameters in
large natural populations using finite sample sizes is one
of the central issues in population and conservation
genetic studies and applications. Small sample sizes can
lead to significant errors in estimating the genetic diversity
of the species in question. For effective genetic resource
conservation, sufficient allelic richness and a minimum

number of carriers for each allele must be present in the
conservation population to ensure its self-sufficiency over
generations, otherwise its entire purpose may be compro-
mised if the sampling criteria are not met [1]. This aspect
is often overlooked when conservation programs are
developed and minimum viable population sizes are
determined [2].
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Allelic diversity (richness) is one of the most important
and commonly used estimators of genetic diversity in
populations. It strongly depends on the effective popula-
tion size and past evolutionary history [3]. However, the
number of observed alleles and their frequency distribu-
tion also depend on the sample size and the genetic
marker system used. Thus, a practical method for reliable
estimation of genetic diversity parameters in large popula-
tions is needed for population genetic studies and to
develop scientifically sound strategies for genetic resource
conservation.

Based on the probability theory alone, one can calculate
the sample size required to detect alleles with a certain
threshold frequency [4,5]. Rarefaction [3] and repeated
random subsampling [6] are increasingly popular meth-
ods for standardizing the allelic richness for unequal sam-
ple sizes. However, there are several possible limitations
in using these approaches. First, many estimates are based
on the ideal population model. Most temperate and
boreal species have experienced tremendous migrations
and disturbances since the last glacial maximum. The
northernmost populations are evolutionary young and
remain dynamic, showing significant deviations from the
equilibrium state. Second, distribution of allele frequen-
cies strongly varies among species and marker types.
Third, due to the non-linear relationship between sample
size and observed allelic richness, simple extrapolation
beyond the maximum sample size may not be feasible [6].
Bayesian approaches have also been introduced, but they
still cannot predict the allelic richness in large popula-
tions when the sample sizes are limited [7].

It is rarely possible to know the true number of alleles in
a population unless the entire population can be ana-
lyzed, in which case the concept of "sample" is not appli-
cable anymore [8,9]. Theoretically, the effective number
of alleles (me) found in an ideal population can be
approximately described as

where Ne is the effective population size and μ is the muta-
tion rate [10]. When Ne → ∞, the error in me approaches
zero and the parameter θ = 4Neμ is constant. Ewens in his
fundamental work [10] indicated that the distribution of
the allele frequencies in a population strongly depends on
θ. Furthermore, he pointed out that the expected number
of alleles E(k) for a given sample size n can be expressed as

or, for large n it can be further simplified [11] to

Estimating the parameter θ in a natural population is still
complicated: i) in the expression θ = 4Neμ, there is no or
very little information on the mutation rates in plant pop-
ulations, plus the observed mutation rates are locus-spe-
cific, and can be confounded by selection and migration;
ii) the effective population size (Ne) can be estimated by
the coalescent approach [12,13], but the inferences
depend on the underlying population genetic model, and
the related assumptions may not hold true for the real nat-
ural population in question. For nucleotide sequences,
Nei introduced nucleotide diversity ϕ as another estima-
tor of 4Neμ [14], but it is locus-specific and sensitive to the
sample size.

Although the Ewens sampling formula and coalescent
approach provide theoretical expectations for the allelic
richness in a given sample, they normally assume an ideal
random mating population of constant size, and without
migration and selection. However, natural populations
rarely conform to these and other ideal population
assumptions. Selection effects may be heterogeneous in
time and space, and are extremely difficult to realistically
model. Random mating may be hampered by spatial
genetic structure and selfing [15,16]. A simple, assump-
tion-free and robust method is needed for estimating
allelic diversity in large natural populations. Here, we
introduce a simple and robust approach to estimate the
genetic diversity in large natural populations based on the
empirical finite sample data.

Methods
Model development
We investigated several empirical data sets published for a
wide variety of plant and animal species to understand the
relationship between allelic richness and sample sizes.
From the data published for a wide variety of organisms,
our own experimental results and computer simulations,
we found that the number of alleles observed in a given
sample is approximately proportional to the logarithm of
the sample size, and the logarithm base depends on the
species and the marker system used. Based on these obser-
vations, we developed a non-linear regression model to
predict the observed allelic richness in a given sample. The
model could be defined as:

where A is the observed mean number of alleles per locus
(allelic richness). The logarithm base βS depends on the
species and the marker set used, and βn and βA are the
regression coefficients for the sample size and allelic rich-
ness, respectively, which depend on the species and
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molecular markers used. As natural logarithms (ln) are
commonly used, we replace the logarithm base to e. Thus,
equation (4) can be written as follows:

To further simplify (4a), we introduce the variable ρ = 1/
ln βS, so the equation (4a) can be written as

The coefficients in the regression model (5) can be empir-
ically determined using the modified random resampling
procedure and non-linear regression analysis as described
below. At large sample sizes, the coefficient βn becomes
negligible, and the equation (5) can be further simplified
as

The empirically derived equation (5a) is similar to the
modified Ewens sampling formula in equation (3).

Model validation and comparison with other methods
We tested the regression model (5) using (i) large empiri-
cal data sets for four conifer tree species with contrasting
population genetic characteristics, and (ii) simulated pop-
ulation genetic data sets created using Markov-chain-
based algorithm with different inherent migration and
selfing rates.

Empirical data comprised multilocus genotype data sets
for four conifer tree species with contrasting mating sys-
tems and inherent genetic diversity levels: microsatellite
genotype data for eastern white pine - Pinus strobus [8],
white spruce - Picea glauca [17], red spruce - Picea rubens
(Bashalkhanov and Rajora, in preparation), and eastern
white cedar - Thuja occidentalis (Pandey and Rajora, in
preparation) were used (Table 1). Microsatellite markers
are currently the most popular genetic markers for popu-
lation and conservation genetics studies. The number of
alleles for microsatellites varies greatly among loci and
species. This variation provides an ideal but challenging
case to develop an appropriate model to determine ade-
quate sample sizes to minimize the effect of sampling
error.
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Table 1: Allelic richness estimated by regression, coalescent and rarefaction

Species ID Source data set Estimated allelic richness

No. of loci N A Subsampling
(n = 120)

ρ
(n = 120)

θEwens
(n = 120)

θcoalescent
(n = 120)

Rarefaction
(n = 120)

Microsatellites

Picea rubens PR1 6 180 13.00 11.06 11.04 11.98 9.23 10.68
PR2 6 180 13.33 11.18 11.17 12.29 8.94 10.71
PR3 6 180 15.33 12.48 12.44 14.13 11.92 12.19
PR4 6 180 14.83 12.48 12.44 13.67 12.13 11.92

Picea glauca PG1 6 105 22.83 21.13 21.30 23.49 35.74 20.96
PG2 6 105 22.83 20.55 20.62 23.49 51.84 20.44

Pinus strobus PS1 13 102 9.77 9.03 9.13 10.11 17.57 9.03
PS2 13 102 9.23 8.67 8.73 9.55 15.91 8.68

Thuja occidentalis TO1 6 100 7.83 7.18 7.17 8.14 12.26 7.17
TO2 6 100 9.67 8.95 9.00 10.05 16.28 9.09
TO3 6 100 8.83 7.86 7.95 9.18 14.06 7.95

Allozymes

Pinus strobus PS1 15 95 3.20 2.97 2.98 3.38 3.34 2.93
PS2 15 95 3.27 3.09 3.10 3.59 4.15 3.04

Subsampling - allelic richness estimated by repeated random subsampling in pseudosimulated population data sets based on the empirical data. ρ - 
allelic richness predicted by the regression model (5). θEwens - Allelic richness predicted by the Ewens sampling formula (3), where θ was directly 
calculated from the empirical data set. θcoalescent - Allelic richness predicted by the Ewens sampling formula (3), where θ was estimated by coalescent 
approach from the empirical data set. Rarefaction - Allelic richness predicted by rarefaction of the source empirical data set to the sample size of n 
= 120.
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An additional data set for allozyme markers for eastern
white pine was also analyzed. Allozymes have been exten-
sively used in population and conservation genetic studies
before the advent of microsatellite markers. Although
other markers, such as RAPD (random amplified poly-
morphic DNA), and AFLP (amplified fragment length
polymorphism) have been used in population genetic
studies, these markers are not well suited for such studies
and have fallen out of favour, primarily due to their dial-
lelic and dominant nature. Codominant SNP (single
nucleotide polymorphism) markers are being used in
population genetic studies. However, most of them also
suffer from the limitation of being diallelic. Since the
objective of the present study was to predict the allelic
richness in large populations, we used microsatellite and
allozyme markers for validating our model, since these
markers are codominant and multiallelic.

Pinus strobus and Picea glauca are predominantly outcross-
ing species - average multilocus outcrossing rates (tm) are
0.924, and 0.940, respectively [18,19], and Picea rubens
and Thuja occidentalis are mixed-mating selfing-tolerant
species - tm = 0.595, and 0.635, respectively [20,21]. Sam-
ples were collected in natural populations. In Picea rubens
and Picea glauca stands, trees were randomly selected with
minimum spacing of 30-50 m between the trees to avoid
the possible family structure effects. In the Pinus strobus
and Thuja occidentalis stands, all mature trees within the
population were sampled. The number of individuals
sampled per population varied from 95 to 180 (Table 1).
The number of microsatellite loci used ranged from 6 to
13 (typically employed for population genetic studies).
Although the Pinus strobus populations were genotyped
for 54 allozyme loci [9], we used data for 15 most poly-
morphic loci to validate our model.

The allelic richness estimates predicted by our regression
model were compared with the Ewens sampling formula,
coalescent approach, and rarefaction algorithm predic-
tions. Since the experimental data sets had only up to 180
individuals per population, pseudo-simulation data sets
of ~10,000 individuals per population were created for
each of the four conifer species from their empirical geno-
type data (Table 1) to address the collection of finite sam-
ples from a large natural population. This was done by
randomly replicating each genotype within population
equal number of times until a population size of ~10,000
was reached, so the resulting data sets had the same distri-
bution of allele frequencies as the original populations.
Then random sampling was applied to create test subsam-
ples of 15, 25, 35, 45, 60, 90, and 120 individuals in 50
replicates, and the mean number of alleles per locus was
calculated for each sample size. Computations were per-
formed using a Visual Basic program for Microsoft Excel.

The resulting allelic richness values were used to derive the
estimates of ρ and the β coefficients in equation (5) using
the Gauss-Newton method implemented in the NLIN
procedure in the SAS 9.1.3 statistical package (SAS Insti-
tute, Cary, NC). An example of the input data and SAS
NLIN output, showing derivation of the regression coeffi-
cients (ρ, βn, and βA) in (5), is provided in the Additional
file 1.

We also tested the simplified Ewens formula (3) as a pre-
dictor for allelic richness. First, θ was calculated from the
allelic richness values observed in the source data sets for
natural populations (Table 1) using the modified Ewens
formula (3). Then the resulting θ was used in equation (3)
to estimate the predicted allelic richness at various sample
sizes. We also estimated the θ values for the source data
sets obtained from natural populations using the popular
maximum likelihood coalescent approach implemented
in the MIGRATE 3.0 program [22,23]. The resulting θ esti-
mates were used in the equation (3) to calculate the allelic
richness for various sample sizes as indicated above. Also,
we estimated the predicted allelic richness values (at n =
120) in our experimental samples using the rarefaction
procedure implemented in the HP-RARE 1.0 program
[24].

Additionally, to estimate the effects of sample size on the
observed genetic diversity and genetic subdivision param-
eters, we calculated the observed and expected heterozy-
gosity, Shannon information index, and FST for Picea
rubens and Pinus strobus data sets using the GENALEX 6.1.
program [25].

To validate our model, we created 10 artificial data sets
each containing 2 populations of 10,000 individuals, with
selected combinations of inherent migration and selfing
rates, using the Markov chain-based simulation algorithm
implemented in the EASYPOP 2.1 program [26]. Migra-
tion rates (Nm) were set at 0, 1, 10, 50 and 100 migrants
per generation, and selfing (s) was set at 0, 0.2, 0.6, and
0.99 to cover a wide range of mating system and gene flow
scenarios. Different combinations of migration and self-
ing rates would approximate possible deviations from the
ideal population model for a wide variety of organisms.
High degrees of selfing are not unusual in many mixed-
mating selfing-tolerant conifer species, such as Thuja occi-
dentalis [20], and extensive gene flow is generally observed
in natural plant populations [27]. Mutation rates were set
to 0.0002, with the K-allele mutation model implied, and
all loci had 20 possible allelic states - these parameters are
typical for microsatellite markers [28]. The population
size was set constant at n = 10,000 to represent a typical
large natural plant population. The initial allele states
were assigned randomly, and then populations were
allowed to evolve under the above-mentioned evolution-
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ary scenarios for 20,000 generations to yield the data set
A. Then a sample of n = 200 individuals (close to n = 180
in experimental populations of P. rubens) was taken from
the resulting population, and randomly replicated 50
times as described above to create the data set B of n =
10,000 individuals. Then repeated random subsampling
was performed on both data sets A and B (for n = 15, 25,
35, 45, 60, 90, 120, 500, 2,000, 5,000), and the allelic
richness was calculated in 50 replicates as described
above. Various combinations of Nm and selfing parame-
ters used are provided in the Additional File 2.

Results and discussion
The allelic richess values estimated by the regression
model (5), subsampling of the pseudosimulated data sets,
and other methods for four conifer species are provided in
Table 1, Figure 1, Figure 2, Figure 3, and the Additional
File 3. Observed allelic richness gradually increased with
the sample size, as expected (Figure 1). The allelic richness
values predicted from the equation (5) were in good
agreement with those observed in the subsamples of vari-

ous sizes, and the overall allelic richness in the source
populations (Figure 1; Table 1). Ewens and rarefaction
allelic richness estimates at n = 120 were close to the real
observed values, but these methods did not provide con-
sistent results at larger sample sizes (see below). Coales-
cent approach did not provide reliable estimates for allelic
richness. Although the absolute allelic richness values var-
ied among the species and marker systems used, the
model developed in this study worked equally well for
both predominantly outcrossing and mixed-mating self-
ing-tolerant species and both types of markers. Allelic
richness estimates based on θ calculated using the simpli-
fied Ewens formula (3) did not provide a good fit with the
experimental data - the predicted values were outside of
the 95% confidence interval (Figure 2, Figure 3). The coa-
lescent-based θ used in the Ewens formula (3) consist-
ently overestimated or underestimated the allelic richness,
depending on the species and the marker type (Figure 2;
Figure 3; Additional File 3). For example, allelic richness
for microsatellite markers was significantly underesti-
mated by the coalescent approach in Picea rubens (Figure
3A), and overestimated in Pinus strobus, Picea glauca, and
Thuja occidentalis (Figure 3B, Figure 3C, and Figure 3D,
respectively). The allozyme allelic richness in Pinus strobus
was overestimated by this method at larger sample sizes (n
> 60). At the same time, the allelic richness estimates cal-
culated by our regression model (5) were in good agree-
ment with the experimental data sets for all four species
and both marker systems used. Thus, our model was a bet-
ter predictor for the allelic richness in natural populations
as compared to the Ewens formula (Figure 2; Figure 3;
Additional File 3).

Allelic richness predicted by subsampling and regression modeling for microsatellite dataFigure 1
Allelic richness predicted by subsampling and regres-
sion modeling for microsatellite data. PR: Picea rubens, 
TO: Thuja occidentalis, PG: Picea glauca, PS: Pinus strobus. The 
population names are provided in Table 1. PG1-Subsampling - 
TO3-Subsampling: allelic richness estimated by repeated ran-
dom subsampling from the amplified empirical data. PG1-
Regression - TO3-Regression: regression curves for allelic 
richness predicted by equation (5). Regression curves corre-
spond well with the allelic richness estimates obtained from 
subsampling of the actual data. Subsampling was performed 
by replicating the empirical data set up to n = 10,000, and 
randomly drawing samples of a given n from the amplified 
population, in 50 replicates.
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Allelic richness predicted for one Pinus strobus population (PS1) from allozyme dataFigure 2
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richness estimated by repeated random subsampling of the 
amplified empirical data set in 50 replicates (95% confidence 
intervals are provided). Regression - allelic richness predicted 
by equation (5). Ewens - allelic richness predicted by equa-
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As mentioned above, the empirically derived equation
(5a) is similar to the modified Ewens sampling formula
(3). Allelic richness estimates predicted by the Ewens for-
mula (3) significantly deviated from the empirical esti-
mates obtained by repeated random subsampling (Figure
2; Figure 3). As the equations (5a) and (3) are mathemat-
ically congruent, ρ in the equations (5) and (5a) may be
interpreted as a simplified empirical estimator for θ. The
empirically derived regression coefficients βn, and βA
would provide correction for possible deviations of the
experimental population from the ideal population
model.

We also compared allelic richness estimates obtained for
the four conifer species using our regression model equa-
tion (5) and the rarefaction procedure. Rarefaction esti-
mates were close to the subsampling and regression
results obtained for n = 120 (Table 1). Rarefaction is com-
monly used to standardize allelic richness estimates to the

smallest sample size used in a given study, but it cannot
extrapolate the allelic richness beyond the values observed
in the empirically analyzed samples [7]. Thus, it cannot be
used for estimating the number of alleles in large popula-
tions. Our non-linear regression model is a good predictor
for the allelic richness at large sample sizes. It effectively
addresses the possible deviations from the ideal popula-
tion model by introducing the empirically derived regres-
sion coefficients β.

The proposed regression model developed in the present
study has been validated by comparing the allelic richness
parameters estimated by using different approaches in
large Markov chain simulated populations (Figure 4). The
allelic diversity estimated by our regression model was in
agreement with that estimated for various sample sizes in
the original simulated population of 10,000 individuals
as well as that observed in subsampling of the 50 times
amplified data for a subset of 200 individuals. However,

Allelic richness predicted for selected populations of four species from microsatellite dataFigure 3
Allelic richness predicted for selected populations of four species from microsatellite data. Subsampling - allelic 
richness estimated by repeated random subsampling (95% confidence intervals are provided). Regression - allelic richness pre-
dicted by equation (5). Ewens - allelic richness predicted by equation (3), θ calculated from the source data set. Coalescent - 
allelic richness predicted by equation (3), θ estimated by coalescent from the experimental data. A: Picea rubens population 
PR1; B: Pinus strobus population PS1; C: Picea glauca population PG1; D: Thuja occidentalis population TO1.
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the coalescent approach underestimated the allelic rich-
ness at all sample sizes (Figure 4).

A valid concern would be that the original sample set used
for the subsampling procedure may contain only a frac-
tion of the allelic diversity present in a large natural pop-
ulation. Our results indicate that allelic richness estimates
obtained by the model developed here in the amplified
data were consistent with that actually observed in the
total simulated population. The allelic diversity of various
samples drawn from the entire simulated population of
10,000 individuals (data set A) was consistent with that
drawn from 50-times pseudo-replicated population of
200 individuals (data set B) (Figure 4). The replicated data
sets based on n = 200 (data set B) adequately represented
the major proportion of the allelic diversity existing in the
entire simulated population (data set A), and pseudo-rep-
lication and subsampling apparently had little effect on
allelic diversity estimates at the sample sizes below n <
100 typically used in population genetic studies. At large
sample sizes (n > 500), the replicated data sets tend to
underestimate the allelic richness in comparison with
samples drawn from the true simulated population (Addi-
tional File 2). Capturing the low frequency (p = 10-2..10-4)
alleles in a finite population would require sample sizes
close to the entire number of individuals in the popula-
tion.

It should be noted that existence of spatial genetic struc-
ture in a population can affect the observed allelic diver-
sity estimate in a sample. In two of the four studied
species, spatial genetic structure up to ~25 meters has

been observed (Rajora, unpublished; Pandey and Rajora,
submitted). Since the sampling distance normally used
for population genetic studies in forest trees (30-50 m) is
greater than the observed spatial genetic structure, the lat-
ter has little effect on the allelic richness estimates.

The logarithmic nature of the relationship between allelic
richness and sample size holds true regardless of the
organism and marker system used. In addition to our own
data sets for conifer tree species, we observed this relation-
ship in a number of other studies published for various
taxa, e.g. [29-32]. In the present study, we provide a sim-
ple, direct and robust method to predict the allelic diver-
sity in large natural populations. Leberg [6] mentioned
one possible limitation of such extrapolation: it requires a
significant number of samples for the initial estimation of
θ, but in our opinion, the robustness of the subsequent
results far outweighs the expenses associated with running
a small pilot study.

Our approach takes into account possible deviations from
the ideal population model occurring in such complex
systems as natural forest tree populations, where long dis-
tance gene flow, population bottlenecks, selection, vary-
ing mating systems, and overlapping generations are the
norm. One of the other advantages of our model over the
coalescent approach is that it does not require high com-
putation resources.

The minimum sample size for population genetics and
conservation studies has been a hotly debated topic.
Although it is usually desired to capture 90-95% of allelic
diversity, it is often not feasible, as the true number of alle-
les in the population is rarely known. A recent study by
Gapare and Aitken [29] claims that sample sizes of
approximately 150 individuals per population would be
enough to capture 95% of its alleles. However, the "true"
number of alleles was observed at n = 200. Our simulation
study and experimental results indicate that it is unlikely
that a sample of 200 individuals would capture all alleles
in a real natural population. The bivariate linear regres-
sion model used in [29] may not be an accurate predictor
of allelic richness in large populations because the rela-
tionship between the sample size and the observed allelic
richness is non-linear [6].

For conservation and adaptation studies, rare alleles may
be especially important as they may represent the popula-
tions' potential to adapt in changing environmental con-
ditions. Usually, very large sample sizes are suggested for
conservation populations [1], although in our opinion
the size of the conservation population can be optimized
depending on the distribution of allele frequencies in the
parent population. As the allelic richness is approximately
a log function of the sample size, after certain threshold n

Allelic richness estimates in the simulated data setsFigure 4
Allelic richness estimates in the simulated data sets. 
Simulation-Real - allelic richness observed in the total simu-
lated data set A created by EASYPOP 2.1. Simulation-Sub-
sampling - allelic richness observed in data set B, created by 
repeated random subsampling. Regression - allelic richness 
predicted by equation (5). Coalescent - allelic richness pre-
dicted by equation (3), θ estimated by coalescent from the 
data set B.
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(for example, n ~150 in red spruce - Figure 1), the
observed allelic richness increases almost exclusively by
rare alleles. At a very large n, doubling the sample size
would allow only a minor increase in the allelic diversity
(Additional File 2). Sampling artifacts arising from the
existing spatial genetic structure may further reduce the
observed allelic richness increment. Our regression model
could be a good predictor for the number of rare alleles in
natural populations. Once the regression model parame-
ters have been established for a given species and marker
system, the results should be applicable for other popula-
tions within the species.

For most population genetic studies, an adequate sample
size would be the one that allows for reliable estimation
and comparison of genetic diversity and genetic subdivi-
sion parameters among populations. The effects of sample
size on other observed population genetic parameters
(observed and expected heterozygosities, FST, Shannon
diversity index) were illustrated using red spruce (Picea
rubens) as an example. The observed and expected hetero-
zygosities were generally insensitive to the sample size

(data not shown), which corresponds well with the previ-
ously published data [8,9]. Shannon diversity index (Fig-
ure 5A; Figure 5C) and FST (Figure 5B; Figure 5D)
estimates were unstable at low sample sizes (n < 50), and
stabilized after certain n (n = 60...90 in our case). Small
allele frequency fluctuations have little effects on the
observed FST values. As discussed above, at large n, the
observed allelic richness increases primarily by low fre-
quency alleles that have little effect on the observed
genetic differentiation parameters. Thus, n = 60 to 90
appears to be the optimum sample size for common pop-
ulation genetic purposes.

Conclusion
Our non-linear regression model provides a simple and
robust approach to estimate the genetic diversity in large
natural populations based on the empirical data. Since the
regression coefficients in our model are derived empiri-
cally, and there are no assumptions to violate, it allows for
quick and easy estimation of allelic diversity in large nat-
ural populations based on finite sample sizes. The model
is independent of the marker mutation mode and popu-

Effects of sample size on Shannon diversity index and FSTFigure 5
Effects of sample size on Shannon diversity index and FST. A: Shannon index, Picea rubens; B: FST, Picea rubens; C: Shan-
non index, Pinus strobus; D: FST, Pinus strobus. Repeated random subsampling was performed on the empirical microsatellite data 
in 50 replicates. 95% confidence intervals are provided.
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lation history, and works well with high selfing and pre-
dominantly outcrossing species. It has been validated on
simulated data sets, as well as on the experimental data for
different species and molecular marker systems. There-
fore, our model is more accurate, simple and practical
than the coalescent or Ewens approach. The proposed
method can be widely applicable in population genetic
studies, and it may provide the missing link for conserva-
tion and management decision support.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
All authors contributed equally to the submitted work: SB
generated the red spruce source data, developed the equa-
tion and drafted the manuscript; MP and OPR provided
eastern white cedar, eastern white pine and white spruce
empirical data, provided suggestions and revised the man-
uscript; and OPR is the Principal Investigator of the
research program and provided funding and overall guid-
ance and research directions. All authors have read and
approved the final manuscript.

Additional material

Acknowledgements
The research was funded by the Canada Research Chair Program 
(CRC950-201869) funds and the Natural Sciences and Engineering 

Research Council of Canada Discovery Grant RGPIN 170651 to O.P. 
Rajora. S. Bashalkhanov was supported by the University of New Brunswick 
start up funds provided to O.P. Rajora and a Canadian Forest Service grad-
uate student's supplemental stipend. M. Pandey was financially supported 
from the Canada Research Chair Program (CRC950-201869) funds to O.P. 
Rajora. Genotyping for Thuja occidentalis, and Picea glauca was carried out 
primarily by Dr. Lisa O'Connell and Dr. Ishminder Mann. The authors 
appreciate the useful comments and suggestions of three anonymous 
reviewers.

References
1. Yanchuk AD: A quantitative framework for breeding and con-

servation of forest tree genetic resources in British Colum-
bia.  Canadian Journal of Forest Research 2001, 31:566-576.

2. Traill LW, Bradshaw CJA, Brook BW: Minimum viable population
size: A meta-analysis of 30 years of published estimates.  Bio-
logical Conservation 2007, 139(1-2):159-166.

3. Petit RJ, ElMousadik A, Pons O: Identifying populations for con-
servation on the basis of genetic markers.  Conservation Biology
1998, 12(4):844-855.

4. Gillet EM: Minimum sample sizes for sampling genetic marker
distributions.  Final Compendium of the Research Project Development,
optimisation and validation of molecular tools for assessment of biodiversity
in forest trees in the European Union DGXII Biotechnology FW IV Research
Programme Molecular Tools for Biodiversity 1999.

5. Gregorius H-R: The probability of losing an allele when diploid
genotypes are sampled.  Biometrics 1980, 36(4):643-652.

6. Leberg PL: Estimating allelic richness: Effects of sample size
and bottlenecks.  Molecular Ecology 2002, 11(11):2445-2449.

7. Belkhir K, Dawson KJ, Bonhomme F: A comparison of rarefaction
and Bayesian methods for predicting the allelic richness of
future samples on the basis of currently available samples.
Journal of Heredity 2006, 97(5):483-492.

8. Rajora OP, Rahman MH, Buchert GP, Dancik BP: Microsatellite
DNA analysis of genetic effects of harvesting in old-growth
eastern white pine (Pinus strobus) in Ontario, Canada.  Molec-
ular Ecology 2000, 9(3):339-348.

9. Buchert GP, Rajora OP, Hood JV, Dancik BP: Effects of harvesting
on genetic diversity in old-growth Eastern white pine in
Ontario, Canada.  Conservation Biology 1997, 11(3):747-758.

10. Ewens WJ: The sampling theory of selectively neutral alleles.
Theoretical Population Biology 1972, 3(1):87-112.

11. Neuhauser C: Mathematical models in population genetics.  In
Handbook of Statistical Genetics Edited by: Balding DJ, Bishop M, Can-
nings C. Chichester: Wiley&Sons; 2001:153-178. 

12. Nordborg M: Coalescent theory.  In Handbook of Statistical Genetics
Edited by: Balding DJ, Bishop M, Cannings C. Chichester: Wiley&Sons;
2001:179-212. 

13. Kingman JFC: On the genealogy of large populations.  Journal of
Applied Probability 1982, 19:27-43.

14. Nei M, Kumar S: Molecular evolution and phylogenetics.
Oxford University Press; 2000. 

15. Provan J, Beatty G, Hunter A, McDonald R, McLaughlin E, Preston S,
Wilson S: Restricted gene flow in fragmented populations of a
wind-pollinated tree.  Conservation Genetics 2008, 9(6):1521-1532.

16. Mimura M, Aitken SN: Increased selfing and decreased effective
pollen donor number in peripheral relative to central popu-
lations in Picea sitchensis (Pinaceae).  American Journal of Botany
2007, 94(6):991-998.

17. Rajora OP, Mann IK, Shi Y-Z: Genetic diversity and population
structure of boreal white spruce (Picea glauca) in pristine
conifer-dominated and mixedwood forest stands.  Canadian
Journal of Botany 2005, 83:1096-1105.

18. Rajora OP, Mosseler A, Major JE: Mating system and reproduc-
tive fitness traits of eastern white pine (Pinus strobus) in
large, central versus small, isolated, marginal populations.
Canadian Journal of Botany 2002, 80:1173-1184.

19. O'Connell LM, Mosseler A, Rajora OP: Impacts of forest frag-
mentation on the mating system and genetic diversity of
white spruce (Picea glauca) at the landscape level.  Heredity
2006, 97(6):418-426.

20. Perry DJ, Knowles P: Evidence of high self-fertilization in natu-
ral populations of eastern white cedar (Thuja occidentalis).
Canadian Journal of Botany 1990, 68:663-668.

Additional file 1
An example of SAS NLIN input and output for estimating the regres-
sion coefficients of Equation (5).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-84-S1.PDF]

Additional file 2
Allelic richness estimated by repeated random resampling in simu-
lated population genetic data with various combinations of migration 
and selfing rates.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-84-S2.PDF]

Additional file 3
Allelic richness predictions for individual populations of all four spe-
cies based on our regression model (5), Ewens formula and coalescent 
approach. The population names are provided in Table 1. Regression - 
allelic richness predicted by equation (5). Ewens - allelic richness pre-
dicted by equation (3), θ calculated from the empirical source data set. 
Coalescent - allelic richness predicted by equation (3), θ estimated by coa-
lescent from the empirical source data.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-10-84-S3.PDF]
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2156-10-84-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2156-10-84-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2156-10-84-S3.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7248433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7248433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12406254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16987938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16987938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10736031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4667078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912700


BMC Genetics 2009, 10:84 http://www.biomedcentral.com/1471-2156/10/84
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

21. Rajora OP, Mosseler A, Major JE: Indicators of population viabil-
ity in red spruce, Picea rubens. II. Genetic diversity, popula-
tion structure, and mating behaviour.  Canadian Journal of Botany
2000, 78:941-956.

22. Beerli P, Felsenstein J: Maximum likelihood estimation of a
migration matrix and effective population sizes in n subpop-
ulations by using a coalescent approach.  Proceedings of the
National Academy of Sciences 2001, 98(8):4563-4568.

23. Beerli P: Migrate version 3.0 - a maximum likelihood and
Bayesian estimator of gene flow using the coalescent.  Distrib-
uted over the internet 2008 [http://popgen.sc.fsu.edu/Migrate-n.html].

24. Kalinowski ST: Hp-rare 1.0: a computer program for perform-
ing rarefaction on measures of allelic richness.  Molecular Ecol-
ogy Notes 2005, 5(1):187-189.

25. Peakall R, Smouse PE: Genalex 6: genetic analysis in Excel. Pop-
ulation genetic software for teaching and research.  Molecular
Ecology Notes 2006, 6(1):G288-295.

26. Balloux F: Easypop (Version 1.7): a computer program for
population genetics simulations.  Journal of Heredity 2001,
92(3):301-302.

27. Saenz-Romero C, Guries RP, Monk AI: Landscape genetic struc-
ture of Pinus banksiana: allozyme variation.  Canadian Journal of
Botany 2001, 79:871-878.

28. Schlötterer C, Wiehe T: Microsatellites, a neutral marker to
infer selective sweeps.  In Microsatellites: evolution and applications
Edited by: Goldstein DB. New York: Oxford University Press; 1999. 

29. Gapare W, Yanchuk A, Aitken S: Optimal sampling strategies for
capture of genetic diversity differ between core and periph-
eral populations of Picea sitchensis (Bong.) Carr.  Conservation
Genetics 2008, 9(2):411-418.

30. Pruett CL, Winker K: The effects of sample size on population
genetic diversity estimates in song sparrows Melospiza melo-
dia.  Journal of Avian Biology 2008, 39(2):252-256.

31. Leonard JA, Vila C, Wayne RK: Legacy lost: genetic variability
and population size of extirpated US grey wolves (Canis
lupus).  Molecular Ecology 2005, 14(1):9-17.

32. Anderson LL, Hu FS, Nelson DM, Petit RJ, Paige KN: Ice-age endur-
ance: DNA evidence of a white spruce refugium in Alaska.
Proceedings of the National Academy of Sciences 2006,
103(33):12447-12450.
Page 10 of 10
(page number not for citation purposes)

http://popgen.sc.fsu.edu/Migrate-n.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11447253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11447253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15643947
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Model development
	Model validation and comparison with other methods

	Results and discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

