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Abstract
Background: It is quite common that the genetic architecture of complex traits involves many
genes and their interactions. Therefore, dealing with multiple unlinked genomic regions
simultaneously is desirable.

Results: In this paper we develop a regression-based approach to assess the interactions of
haplotypes that belong to different unlinked regions, and we use score statistics to test the null
hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked
region are considered. The multiple tests are settled via the minP approach. The P value of the
"best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through
simulation studies, we assess the performance of the proposed approach and demonstrate its
validity and power in testing for haplotype interaction association.

Conclusion: Our simulations showed that, for binary trait without covariates, our proposed
methods prove to be equal and even more powerful than htr and hapcc which are part of the
FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow
adjustment for other covariates. To test the validity, our methods are applied to analyze the
association between four unlinked candidate genes and pig meat quality.

Background
Haplotypes, the linear arrangement of alleles on the same
chromosome inherited as a unit, provide a natural frame-
work for testing the association between genetic markers
and complex traits more efficiently than separate marker
analysis[1]. There is strong evidence that several muta-
tions in cis position within a single gene can interact to
create a "super allele" that has a large effect on the

observed phenotype. The biological explanation for these
haplotype effects is that several mutations in a gene cause
several amino acid changes in the ultimate protein prod-
uct, and the joint effect of these amino acid changes can
have a much larger influence on the function of the pro-
tein product than any single amino acid change. This
emphasizes the importance of examining candidate genes
by SNP haplotyping. Some studies focus on haplotypes
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within a given genomic region [2-7]. Because complex
traits are presumed to be the results of interaction by a set
of genes which may be located in different regions, some
methods aim to test gene-gene interaction, and interac-
tions of single markers from different unlinked regions [8-
11]. Specifically, Becker et al[12] reported a method to
deal with haplotype interaction in unlinked regions for a
binomial trait. They find the best haplotype combination
from the unlinked regions by permutation, which is a
modification of Ge et al[13]. However, this method could
only be applied to case-control association testing, and
could not include other covariates.

Generalized Linear Model (GLM) is an extension of the
general linear modeling process that allows models to be
fitted for several kinds of traits, such as Gaussian, Poisson,
Binomial, etc., and allows various covariates. Schaid et
al[5] introduced score statistics, which are receiving
increased attention because they require only computa-
tion of the null estimates and are asymptotically equiva-
lent to Wald and likelihood ratio statistics under both null
and Pitman alternative hypotheses. Some methods that
use score tests based on GLM to test haplotype-trait asso-
ciation have demonstrated the validity and power of this
statistic[6]. However, these methods only considered one
genomic region. If considering multi-region multi-marker
haplotype configurations, a severe multiple-testing prob-
lem will occur. To obtain uncorrected P-values for a spe-
cific marker combination, we use an unnested simulation
introduced by Becker and Knapp[2], which is based on the
algorithm proposed by Ge et al[13].

We propose an alternative approach that uses score statis-
tics based on GLM to build the statistic T over which some
of the unlinked regions are considered and some markers
are chosen at the selected regions. Since the distribution of
T is generally unknown and is generally not comparable,
we replace T with Pmin which is inherited from the algo-
rithm of Becker and Knapp[2]. This simulation method
has already been validated by Manly[14] and Hoh et
al[15], and has systematically been applied to some
genetic data[2,12,16,17].

Simulation study
Simulation schemes
We conduct a simulation study to evaluate the power and
type I error of the association test and to compare our
approach with others. The haplotype data are generated in
a way similar to that of Roeder et al.[18] and Tzeng et al[6].
In every simulation scheme, we consider two unlinked
regions. We consider that markers are in strong linkage
disequilibrium within each region, but markers from dif-
ferent regions are in linkage equilibrium. Therefore, we
separately produce two regions by using a modified Hud-
son's MS program[19]. This program generates data under

a coalescent model in which the recombination occurs
uniformly over the region. The 4 samples sizes are 50,
100, 200 and 400, respectively. The scaled recombination
rate, ρ = Neδ/bp, is set to 4 × 10-3 for the recombination
cold spots, and 100 times greater in the hot spots, with the
effective population size Ne is 1 × 104. The scaled muta-
tion for the entire region, 4Neμ/bp, is set to be 6 × 10-4.
Once the haplotypes have been generated, the first step is
to restrict the disease or minor allele frequency. In this
simulation, we set the allele frequency as 3 levels: 0.1, 0.3,
and 0.5. We assume that the middle locus in every gene is
the liability locus. Once a liability locus is chosen, a hap-
lotype is defined as a segment of three adjacent SNPs in
which the second SNP is the liability locus.

After randomly pairing haplotypes to form individual
genotypes, we generate both continuous and binary trait
values.

Continuous traits

For the Type I error test, we consider two simple models of
quantitative traits simulated independently of the liability
locus. Let model 1 include only an environmental effect e: Y

= e. Let model 2 additionally incorporate a covariate Z: Y = γ
× Z + e. In the models, e follows a standard normal distribu-
tion with mean 0 and variance 1, and Z is generated from a
standard normal distribution. For assessing power and the
effective selection of the best combination of markers, we
also consider two models of quantitative traits simulated in
association with the liability locus. Let model 3 decompose
the trait value into MRHC effect and environmental effect e:
Y = g + e, and model 4 additionally incorporate a covariate Z:

Y = g + γ × Z + e. In these models, g is the sum of all consid-
ered genes' effects. For the ith gene, gi has a discrete distribu-

tion and equals , ,  with probabilities q2, 2q(1-q)

and (1-q)2, respectively. As in models 1 and 2, e follows a

normal distribution with mean ε and variance , and Z is

generated from a standard normal distribution. For simplic-

ity, we set , ε = 0, and γ = 1. The trait values are

generated using the normal penetrance function.

 for the first model

and  for

the second model, where m is the number of the genes. We

determine  through the heritability h2 of all liability loci,

which we set at 0.4.
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Binary traits
We generate binomial phenotypes on the basis of the
above continuous traits, and consider four models where
the disease prevalence is set to 0.10. If the values of the
above continuous traits are more than a given threshold,
we set the traits as disease cases, otherwise we set them as
control. Let model 5 be the binary trait created from a con-
tinuous trait simulated as in model 1, model 6 from
model 2, model 7 from model 3, and model 8 from
model 4. Binary traits are simulated until an equal
number of cases and controls are reached.

The detail of the models can be seen in table 1.

Under all scenarios, we compute the global P value with
1500 permutation replicates for each simulated data set.
Empirical significance levels and power were computed as
the portion of simulated data sets for which the global P
value was less than or equal to 0.05.

Results
Comparison of three models htr, hapcc and HAPGLM
In order to check the validity and the accuracy of our
HAPGLM approach, we first carry out simulations under
the null hypothesis and compare it with hapcc and htr,
which were implemented in the beta version of FAMHAP.
htr performs a haplotype trend regression test proposed
by Zaykin et al[7], and hapcc performs a χ2 test for haplo-
types proposed by Becker et al[12,16]. Here, we use model
5 and 7 to simulate the trait. Haplotypes and trait values
are compared according to the frequency (q = 0.1, 0.3,
0.5) of the disease allele, and sample size (n = 50, 100,
200, 400).

First, we discuss the results under the effect of minor allele
frequency for type I error in table 2. Under 12 scenarios,
the type I error of the three models is near 0.05, and there
are not significant differences between the three models.
The results show that our model can approximate to
hapcc and htr in accuracy. For the power comparison,
table 3 presents worst performance when disease allele

frequency is high with small sample sizes, where the
power of the global test is not stabilized, especially for the
hapcc. The reason is that the disease individual prevalence
is 0.10, and the percent for the disease is somewhat small,
making it difficult to find the significant difference. How-
ever, when the sample size is more than 100, the power is
near one for the three models. There are no significant dif-
ferences among hapcc, htr and our method.

Three factors analysis for global test
To evaluate the test performance, we describe the results
from our power and type I error study that use the above
methods with various parameters. Type I error test
includes 48 scenarios which include 4 models, 3 minor
allele frequencies and 4 sample sizes. As shown in table 4,
the type I error stabilizes in all the scenarios. Power test
includes 48 scenarios which include 4 models, 3 disease
allele frequencies and 4 same sizes. For the power calcula-
tions in table 5, the power is adversely affected by the
small sample size and high disease allele frequency. Oth-
erwise, if the sample size is at least to 100, the power is
preserved. Therefore, we set sample size to test recombina-
tion affection and the specific MRHC testing as 100.

Recombination analysis for global test
In order to check the effect of recombination on the
model, we first consider two different recombination lev-
els at which the diversity of the haplotype is high and low.
"High diversity" indicates that a minor or disease locus is
located in the region of recombination hot spots and that
the number of distinct haplotypes is 6-8; "low diversity"
indicates that a minor or disease locus is located in a hap-
lotype block and the number of distinct haplotype is 3-5.
In this simulation, we consider three SNPs in each region
and we assume equal recombination level. The first
recombination level has 2-4 different haplotypes. The
haplotype distribution of the second recombination level
consists of 6-7 theoretically possible haplotypes. From
table 6 and 7, there are some differences between the two
diversities on type I error and power, but there are no sig-
nificant differences between the high and low diversities.

Table 1: the 8 models in the trait producing in simulation

Model name Trait type Factor consider

Model 1 Continuous traits include only an environmental effect e
Model 2 Continuous traits include an environmental effect e and a covariate
Model 3 Continuous traits include MRHC effect and environmental effect e
Model 4 Continuous traits include MRHC effect and environmental effect e and a covariate
Model 5 Binary Traits Produce from model 1 above a given threshold
Model 6 Binary Traits Produce from model 2 above a given threshold
Model 7 Binary Traits Produce from model 3 above a given threshold
Model 8 Binary Traits Produce from model 4 above a given threshold
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That is to say, the proposed method is not significantly
affected by the recombination level.

Analysis for specific MRHC
The score test can easily compute the specific MRHC. In
order to study the performance of the proposed method
in detecting individual MRHCs, we set 3 disease allele fre-
quencies and 4 model fits. The power for specific MRHC
is presented in table 8. It is of interest that the proposed
method is robust for detecting the specific MRHC.

Select the best combination of markers
In order to check the accuracy of our methods to select the
best MRHC, the markers of the 2 genes in simulations are
123|456, and the marker 2 and 5 are as the liability loci.
The frequency of the disease allele is 0.3. The result shows
that for these 2 liability loci combination, the statistic T is
the largest and the P value is the smallest. These are pre-
sented in table 9. The combination without these two loci
presents low T and high P value.

Application to a pig meat quality dataset
Meat quality is very important in the pig meat production
industry. Many candidate genes have been identified that
could be used to improve this trait through marker
assisted selection (MAS)[20]. The Heart Fatty Acid-Bind-
ing (H-FABP) gene encodes a type of cytosol protein that
transports fatty acids from the cell membrane to other
sites where 3-acyl-glyceride and phospholipids are synthe-
sized and fatty acids are oxidized. Gerbens [21-23] discov-
ered Msp I, Hae II and Hinf I polymorphisms of the H-
FABP gene that is related to intramuscular fat content.
Melanocortin-4 Receptor (MC4R) is believed to be a link
between feed intake and body weight[24].

Polymorphism of the MC4R gene has been reported to be
associated with back fat thickness[25]. Adipocyte Deter-
mination and Differentiation factor-1 (ADD1) can acti-
vate or restrain some genes in fat and glucose metabolism.
Research has suggested that the ADD1 gene can be used as
a candidate gene for pork quality[26]. Calpastatin (CAST),
which is an endogenous inhibitor (Ca2+ dependent

Table 2: Type I error of three models via 1500 simulations at α = 0.05

Sample Size Minor Allele Model Type

hapcc htr HAPGLM

50 q = 0.1 0.097(0.079-0.117) 0.048(0.036-0.063) 0.048(0.036-0.063)
q = 0.3 0.032(0.022-0.045) 0.039(0.028-0.053) 0.044(0.032-0.059)
q = 0.5 0.029(0.020-0.041) 0.041(0.030-0.055) 0.047(0.042-0.071)

100 q = 0.1 0.036(0.025-0.049) 0.035(0.024-0.048) 0.047(0.035-0.062)
q = 0.3 0.031(0.021-0.044) 0.072(0.057-0.090) 0.043(0.031-0.057)
q = 0.5 0.042(0.030-0.056) 0.047(0.035-0.062) 0.051(0.038-0.067)

200 q = 0.1 0.031(0.021-0.044) 0.026(0.017-0.038) 0.055(0.042-0.071)
q = 0.3 0.051(0.038-0.067) 0.033(0.023-0.046) 0.047(0.035-0.062)
q = 0.5 0.040(0.029-0.054) 0.067(0.052-0.084) 0.037(0.026-0.051)

400 q = 0.1 0.035(0.024-0.048) 0.037(0.026-0.051) 0.042(0.030-0.056)
q = 0.3 0.047(0.035-0.062) 0.028(0.019-0.040) 0.041(0.030-0.055)
q = 0.5 0.028(0.019-0.040) 0.041(0.030-0.055) 0.042(0.030-0.056)

Table 3: Power of three models via 1500 simulations at α = 0.05

Sample Size Disease Allele Frequency Model Type

hapcc htr HAPGLM

50 q = 0.1 0.947 0.947 0.947
q = 0.3 0.866 0.907 0.968
q = 0.5 0.666 0.391 0.596

100 q = 0.1 0.977 0.971 0.952
q = 0.3 0.963 0.927 0.941
q = 0.5 0.834 0.728 0.917

200 q = 0.1 0.980 0.980 0.968
q = 0.3 0.981 0.981 0.968
q = 0.5 0.961 0.912 0.954

400 q = 0.1 0.967 0.981 0.948
q = 0.3 0.981 0.983 0.974
q = 0.5 0.934 0.925 0.967
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cysteine proteinase), plays a central role in the regulation
of calpain activity in cellsand is considered to be one of
the major modulators of the calpains[27,28]. The CAST
gene represents an excellent candidate gene for studying
variation in pork quality. We aim to find association
between multi-region haplotype effects from these candi-
date regions and meat quality.

Our data set is a sample which includes 93 unrelated fat-
teners from the following breeds/populations: 18 Meis-
han, 21 Sutai, 14 Yorkshire × Sutai, 16 Landrace × Sutai
and 24 Duroc × Landrace × Yorkshire pigs. 8 polymorphic
markers of the preceding genes in the populations have
been reported[29,30], which are: 2 in ADD1, 1 in H-FABP,
1 in MC4R and 4 in CAST. We code these polymorphic
markers as (A1, A2, H1, M1, C1, C2, C3, and C4). The χ2

test of these polymorphic markers show that there are sig-
nificant differences in 5 polymorphic markers (except for
A1, A2, C4) between the five populations. We set up single

locus models including sex and breed as environmental
covariates, for every polymorphic marker, and use statisti-
cal software SAS macro GLM for calculations. The results
show significant effects at 0.05 level for: A1, H1, C2, C3
and C4 in back fat thickness (BK); A1, C1 and C3 in meat
color (MC); A1, H1, C1 and C4 in intramuscular fat con-
tent (IMF), and A1 in protein content. To apply our meth-
ods, we also incorporate two environmental covariates
(sex and breed), and use back fat thickness, tenderness,
drip loss, meat color, intramuscular fat content, pH 1
hour after slaughter, pH 24 hours after slaughter, and the
content of protein as the dependent variable in the regres-
sion model. Table 10 illustrates the marker combination
in which raw P values are lower at 0.01 level, Compared
to single locus model, MRHC analysis can detect more
markers which are significantly associated with traits.

Additionally, our methods are used to reconstruct the dis-
tinct MRHC from the above 4 genes which are in unlinked

Table 4: Type I error of global test via 1500 simulations at α = 0.05

Sample Size Minor Allele Frequency Model Type

Model 1 Model 2 Model 5 Model 6

50 q = 0.1 0.034(0.024-0.047) 0.031(0.021-0.044) 0.048(0.036-0.063) 0.039(0.028-0.053)
q = 0.3 0.050(0.037-0.065) 0.041(0.030-0.055) 0.044(0.032-0.059) 0.044(0.032-0.059)
q = 0.5 0.052(0.039-0.068) 0.062(0.048-0.079) 0.047(0.035-0.062) 0.056(0.043-0.072)

100 q = 0.1 0.040(0.029-0.054) 0.032(0.022-0.045) 0.047(0.035-0.062) 0.037(0.026-0.051)
q = 0.3 0.038(0.027-0.052) 0.044(0.032-0.059) 0.043(0.031-0.059) 0.037(0.026-0.051)
q = 0.5 0.048(0.036-0.063) 0.044(0.032-0.059) 0.051(0.038-0.067) 0.052(0.039-0.068)

200 q = 0.1 0.045(0.033-0.060) 0.041(0.030-0.055) 0.055(0.042-0.071) 0.031(0.021-0.044)
q = 0.3 0.048(0.036-0.063) 0.041(0.030-0.055) 0.047(0.035-0.062) 0.042(0.030-0.056)
q = 0.5 0.047(0.035-0.062) 0.049(0.036-0.064) 0.037(0.026-0.051) 0.041(0.030-0.055)

400 q = 0.1 0.027(0.018-0.039) 0.040(0.029-0.054) 0.042(0.030-0.056) 0.038(0.027-0.052)
q = 0.3 0.043(0.031-0.059) 0.037(0.026-0.051) 0.041(0.030-0.055) 0.044(0.032-0.059)
q = 0.5 0.041(0.030-0.055) 0.052(0.039-0.068) 0.042(0.030-0.056) 0.048(0.036-0.063)

Table 5: Power of global test via 1500 simulations at α = 0.05

Sample Size Disease Allele Frequency Model Type

Model 3 Model 4 Model 7 Model 8

50 q = 0.1 0.977 0.824 0.947 0.478
q = 0.3 0.964 0.920 0.968 0.891
q = 0.5 0.947 0.625 0.596 0.741

100 q = 0.1 0.934 0.936 0.952 0.937
q = 0.3 0.979 0.957 0.941 0.889
q = 0.5 0.965 0.836 0.917 0.887

200 q = 0.1 0.978 0.963 0.968 0.916
q = 0.3 0.968 0.972 0.968 0.967
q = 0.5 0.967 0.971 0.954 0.960

400 q = 0.1 0.968 0.967 0.948 0.944
q = 0.3 0.971 0.947 0.974 0.920
q = 0.5 0.948 0.958 0.967 0.962
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regions. In table 11, we illustrate the 5 top statistics for
MRHCs which consider 8 markers combination.

Discussion
Presently many publications have proven that the genetic
dissection of complex traits depends not only on the iden-
tification of genes involved in disease susceptibility but
also on the elucidation of the synergistic role that genes
play with other genes and with environmental factors[8-
11,31-33]. Therefore, considering unlinked genomic
regions simultaneously is desirable. There are two models
hapcc and htr in FAMHAP program which can compute
the haplotype interaction in unlinked region. For hapcc,

Becker et al.[12] chose the usual χ2 test statistic for contin-
gency tables which can be applied only to case-control
traits. For htr, the haplotype trend regression test pro-
posed by Zaykin et al[7], chose F statistic and could be
used for qualitative and quantitative traits, but won't
allow other covariates in the model. Our proposed meth-
ods are based on score equations for GLMs which allow
adjustment of covariates and can model qualitative and
quantitative traits. For binary trait without covariate, the
type I error and power comparison show that our model
has the same power as hapcc and htr, and type I error is as
expected. For a small number of markers, the run times for
hapcc, htr and HAPGLM are approximately equal. Addi-
tionally, our model has obvious advantages. First, our
model can be applied to analyze haplotype association

across independent regions with adjusting of covariates

for a wider variety of traits. Second, the score statistic ( )

of the individual MRHCs can be easily computed.

Our model adopted the simulation method proposed by
Becker et al.[2,12,17], which can be computationally fea-
sible to deal with the multiple marker combination. For
our program, the evaluation of a single simulated data set
with 15 markers in 3 regions will take no more than 10
seconds on average on two nodes with 3.0 GHz Intel with
512 MB main memory. In general, it will be possible to
simultaneously consider about 600 to 1,200 hypotheses
on a standard PC. Our program is very flexible to allow
selection of loci and genes for analysis. However, in
regions with too many possible haplotype combinations,
our program runs out of memory. We need to consider
more aggressive trimming parameters or other haplotype
estimation algorithms. For example, we will improve our
program by using the haplotype ancestral cluster idea to
cluster rare haplotypes with similar ancestral haplotypes,
which was used by Tzeng et al.[34]. Haplotypes of the
entire block can be represented by a smaller set of SNPs
which are referred to as tag SNPs[35]. In order to analyze
more markers, it will be helpful to select tag markers at
each region and to carry out the analysis on the set of these
markers. Tag SNPs selection will save run-time, and we
plan our further research along this path.

In this research, we proposed markers from different
regions which are proposed to be in linkage equilibrium.

z k
2

Table 6: Type I error of global test for different recombination at α = 0.05

Haplotype Diversity Minor Allele Frequency Model Type

Model 1 Model 2 Model 5 Model 6

High 0.1 0.046(0.034-0.061) 0.053(0.040-0.069) 0.045(0.033-0.060) 0.043(0.031-0.057)
0.3 0.051(0.038-0.067) 0.043(0.031-0.057) 0.047(0.035-0.062) 0.038(0.027-0.052)
0.5 0.058(0.044-0.074) 0.052(0.039-0.068) 0.042(0.030-0.056) 0.042(0.030-0.056)

Low 0.1 0.047(0.035-0.062) 0.041(0.030-0.055) 0.042(0.030-0.056) 0.043(0.031-0.057)
0.3 0.039(0.028-0.053) 0.044(0.032-0.059) 0.037(0.026-0.051) 0.047(0.035-0.062)
0.5 0.040(0.029-0.054) 0.051(0.038-0.057) 0.044(0.032-0.059) 0.050(0.037-0.065)

Table 7: Power of global for different recombination level at α = 0.05

Haplotype Diversity Disease Allele Frequency Model Type

Model 3 Model 4 Model 7 Model 8

high 0.1 0.971 0.860 0.955 0.957
0.3 0.967 0.962 0.961 0.961
0.5 0.948 0.968 0.953 0.965

low 0.1 0.973 0.977 0.972 0.972
0.3 0.963 0.944 0.951 0.958
0.5 0.977 0.933 0.948 0.953
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Markers from different regions can be in linkage disequi-
librium, but the methods can allow such markers as if
they were in the same region.

Since the current model assumes that the subjects are
independent of each other (i.e., unrelated), it is critical to
extend the current approach to account for the correla-
tions between subjects, given their family data. Therefore,
further studies are needed to address the impact and mod-
eling strategies with regard to the assumptions in the
model. This model is restricted to outcomes that can be
placed in the generalized linear model framework. An
extension to failure-time data could also be placed in the
framework.

Conclusion
It is quite common that the genetic architecture of com-
plex traits involves many genes and their interactions.
Therefore, dealing with multiple unlinked genomic
regions simultaneously is desirable. We developed a
regression-based approach which can be applied to a
wider variety of traits and allow adjustment for other cov-
ariates to assess the interactions of haplotypes that belong
to different unlinked regions. Multiple marker combina-
tions at each unlinked region are also considered. In addi-
tion, HAPGLM can be downloaded for free at: ftp://
public.sjtu.edu.cn/, user: ylhu0323, password: public.

Methods
Contribution to multi-region haplotype configurations
Consider R unlinked genomic regions, and mr observed
markers for each of n unrelated individuals in region r.
Further, we suppose that markers within each region are
in strong linkage disequilibrium, while markers from dif-
ferent regions are in linkage equilibrium. What we wish to

investigate is whether some of the genomic regions are
associated with the phenotype of interest via some of the
markers from each region.

Let Gr be the multi-locus genotype of an individual at
region r, and hr be a haplotype of region r. If the haplo-

types  and  are compatible with Gr,  is then

called a haplotype explanation of Gr. Obviously, for a
given Gr, there may be several haplotype explanations.

First, we use the expectation-maximization (EM) algo-
rithm[5] to obtain the maximum-likelihood estimates of
the haplotype frequencies at each of the unlinked regions.
After we pooled the rare haplotypes (with estimated fre-
quencies <0.001) into a single group, we adopt the fol-
lowing formula ([12] to compute the likelihood weights
of all haplotype explanations of each region for each indi-
vidual,

where Gr is the multilocus genotype of a fixed individual

at region r. Let  be the set of

unordered haplotype explanation, which are compatible

with Gr. let  be the estimated frequency of haplotype

, the sum in the denominator runs over all possible

haplotype explanations, and the Kronecker symbol δ is

defined as δj, k = 1 if j = k, and δj, k = 0 if j ≠ k, where j and

k is the pair of haplotypes at region r. The "~r" is all the
pair haplotypes in region r for each individual.

Let G = (G1, G2, and, GR) be the multi-region genotype of

an individual and  be a pos-

sible multi-region haplotype explanations (MRHEs) that

are compatible with (G1, G2, and, GR). Let 

denote a multi-region haplotype configuration (MRHC).
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Table 8: Power for the specific MRHC at α = 0.05

Disease Allele
Frequency

Model Type

Model 3 Model 4 Model 7 Model 8

0.1 0.981 0.856 0.978 0.946
0.3 0.943 0.962 0.916 0.937
0.5 0.933 0.954 0.946 0.952

Table 9: The best ten combinations in two regions with six markers

Model 1 2 3 4 5 6 7 8 9 10

Model 5 2|5 12|5 23|5 123|5 245 234|5 123|45 12|56 123|56 12|456
Model 6 5 2 2|5 3|5 2|6 23 12 56 2|4 45
Model 7 2|5 12|45 13|456 123|45 2|45 23|45 123|56 12|456 123|45 12|56
Model 8 12|5 2|5 23|5 2|45 12|45 2|56 123|5 23|56 123|45 12|56

The possible number for the combination is 26-1 with 6 markers in 2 regions.
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An MRHE is formed by two MRHCs from the two gam-
etes, but there may be 2R MRHCs for a given MRHE, some
of which may be the same. We construct an n × h matrix

with rows referring to the n individuals and columns

referring to the different MRHCs. Cell xef of this matrix

denotes the contribution of individual e to MRHC f, and
can be calculated according to the following equation,

Regression model with MRHC

Let y denote an n × 1 vector of measured phenotypes of a

trait, α denote an h × 1 vector of the effects for the MRHCs,

β denote the regression parameters for the intercept and

environmental factors,  be the contribution matrix

obtained above, and  denote the design matrix corre-

sponding to measured environmental factors. Then we
have the following generalized linear model (GLM):

Let Z = Xe|Xg and γ = (α|β). Then, the likelihood of trait yi
for subject i, given the vector Zi, can be expressed as a GLM
for exponential family data[36] according to

where a, b, and c are known functions, and ϕ is the disper-
sion parameter. To implement the score statistics for dif-
ferent types of traits, we need only assume a distribution
for the trait and to make the appropriate substitutions for

the expected value of the trait, , the dispersion parame-

ter a(ϕ), the ratio b"(η)/a(ϕ) and the link function. (see
table 1 of [5]).

Score test for incorporating contribution of MRHC

We derive score statistics to test the null hypothesis of no

association between MRHC and trait, H0 : α = 0. Let ζ

denote the vector of nuisance parameters (β, μ, ϕ). The

likelihood function for (α, ζ) on the basis of the data

 according to Tzeng et al[6] is
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Table 10: All marker combinations with raw P values less than 0.01

Trait Type Number Marker Combination

BKa 15 3|67, 1|3|568, 1|3|7, 3|58, 2|3|58, 3|568, 3|57, 1|3|5, 1|3|57, 3|567, 1|3|56, 2|3|68, 1|3|78, 2|3|78, 3|578
Tendb 34 4|68, 4|56, 578, 568, 4|568, 1|4|58, 1|4|68, 4, 3|56, 1|2|57, 4|567, 3|58, 3|4|5, 1|57, 3|4|58, 3|568, 4|67, 5|67, 4|78, 58, 

5678 4|678, 4|58, 4|57, 3|4|7, 3|4|6, 3|578, 1|3|4|5, 1|4|5, 1|3|678, 3|4|578, 1|3|4|8, 1|3|56,1|3|5
DLc 4 1|3|678, 3|4|578, 567, 58
MCd 10 1|3|4|5, 3|4|678, 1|3|57, 1|568, 1|4|567, 1|4|57, 1|4|578, 1|56. 1|3|56, 1|3|67
IMFe 4 1|3|4|5, 1|4|56, 4, 568
pH1f 32 1|3|4|5, 1|3|5, 1|3|56, 1|3|57, 1|3|6, 1|3|67, 1|3|7, 1|4|567, 1|4|57, 1|4|578, 1|4|58, 1|4|6, 1|56, 1|578, 3|4|56, 3|4|6, 

3|4|678,3|4|7, 3|4|8, 3|56, 3|57, 3|568, 3|57, 3|58, 3|6, 3|67, 3|678, 3|7, 3|78, 4|56, 4|58, 4|6
pH24h 5 1|4|8, 3|4|8, 4|6, 58, 8
Proteini 8 1|3|6, 5, 1|5, 12|3, 1|4|8, 3|58, 1|3|8, 12|3|4|5

a back fat thickness, b tenderness, c drip loss, d meat color, e intramuscular fat content, f PH after 1 hour's slaughter, hPH after 24 hours' slaughter, i 
the content of protein. The eight markers (A1, A2, H1, M1, C1, C2, C3, C4) as 1 2 3 4 5 6 7 8, and same as follows.

Table 11: The specific MRHC of 4 regions of haplotype interaction

Trait Type The specfic haplotype configurations in 4 genes

BK AG|A|A|AGGA, AG|A|G|GGGA, AG|A|G|AGGA, AG|G|G|AGAA, AG|G|G|AGAA
Tend AG|A|G|AGGA, AG|A|G|AGGA, AG|A|G|AGGA, GG|A|A|AAAAa, GG|G|A|AAAAa

DL AG|A|G|AGAA, AG|A|G|AGGA, AG|G|G|AGAA, GG|G|A|AAAAa, AA|A|A|AAAAa

MC AG|A|A|AGGA, AG|A|G|AAGA, AG|A|G|AGAA, AG|A|G|AGGA, AG|G|G|AGAAa

IMF AG|A|G|AGAA, AG|A|G|AGGA, AA|G|G|AAAGa, AA|G|A|AAAGa, AG|G|G|AAGGa

pH1 AG|A|G|AGAA, AG|A|G|AGGA, AG|G|G|AGAA, AG|G|G|AAAAa, AG|A|A|AAGA
pH24 AG|A|G|AGAA, AG|A|G|AGGA, AG|G|G|AGAA, AG|A|A|AGGAa, AG|A|A|AAGAa

Protein AG|A|G|AGAA, AG|A|G|AGGA, AG|A|A|AGGA, AG|A|A|AGGAa, AA|A|A|AAGAa

a denote the statistics z is very low.
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Where P(xg, i) is the contribution of individual i to
MRHCs.

The score function for α is the partial derivative of the like-
lihood equation (5), with respect to α. The resulting score
statistic, denoted by Sα, is the score function evaluated at
the restricted maximum-likelihood estimate under the
null hypothesis. Sα is the statistic that we use to test MRHC
effect; in appendix A, we show the following result:

where  and  are the restricted maximum-likelihood

estimated under the null hypothesis, and E(Xg, i|Gi) is the

contribution of individual i to MRHC under the observed
multi-region genotypes, G.

To test the association between MRHC and trait that
adjusts for other covariates, we need to compute the vari-
ance of Sα under the null hypothesis H0: α = 0. Under H0,
Sα is asymptotically distributed as multivariate nor-
mal[36]. We consider the generalized score test, which
would ensure the asymptotic null χ2 distribution even
under model misspecification[5]. Define θ = (α, ζ) and let
Vα denote the variance of Sα, the equation can be
expressed according to Louis[37] and Tzeng et al[6] as:

where,

In appendix B, we show the above result.

With the above results, we can compute a global score sta-
tistic according to

The score statistic is distributed asymptotically as χ2 with
degrees of freedom equal to the rank of Vα.

Schaid et al[5] proved that the score function for α and the
score function for haplotype probabilities are independ-
ent under the null hypothesis, so that the covariance
between the two score functions is zero. Since the contri-
bution to each MRHC is estimated from the haplotype fre-
quency that is used to calculate the score statistic Sα, the
variance of the score statistic is not penalized by the use of
estimated haplotype frequencies.

In this framework, we can readily compute score statistics
for each MRHC according to[5]:

where zk follows χ2(1) under the null hypothesis H0: α = 0.

The P value  is assessed via simulation. In each repli-

cate of this simulation, a sample is constructed in which
the sample trait and environmental covariate of each indi-
vidual are randomly permuted at the same time, and the

score test statistic is computed again. Let  denote the

value of the test statistic obtained for the ith replicate.

Then  is the fraction of permutation replicates result-

ing in a test statistic greater than or equal to the test statis-

tic of the real data, i.e., , with t

denoting the number of permutation replicates and

| | denoting the

number of elements of .

Testing more than one hypothesis
If we select m markers in several genes, there would be 2m-
1 marker combinations. To test 2m-1 combinations with
associated raw P values, and declare the global P value the
significance level for our analysis would lead to another
multiple-testing problem. In order to avoid nested simu-
lation, we use the method which Becker and Knapp[2]
adapted from Ge et al[13]. The basic idea is that, to test B
= 2m-1 marker combinations, global P is estimated by the
proportion of permutation samples with min BPt smaller
than that in the observed data, where t is the simulation
time. For each marker combination B ∈ B and for each
permutation replicate i = 1,..., t, the raw P value of the ith
permutation replicate is calculated as

For i > 0,  is the minimum of the

uncorrected P values over all MRHC in the ith permuta-
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tion replicate. So the P value for the global hypothesis H0

is calculated as:

This permutation method is explained in more detail
in[2].

Authors' contributions
YH developed the statistical model, carried out the soft-
ware implementation, and made the simulation design
and drafted the manuscript. JS helped with discussion
both in theoretical developments and English copyedit-
ing. YP helped with discussion in theoretical develop-
ments, as well as in drafting the manuscript. QW, XZ and
HZ contributed with discussion on theoretical aspects and
drafting the manuscript. CL and LS contributed with the
experimental data. All authors read and approved the
manuscript.

Appendix A
Let Sα (Y, G, Xe, α, ζ) denote the score function of the data
(Y, G, Xe) for α. As set forth by[37], Sα (Y, G, Xe, α, ζ) is the
expectation of the complete-data score function given the
observed data--that is,

Appendix B
For the expected Fisher information function of the
observed data (Y, G, Xe), I is

where

The hybrid estimate of I is obtained by replacing the
nonzero entries of I with the observed Fisher information
(denoted by i):

Hence, equation (7) can be simplified as

Recall that

and that[37] proposed

so that

Acknowledgements
In this research, we had much help. During writing and running the pro-
gram, Ning Xu, Haitao Wang, Bofei Xiao, etc. gave much help. Becker, Jing 
Li, Hongyu Zhao, etc. gave us many helpful suggestions in our study. This 
work is supported by the National Natural Science Foundation of China 
(grant no.30671492), the National High Technology Research and Devel-
opment Program of China (863 project) (grant no. 2006AA10Z1E3, 
2008AA101002) and the National 973 Key Basic Research Program (grant 
no, 2006CB102102, 2004CB117500).

P s s t P P ti= ≤ ≤ ≤{ }: , /min min1 (11)

S Y G X E L y x x g

E

e i g i e i i

i

n

a a z
a

a z

a

( , , , , ) log ( , ; , ,, ,= ∂
∂

⎡
⎣⎢

⎤
⎦⎥

= ∂
∂

=
∑

1

((log ( , ; , ) log ( )

( )

, , ,f y x x P x g

E
yi b

a

i g i e i g i i

i

n

a z

h

+⎡
⎣⎢

⎤
⎦⎥

= − ′

=
∑

1

(( )

( )
( )

( )

,

,

j

j

X g

Yi E yi
a

E X g

g i i

i

n

i

n

g i i

⎡

⎣
⎢

⎤

⎦
⎥

= −

=

=

∑

∑
1

1

I

I

I

I

I

I

I

I

I

I

= ′
′ ′

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

aa

ab

aj

ab

bb

bj

aj

bj

jj

,

I

I
L

P

aj

bj

=

=
×

+ ×

0

0
1

1 1

,

( )

I

I

I

I

I

I

= ′
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

aa

ab

ab

bb

jj0 0

0

0 .

V D i i D D i i i i D i ia aa ab bb ab ab bb ab ab bb bb bb ab= − ′ − ′ + ′− − − −1 1 1 1 .

D S y g x S y g xi

i

n

i i e i i i i e i= ′
=
∑

1

( , , , ) ( , , , ), ,q q

S y g x E S y x x gi i i e i i i g i e i i( , , , ) ( , , ,, , ,q q= ⎡⎣ ⎤⎦

i E
Si yi x g i xe i

g

E S y x x

i

i

n

i i g i e

= −
∂

∂
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

−
=
∑ ( , , , , ,

( , ,, ,

q

q
1

ii i i g i e i i

i i g i e i i

S y x x g

E S y x x g E

, ) ( , , , )

( , , , )

, ,

, ,

q q

q

′⎡⎣ ⎤⎦

+ ⎡⎣ ⎤⎦ ′SS y x x g

D
yi b i

a
E x

i i g i e i i

i

n

g

( , , , )

( )
( )

, , q

h
jaa

⎡⎣ ⎤⎦}
= − ′⎛

⎝
⎜

⎞

⎠
⎟

=
∑

1

2

,, ,

,

( )

( )
( )

i i g i i

i

n

g i i e

g E x g

D
yi b i

a
E x g x

( ) ′

= − ′⎛

⎝
⎜

⎞

⎠
⎟ ( ) ′

=
∑ab

h
j

1

2

,,

, ,
( )

( )

( )
( )

i

i

n

e i e i

i

D
yi b i

a
x x

i
b
a

bb

ab

h
j

h
j

= − ′⎛

⎝
⎜

⎞

⎠
⎟ ′

=
′′

=

=

∑
1

2

1

nn

g i i e i

i

n

e i e i

E x g x

i
b
a

x x

∑

∑

′

=
′′ ′

=

( )

( )
( )

, ,

, ,bb
h
j

1

Page 10 of 11
(page number not for citation purposes)



BMC Genetics 2009, 10:56 http://www.biomedcentral.com/1471-2156/10/56
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM,

Pabial J, Dibling T, Tinsley E, Kirby S: A first-generation linkage
disequilibrium map of human chromosome 22.  Nature 2002,
418(6897):544-548.

2. Becker T, Knapp M: A Powerful Strategy to Account for Multi-
ple Testing in the Context of Haplotype Analysis.  Am J Hum
Genet 2004, 75(4):561-570.

3. Bell JT, Wallace C, Dobson R, Wiltshire S, Mein C, Pembroke J,
Brown M, Clayton D, Samani N, Dominiczak A: Two-dimensional
genome-scan identifies novel epistatic loci for essential
hypertension.  Hum Mol Genet 2006, 15(8):1365-1374.

4. Carlborg O, Haley CS: Epistasis: too often neglected in com-
plex trait studies.  Nat Rev Genet 2004, 5(8):618-625.

5. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score
Tests for Association between Traits and Haplotypes when
Linkage Phase Is Ambiguous.  Am J Hum Genet 2002,
70(2):425-434.

6. Tzeng JY, Wang CH, Kao JT, Hsiao CK: Regression-Based Associ-
ation Analysis with Clustered Haplotypes through Use of
Genotypes.  Am J Hum Genet 2006, 78(2):231-242.

7. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm
MG: Testing Association of Statistically Inferred Haplotypes
with Discrete and Continuous Traits in Samples of Unre-
lated Individuals.  Hum Hered 2002, 53(2):79-91.

8. Cordell HJ, Barratt BJ, Clayton DG: Case/pseudocontrol analysis
in genetic association studies: a unified framework for detec-
tion of genotype and haplotype associations, gene-gene and
gene-environment interactions, and parent-of-origin effects.
Genet Epidemiol 2004, 26(3):167-185.

9. Devlin B, Roeder K, Wasserman L: Analysis of multilocus models
of association.  Genet Epidemiol 2003, 25(1):36-47.

10. Marchini J, Donnelly P, Cardon LR: Genome-wide strategies for
detecting multiple loci that influence complex diseases.  Nat
Genet 2005, 37(4):413-417.

11. Schaid DJ, McDonnell SK, Hebbring SJ, Cunningham JM, Thibodeau
SN: Nonparametric Tests of Association of Multiple Genes
with Human Disease.  Am J Hum Genet 2005, 76(5):780-793.

12. Becker T, Schumacher J, Cichon S, Baur MP, Knapp M: Haplotype
Interaction Analysis of Unlinked Regions.  Genet Epidemiol 2005,
29(4):313.

13. Ge Y, Dudoit S, Speed TP: Resampling-based multiple testing
for microarray data analysis.  Test 2003, 12(1):1-77.

14. Manly BFJ: Randomization, Bootstrap And Monte Carlo Meth-
ods in Biology.  New York: Chapman & Hall/CRC; 2007. 

15. Hoh J, Wille A, Ott J: Trimming, weighting, and grouping SNPs
in human case-control association studies.  Genome Res 2001,
11(12):2115-2119.

16. Becker T, Cichon S, Jonson E, Knapp M: Multiple Testing in the
Context of Haplotype Analysis Revisited: Application to
Case-Control Data.  Ann Hum Genet 2005, 69(6):747-756.

17. Becker T, Herold C: Joint analysis of tightly linked SNPs in
screening step of genome-wide association studies leads to
increased power.  Eur J Hum Genet 2009, 17(8):1043-1049.

18. Roeder K, Bacanu SA, Sonpar V, Zhang X, Devlin B: Analysis of sin-
gle-locus tests to detect gene/disease associations.  Genet Epi-
demiol 2005, 28(3):207-219.

19. Hudson RR: Generating samples under a Wright-Fisher neu-
tral model of genetic variation.  Bioinformatics 2002,
18(2):337-338.

20. Dekkers JCM: Commercial application of marker-and gene-
assisted selection in livestock: Strategies and lessons.  J Anim
Sci 2004, 82:E313-328.

21. Gerbens F: Characterization, chromosomal localization, and
genetic variation of the porcine heart fatty acid-binding pro-
tein gene.  Mamm Genome 1997, 8(5):328-332.

22. Gerbens F, de Koning DJ, Harders FL, Meuwissen TH, Janss LL,
Groenen MA, Veerkamp JH, Van Arendonk JA, te Pas MF: The effect
of adipocyte and heart fatty acid-binding protein genes on
intramuscular fat and backfat content in Meishan crossbred
pigs.  J Anim Sci 2000, 78(3):552-559.

23. Gerbens F, van Erp AJ, Harders FL, Verburg FJ, Meuwissen TH,
Veerkamp JH, te Pas MF: Effect of genetic variants of the heart
fatty acid-binding protein gene on intramuscular fat and per-
formance traits in pigs.  Am Soc Animal Sci 1999, 77:846-852.

24. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin
DG, Schwartz MW: Melanocortin receptors in leptin effects.
Nature 1997, 390(6658):349.

25. Kim KS, Larsen N, Short T, Plastow G, Rothschild MF: A missense
variant of the porcine melanocortin-4 receptor (MC4R) gene
is associated with fatness, growth, and feed intake traits.
Mamm Genome 2000, 11(2):131-135.

26. Foretz M, Guichard P, Ferre P, Foufelle F: SREBP-1c is a major
mediator of insulin action on the hepatic expression of
gluckinase and lipogenesis related genes.  Proc Natl Acad Sci USA
1999, 96:12737-12742.

27. Forsberg NE, Ilian MA, Ali-Bar A, Cheeke PR, Wehr NB: Effects of
cimaterol on rabbit growth and myofibrillar protein degra-
dation and on calcium-dependent proteinase and calpastatin
activities in skeletal muscle.  J Anim Sci 1986, 67(12):3313-3321.

28. Murachi T, Tanaka K, Hatanaka M, Murakami T: Intracellular Ca2+-
dependent protease (calpain) and its high-molecular-weight
endogenous inhibitor (calpastatin).  Adv Enzyme Regul 1980,
19:407-424.

29. Li CL, Pan YC, Me H: Polymorphism of the H-FABP, MC4R and
ADD1 genes in the Meishan and four other pig populations
in China.  S Afr J Anim Sci 2006, 36(1):1.

30. Wang QS, Pan YC, Sun LB, Meng H: Polymorphisms of the CAST
gene in the Meishan and five other pig populations in China:
short communication.  S Afr J Anim Sci 2007, 37(1):27-30.

31. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM,
Schaid DJ: Estimation and Tests of Haplotype-Environment
Interaction when Linkage Phase Is Ambiguous.  Hum Hered
2003, 55(1):56-65.

32. Lobach I, Carroll RJ, Spinka C, Gail MH, Chatterjee N: Haplotype-
based regression analysis and inference of case-control stud-
ies with unphased genotypes and measurement errors in
environmental exposures.  Biometrics 2008, 64(3):673-684.

33. Zhou W, Thurston SW, Liu G, Xu LL, Miller DP, Wain JC, Lynch TJ,
Su L, Christiani DC: The Interaction between Microsomal
Epoxide Hydrolase Polymorphisms and Cumulative Ciga-
rette Smoking in Different Histological Subtypes of Lung
Cancer 1.  Cancer Epidemiol Biomarkers Prev 2001, 10(5):461-466.

34. Tzeng JY: Evolutionary-based grouping of haplotypes in asso-
ciation analysis.  Genet Epidemiol 2005, 28(3):220-231.

35. Patil N, Berno AJ, Hinds DA: Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromo-
some 21.  Science 2001, 294(5547):1719-1723.

36. McCullagh P, Nelder JA: Generalized Linear Models.  London:
Chapman & Hall/CRC; 1989. 

37. Louis TA: Finding the observed information matrix when
using the EM algorithm.  J Roy Stat Soc B Stat Meth 1982,
44(2):226-233.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16543358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16543358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16543358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15266344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15266344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15022205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15022205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12813725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12813725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15793588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15793588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15786018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15786018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16240441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16240441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16266412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19223937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19223937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19223937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15471812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15471812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9107676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9107676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9107676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10764061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10764061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10764061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9389472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10656927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10656927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10535992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10535992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10535992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6278869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6278869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6278869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11352855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11352855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11352855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15726584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15726584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Simulation study
	Simulation schemes
	Continuous traits
	Binary traits


	Results
	Comparison of three models htr, hapcc and HAPGLM
	Three factors analysis for global test
	Recombination analysis for global test
	Analysis for specific MRHC
	Select the best combination of markers
	Application to a pig meat quality dataset

	Discussion
	Conclusion
	Methods
	Contribution to multi-region haplotype configurations
	Regression model with MRHC
	Score test for incorporating contribution of MRHC
	Testing more than one hypothesis

	Authors' contributions
	Appendix A
	Appendix B
	Acknowledgements
	References

